3 行列式行列式的按行(列)展开
- 格式:ppt
- 大小:495.00 KB
- 文档页数:16
03. 行列式的展开法则 一、按一行(列)展开法则定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则 1122||(1,2,,)A i i i i in in a A a A a A i n =+++= ; 2)按一列展开法则 1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++= . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式1)xy x yyx; 2)111111121n n----; 3)121111n n na a xD a xa x---=-.解 1)按1c 展开得原式1111111(1)(1)n n n n n n n xA yA xxy y x y -+-+=+=+-=+-. 2)原式121(1)(12)2n n nn n c c c c n n n A c -++++++++=按展开. 3)法1 按1r 展开得()112112121223121211(,,,)(,,)(,,).()n n n n n n n n n n n n n n n D a a a a x D a a a x a x D a a a x a x a x a D a a --------=+=++==++++=法2 在n D 中,元素(21)i a i n ≤≤-的余子式为11111(1)11i n i i x x M x x x x-----==---.将n D 按1c 展开得11211211(1)ni n n n i i n n i D a M a x a x a x a +---==-=++++∑ .法3 1121212112121101,1,,210i i nn n n n n n na a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++12121n n n n a x a x a x a ---=++++ . ()11111(1)(1)(1)1n n n n n A M ++-=-=--=法4 按n r 展开得111212121.n n n nn n n n n n n n n n D a A xA a xD a a x xD a x a x a x a ------=+=+=++==++++定理3.2 当i j ≠时, 11220i j i j in jn a A a A a A +++= ;11220i j i j ni nj a A a A a A +++= . 注 1122||A i j i j in jn ij a A a A a A +++= δ, 1122||A i j i j ni nj ij a A a A a A +++= δ,其中1,;0,ij i j i j=⎧=⎨≠⎩当当δ为克罗内克(Kronecker )符号.例3.3 1)二元(实)函数1,;(,)0,.x y f x y x y =⎧=⎨≠⎩当当 显然(,)xy f x y =δ.2)diag(1,1,,1)[]ij n n ⨯= δ.例3.4 设四阶行列式1212211220211234D =. 1)求代数余子式12A ; 2)求1121314123A A A A +++; 3)求41424344A A A A +++.行列式的完全展开定义、公理化定义、降阶定义可以互相推证. 以降阶定义为原始定义做理论推导时,可以引入仿克罗内克符号1,;0,.ij i j i j <⎧=⎨>⎩当当ρ 例3.5 1)若正整数i j ≠,则1.ij ji +=ρρ2)仿克罗内克符号有缺项定位功能. 在序列124567,,,,,a a a a a a 中,(17,3)i a i i ≤≤≠位于第3i i -ρ位. 在序列12467,,,,a a a a a中,(17,3,5)i a i i ≤≤≠位于第35i i i --ρρ位.3)仿克罗内克符号有描述逆序功能.s t j j 构成逆序01s t t s j j j j ⇔=⇔=ρρ,121()t sn j j s t nj j j ≤<≤=∑τρ.例3.6 n 阶范德蒙(Vandermonde )矩阵1[]i j n n a -⨯的行列式122131121(,,,)()()()(,,)().n n n j i i j nV a a a a a a a a a V a a a a ≤<≤=---=-∏例3.7 填空11112345_____49162582764125----=----.例3.8 设0abcd ≠,求证222211(,,,)11a a bcd b b acdV a b c d c c abd d d abc=-.例3.9 计算n 阶三对角行列式111n a b ab a b ab D a b aba b++=++ .二、按多行(列)展开法则定义3.2 矩阵A m n ⨯的k l ⨯子矩阵1212A k l i i i j j j ⎛⎫ ⎪⎝⎭ 及其余子阵,k 阶子方阵、k 阶子式;n 阶方阵或其行列式中k 阶子式的n k -阶余子式M 、代数余子式1212()()(1)k k i i i j j j A M +++++++=- ,k 阶(顺序)主子阵、k 阶(顺序)主子式. 主子式的代数余子式就是余子式.例3.10 设55[]A ij a ⨯=.1)25135A ⎛⎫⎪⎝⎭是A 的一个23⨯子矩阵,13424A ⎛⎫⎪⎝⎭为其余子阵;2)1325A ⎛⎫⎪⎝⎭是A 的一个2阶子方阵,1325A ⎛⎫ ⎪⎝⎭是A 的一个2阶子式,245134A ⎛⎫⎪⎝⎭为对应余子式,而对应代数余子式为(13)(25)245245(1)134134A A +++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭;3)235235A ⎛⎫ ⎪⎝⎭是A 的一个3阶主子阵,235235A ⎛⎫⎪⎝⎭是A 的一个3阶主子式,其代数余子式就是余子式1414A ⎛⎫⎪⎝⎭,是A 的一个2阶主子式;4)A 共有五个顺序主子阵(式).定理3.3 按多行(列)展开法则——拉普拉斯(Laplace )定理1122C C ||A k k nnN A N A N A =+++ .例3.11 计算四阶行列式1234500112365112D -=--.例3.12 计算六阶行列式111000234000310161111101112411243161139D =---.例3.13 计算六阶行列式120000350000635475124583240064270034D -=-.例3.14 计算叉形行列式1)11211n n n nna b a b D c d c d =;2)112111nn n nna b a b D e c d c d +=.。
9.4(2)三阶行列式按一行(或一列)展开一、教学内容分析三阶行列式按一行(或一列)展开是三阶行列式计算的另外一种法则,学习这种法则有助于学生更好地理解二阶行列式、三阶行列式的内在联系,同时这个法则也是较复杂的行列式计算的常用方法,这个法则更是蕴涵了数学问题研究过程中将复杂问题转化为简单问题的研究方法.本节课的教学内容主要围绕代数余子式的符号的确定研究三阶行列式按一行(或一列)展开法则.二、教学目标设计⑴ 掌握余子式、代数余子式的概念;⑵ 经历实验、分析的数学探究,逐步归纳和掌握代数余子式的符号的确定方法和三阶行列式按一行(或一列)展开方法,体验研究数学的一般方法;(3)体会用简单(二阶行列式)刻画复杂(三阶行列式)、将复杂问题简单化的数学思想.三、教学重点及难点三阶行列式按一行(或一列)展开、代数余子式的符号的确定. 四、教学过程设计一、情景引入【实验探究1】(1)将下列行列式按对角线展开:2233b c b c =_______________ 2233a b a b =_______________ 2233a c a c =_______________1133b c b c =_______________1122b c b c =_______________111222333a b c a b c a b c =_______________ (2)对比、分析以上几个行列式的展开式,你能将三阶行列式111222333a b c a b c a b c 表示成含有几个二阶行列式运算的式子吗?[说明](1)请学生展开几个行列式的主要目的是:巩固复习前面学习的知识;同时,有意识地设计这几个行列式的展开,有助于学生发现三阶行列式111222333a b c a b c a b c 与相应的二阶行列式间的关系.(2)将三阶行列式111222333a b c a b c a b c 表示成几个含有二阶行列式运算的式子,结果可能不唯一,可以有111222222222111333333333a b c b c a c a b a b c a b c b c a c a b a b c =-+等等.二、学习新课1.知识解析在刚才的实验中,将三阶行列式111222333a b c a b c a b c 表示成了含有三个二阶行列式运算的式子,主要有:111222222222111333333333a b c b c a c a b a b c a b c b c a c a b a b c =-+111221111222123333322333a b c b c b c b c a b c a a a b c a c b c a b c =-+ 111221111222123333322333a b c a c a c a c a b c b b b a c a c a c a b c =-+-等等. 请同学生选择其中的一个为例谈谈他们是如何发现这些等式的?事实上,以111222222222111333333333a b c b c a c a b a b c a b c b c a c a b a b c =-+为例,先将展开式111222123231312321213132333a b c a b c a b c a b c a b c a b c a b c a b c a b c =++---变形为:111222123132312213231321333()()()a b c a b c a b c a b c a b c a b c a b c a b c a b c =-+-+-,然后分别提取公因式,可以得到111222123321322312332333()()()a b c a b c a b c b c b a c a c c a b a b a b c =-+-+- 再利用实验中已有的展开式22233233b c b c b c b c -= ① 22233233a c a c a c a c -=② 22233233a b a b a b a b -=③从而很容易就得到结果了.其中二阶行列式①、②、③分别叫做元素1a ,1b ,1c 的余子式...,添上相应的符号(正号省略),如22133b c A b c =22133a c B a c =-22133a b C a b =,1A 、1B 、1C 分别叫做元素1a ,1b ,1c 的代数余子式......于是三阶行列式可以表示为第一行的各个元素与其代数余子式的乘积之和:111222222222111333333333a b c b c a c a b a b c a b c b c a c a b a b c ⎛⎫=+-+ ⎪⎝⎭象这样的展开,我们称之为三阶行列式按第一行展开.类似的,我们可以将三阶行列式按第二行或按列展开.从上述研究,我们不难发现这种展开方法的关键是要找到三阶行列式某一行或某一列各个元素的代数余子式.不难发现,要确定某元素的代数余子式,我们可以先确定其余子式,然后确定代数余子式符号,而最主要的就是其符号的确定.为了让学生有较深刻的体会,教师可以组织学生完成实验探究2.【实验探究2】请学生结合刚才确定a,1b,1c的余子式和代数余子式的方法,1完成下表,并试着研究某个元素的代数余子式的确定方法.【工作1】【工作2】总结代数余子式的确定方法:__________________________________________________________[说明](1)以上实验主要由学生合作完成,实验的目的主要是让学生经历实验、归纳、猜想、抽象并获得新知的过程;(2)教师可以将学生分成数个学习小组,合作实验研究,并交流研究结果,最后由教师总结.(3)通过上述研究,教师要引导学生发现:确定某个元素的余子式其实就是将这个元素所在的行和列划去,将剩下的元素按照原来的位置关系所组成的二阶行列式;而这个元素的代数余子式与该元素所在行列式的位置(即第i 行,第j 列)有关,其代数余子式的正负号是“(1)i j +-”.一般地,三阶行列式可以按其任意一行(或一列)展开成该行(或该列)的各个元素与其代数余子式的乘积之和.其中,最关键的是确定三阶行列式某一行或某一列各个元素的代数余子式(尤其是其符号).2.例题解析例题1.按要求计算行列式:302213231-- (1)按第一行展开; (2)按第一列展开.[说明](1)一个三阶行列式可以按其任意一行(或一列)展开,其中,最关键的是确定三阶行列式某一行或某一列各个元素的代数余子式(尤其是其符号);(2)当一个三阶行列式的某一行(或某一列)元素中,0的个数较多,我们往往将行列式按照该行(或该列),这样计算往往比较方便.例题2.计算:(1)111b c a c a b a b c ef df d ed ef-+- (2)222222222333333b c a c a b a b c b c a c a b -+〖参考答案〗(1)0 (2)0[说明](1)设计这样一组例题主要有两个目的:一,考查学生的逆向思维能力;二,为后续知识的学习做准备;(2)由例题2(2)计算结果,我们可以发现:如果将三阶行列式的某一行(或一列)的元素与另一行(或一列)的元素的代数余子式对应相乘,那么它们的乘积之和为零;如果一个二阶行列式或(三阶行列式)有两行(或两列)相同,那么这个行列式等于零.3.问题拓展思考:我们上节课已经学习了三阶行列式展开的对角线法则,为什么这节课还要学习按一行(或按一列)展开呢?你觉得这有什么意义吗?[说明]一个三阶行列式按一行(或按一列)展开后就转化为二阶行列式的运算,这种将复杂问题转化为简单问题的思想方法是数学研究中常用的方法.只要学生能领悟到这一点,马上就可以意识到任何一个行列式(哪怕是n阶行列式)最后都可以转化为二阶行列式的运算.三、巩固练习教材第99页,练习9.4(2).四、课堂小结(1)余子式、代数余子式的概念;(2)三阶行列式按一行(或一列)展开方法.五、作业布置根据学生的具体情况,对习题册中的问题进行增减.五、教学设计说明本节课的教学内容是三阶行列式按一行(或一列)展开方法,从内容上看,这部分内容与上节课一样,同样概念性比较强,同样容易上成教师“一堂言”的枯燥无味的数学课,但是这部分内容却蕴涵了重要的数学思想方法.单纯的死记硬背不是好的学习方法,理解比记忆重要,能力比知识的本身重要.我把本节课的教学模式设计为通过实验探究、对比分析、大胆猜想、证实猜想,从而逐步获得新知,让学生体验数学学习的乐趣,感悟数学研究的一般方法.。
三阶行列式——按一行(或一列)展开数学组 孙冬梅[教学内容分析]三阶行列式按一行(或一列)展开是三阶行列式计算的另外一种法则,学习这种法则有助于学生更好地理解二阶行列式、三阶行列式的内在联系,同时这个法则也是较复杂的行列式计算的常用方法,更是蕴涵了数学问题研究过程中将复杂问题转化为简单问题的研究方法。
本节课的教学内容主要围绕代数余子式的符号的确定研究三阶行列式按一行(或一列)展开法则。
[学情分析]学生已掌握三阶行列式的对角线法则,并在计算过程中体会到对角线法则展开的不便。
这种认知和困惑是进行本次课的一个有效开端,也是培养学生进行数学研究的有效思维路径。
[教学目标](1) 掌握余子式、代数余子式的概念;(2) 经历实验、分析的数学探究,逐步归纳和掌握代数余子式的符号的确定方法和三阶行列式按一行(或一列)展开方法,体验研究数学的一般方法; (3) 体会用简单(二阶行列式)刻画复杂(三阶行列式)、将复杂问题简单化的数学思想.[教学重点和难点]三阶行列式按一行(或一列)展开、代数余子式的符号的确定。
[教学设计思路]复习简单的二阶、三阶行列式的展开,发现二、三阶行列式之间的联系,推演至三阶行列式的按一行(或一列)展开。
过程中的难点是代数余子式的符号确定,引导学生将符号的变化与(1)k -相联系。
通过相关例题,强化代数余子式展开的原理,并体会其与对角线法则的比较优劣。
[教学准备]学生已掌握二阶、三阶行列式的对角线法则。
[教学过程]一、情景引入将下列行列式按对角线法则展开: 2233b c b c =_____________ (2332b c b c -)111222333a b c a b c a b c =____________(123231312132213321a b c a b c a b c a b c a b c a b c ++---)[说明]请学生展开几个行列式的主要目的:巩固复习前面学习的知识;同时,有助于学生发现三阶行列式111222333a b c a b c a b c与相应的二阶行列式间的关系。