二自由度振动有阻尼及强迫振动响应
- 格式:pdf
- 大小:659.84 KB
- 文档页数:16
阻尼振动与强迫振动的区别与联系引言:振动现象广泛存在于自然界和工程领域中。
阻尼振动和强迫振动作为振动现象的两种基本形式,它们在物理特性、引起原因和动力学特征等方面存在一定的区别和联系。
本文将着重讨论阻尼振动与强迫振动的区别与联系,以深入了解这两种振动形式的本质。
一、阻尼振动的定义与特点阻尼振动是指受到阻尼力作用下的振动现象。
在阻尼振动中,振动系统受到阻尼力的耗散作用,会导致振幅的逐渐减小,直至 eventually下降为零。
阻尼振动的物理特性主要包括振动频率的减小、振幅的衰减和振动系统能量的损失。
二、强迫振动的定义与特点强迫振动是指在外界作用下,振动系统受到周期性或非周期性的外力驱动,并由此产生的振动现象。
与阻尼振动不同,强迫振动在无外力驱动时不会自发发生。
强迫振动的物理特性主要包括受迫振动频率与外力频率的一致性、振幅的稳定性和外界驱动力对振动系统的影响。
三、阻尼振动与强迫振动的区别1. 物理特性:阻尼振动主要表现为能量的衰减和振幅的逐渐减小,而强迫振动的振幅较为稳定,受迫振动频率与外力频率一致。
2. 引起原因:阻尼振动产生的主要原因是振动系统与环境介质之间的相互作用,而强迫振动则是由外界施加的外力引起的。
3. 频率依赖性:阻尼振动的频率与外界没有直接的关系,而强迫振动的频率受外界驱动力的影响,与外力频率保持一定的一致性。
4. 能量耗散:阻尼振动会因阻尼力的作用逐渐损失能量,而强迫振动的振动系统能量主要来自外界驱动力。
四、阻尼振动与强迫振动的联系1. 泛化关系:强迫振动可以看作是阻尼振动的一种特殊情况,当外界驱动力的频率趋近于阻尼振动系统的固有频率时,强迫振动会逐渐趋近于稳定状态。
2. 共存关系:在实际物理系统中,阻尼振动与强迫振动可以同时存在。
外界施加的强迫力可能使阻尼振动系统产生共振现象,引起系统的不稳定性。
3. 相互影响:阻尼振动和强迫振动之间存在着相互影响关系。
阻尼振动的存在会导致强迫振动的振幅逐渐减小,而强迫振动的存在也会影响阻尼振动系统的能量耗散。
工程力学中的自由振动和强迫振动的特性在工程力学中,振动是一个重要的研究领域。
振动被广泛应用于各种工程中,包括建筑结构、机械系统以及电子设备等。
振动可以分为自由振动和强迫振动两种类型。
本文将讨论自由振动和强迫振动的特性以及它们在工程中的应用。
一、自由振动的特性自由振动是指在没有外界干扰的情况下,结构或系统在其固有频率下进行的振动。
自由振动的特性主要包括振幅、周期、频率和阻尼等。
1. 振幅振幅是指振动的最大偏离量。
在自由振动中,振幅受到初始条件的影响,振幅越大,振动的能量也就越大。
2. 周期周期是指振动完成一个完整循环所需的时间。
自由振动的周期与结构的固有频率有关,固有频率越高,周期越短。
3. 频率频率是指振动单位时间内完成的循环次数。
频率是周期的倒数,用赫兹(Hz)表示。
自由振动的频率与周期相反,固有频率越高,频率越大。
4. 阻尼阻尼是指振动过程中能量的消耗。
在自由振动中,存在三种类型的阻尼:无阻尼、过阻尼和欠阻尼。
无阻尼振动指没有能量损耗的理想振动;过阻尼振动是指能量损耗过大,振动停止得很慢;欠阻尼振动是指振动的能量损耗较小,但是在振动停止时存在振荡。
二、强迫振动的特性强迫振动是指受到外界周期性力作用下的振动。
外界力的频率通常不等于结构的固有频率,因此会引发结构的共振。
强迫振动的特性主要包括固有频率、共振和受迫振动等。
1. 固有频率固有频率指的是结构或系统在自由振动状态下的固有频率。
在强迫振动中,结构的固有频率决定了其对外界激励的响应。
2. 共振共振是指外界力的频率与结构的固有频率相等或接近,导致结构振幅迅速增大的现象。
共振现象对于某些结构来说是有害的,因为会导致结构破坏或崩溃。
3. 受迫振动受迫振动是指在强迫振动中,结构受到外界激励而发生的振动。
外界激励可以是周期性的力或者者是其他形式的周期性变量。
三、自由振动和强迫振动在工程中的应用自由振动和强迫振动在工程中有着广泛的应用。
1. 自由振动的应用自由振动的研究可以用于建立结构的固有频率,通过调节结构的初始条件和强度来影响振动的特性。
机械与运载工程学院第十一讲二自由度系统强迫振动2机械与运载工程学院运动方程m 1m 2k 3k 1k 2x 1x 2P 1(t )P 2(t )k 1x 1k 2(x 1-x 2)11x m m 1P 2(t )k 2(x 1-x 2)22xm m 2k 3x 2⎩⎨⎧=+−−=−++)()()()(2332122212121111t P x k x x k x m t P x x k x k x m 运动方程:矩阵形式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+−−++⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡)()(0021213222212121t P t P x x k k k k k k x x m m3机械与运载工程学院1θk 1I 2θ2I 2θk 3θk )(1t M )(2t M 1θ11θθk 11θ I )(1t M )(212θθθ−k 22θ I )(2t M 33θθk )(122θθθ−k 1111121212222332()()()()I k k M t I k k M t θθθθθθθθθθθ⎧++−=⎪⎨+−+=⎪⎩运动方程:矩阵形式:122111122322220()0()k k k I M t k k k I M t θθθθθθθθθθ+−⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−+⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 4机械与运载工程学院⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+−−++⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡)()(0021213222212121t P t Px x k k k k k k x x m m⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+−−++⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡)()(0021213222212121t M t M k k k k k k I I θθθθθθθθθθ 多自由度系统的角振动与直线振动在数学描述上相同如同在单自由度系统中做过的那样,在多自由度系统中也将质量、刚度、位移、加速度及力都理解为广义的。
一、单自由度系统的振动2()()0()(nmx t kx t x t w x t +=⇔+120)cos sin cos n n A w t A w t x =+=2()()()0()2()()0n n mx t cx t kx t x t w x t w x t ξ++=++= 211)(nn w t w t e X e ξξ--=+自然频率 阻尼率 22n c c mw mkξ==w 2()2()(()cos(n n nw td x t w x t w x t t C ew t ξξψ-++=-:尼激0 ()cos(n x t C w t =-幅频曲线及其特性 ()H w 1:此时力与位移相位相反sin nwt c =/2/22T T T -=⎰周期函数将失去周期性,而离散频谱将转化为连续谱,此时傅里()()(mx t cx t kx t ++21)[1(/)n n c k w w ∞==-∑00sin n dx x ξωω+0sin n n x t ωω +自由振动是强迫振动的基础,任一时刻的强迫振动响应其实只是该时刻前被激起的一系列自由振动的叠加。
2()2()()n nx t w x t w x t ξ++=1()()()2iwtt H w F w e dw π+∞-∞=⎰()()()mx t cx t kx t ++=拉普拉斯变换:()(0)(()()()F s mx ms X s D s D s ++=+拉氏反变换:11()[()]2jw jwx t L X s j γγπ+--==⎰牛顿第二定律、定轴转动方程、能量原理、拉格朗日方程一般情况采用解析法求解,对于非线性方程,常采用数值方法求解振动系统反作用力近似为位移和速度的函数:)x 泰勒展开并取cx 结论:弹簧刚度与阻尼系数实际上是泰勒展开式中定义:单位位移所需要的力。
弹簧串联、并联,关键在于共力还是共位移用积分计算结构运动时的动能,得到某结构的等效质量/d m ;经变形法;能量法:max V不变,响应振幅与激振力振幅正比,为滞后激励多少,Ψ初相位微小的阻尼就可以限制振幅的无限扩大共振需要一个较长的建立过程,机器需有足够的加速功率顺利通过共振区。