行列式《行列式按行(列)展开》课件
- 格式:ppt
- 大小:1.53 MB
- 文档页数:27
第四节行列式按一行(列)展开将高阶行列式化为低阶行列式是计算行列式的又一途径,为此先引进余子式和代数余子式的概念.在n 阶行列式中,划去元素aij 所在的行和列,余下的n-1阶行列式(依原来的排法),称为元素aij 的余子式,记为Mij.余子式前面冠以符号(-1)i+j ,称为元素aij 的代数余子式,记为Aij =(-1)i+j Mij.例如四阶行列式11121314212223243132333441424344a a a a a a a a a a a a a a a a 中,元素23a 的余子式和代数余子式分别为11121423313234414244;a a a M a a a a a a =23232323(1)A M M +=-=-引理一个n 阶行列式D ,如果第i 行所有元素除ij a 外全为零,则行列式.ij ij D a A =证先证ij a 位于第1行第1列的情形,此时11212221200,nn n nna a a a D a a a = 这时第三节例4中当k=1时的特殊情形,按第三节例4的结论有11111111D a M a A ==.再证一般情形,此时1111100.j n ij n nj nna a a a D a a a = 我们将D 作如下的调换:把D 的第i 行依次与第i-1行,第i-2行,…,第1行对调,这样数ij a 就调到了第1行第j 列的位置,调换次数为i-1次;再把第j 列依次与第j-1列,第j-2列,…,第1列对调,数ij a 就调到了第1行第1列的位置,调换次数为j-1,总共经过(i-1)+(j-1)次对调,将数ij a 调到第1行第1列的位置,第1行其他元素为零,所得的行列式记为D 1,则,而ij a 在D 1中的余子式仍然是ij a 在D 中的余子式Mij ,利用前面的结果,有1ij ijD a M =于是1(1)(1)i j i j ij ij ij ijD D a M a A ++=-=-=定理4.1行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即D=ai 1Ai 1+ai2Ai2+…+ainAin(i=1,2,…,n),或D=a 1jA 1j +a2jA2j +…+anjAnj(j=1,2,…,n).证1112112120000000n i i inn n nn a a a D a a a a a a =++++++++++11121111211112112121212000000,n n n i i in n n nn n n nnn n nna a a a a a a a a a a a a a a a a a a a a =+++根据引理有D=ai1Ai1+ai2Ai2+…+ainAin =∑nk=1aikAik(k=1,2,…,n).类似地,我们可得到列的结论,即D=a1jA1j +a2jA2j +…+anjAnj =∑nk=1akjAkj(j=1,2,…,n).这个定理称为行列式按行(列)展开法则,利用这一法则并结合行列式的性质,可将行列式降阶,从而达到简化计算的目的.例1再解第三节中例1.解25120010371412165927112346122110D -----==---1311126300(1)11311321021013(1)(3)10++--=-=--=-⨯--=-3×(-1)×(-1)×3=-9.例2计算行列式11211nnn nna b a b D c d c d =解按第1行展开有111121111000000n n n nn n na b a b D a c d c d d ----=11111211110(1)00000n n nn n n na b a b b c d c d c --+--+⨯-2(1)2(1)2(1)(),n n n n n n n n n n n a d D b c D a d b c D ---=-=-,以此作递推公式,得22(1)11112(2)111111222211111111111()()()()()()()()()(),n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n ni i i i i D a d b c D a d b c a d b c D a b a d b c a d b c a d b c c d a d b c a d b c a d b c a d b c --------------==-=--==---=---=-其中记号“∏”表示所有同类型因子的连乘积.例3证明范德蒙(Vandermonde)行列式1222212111112111()nn n i j n i j n n n nx x x D x x x x x x x x ≥≥---==-∏(4.1)证用数学归纳法证明.当n=2时,211211()i j n i j D x x x x ≥≥==-∏ (4.1)式成立.假设(4.1)式对n-1阶范德蒙行列式成立,要证(4.1)式对n 阶范德蒙行列式成立.为此,将Dn 降阶,从第n 行开始,后一行减前一行的1x 倍得2131122133112222213311111100()()()0()()()n n n n n n n n n x x x x x x D x x x x x x x x x x x x x x x x x x ------=------按第1列展开,并提取每一列的公因子,有232131122223111()()()n n n n n n n x x x D x x x x x x x x x ---=---上式右端行列式是n-1阶范德蒙行列式,由归纳假设它等于∏n ≥i >j ≥2(xi -xj ),故2131121()()()()().n n i j n i j i j n i j D x x x x x x x x x x ≥≥≥≥=----=-∏∏显然,范德蒙行列式不为零的充要条件是x 1,x 2,…,xn 互不相等.由定理4.1还可以得到下述推论.推论行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即ai 1Aj 1+ai 2Aj 2+…+ainAjn=0,i ≠j ,或a1iA1j+a2iA2j +…+aniAnj=0,i ≠j .证作行列式(i ≠j)11121121212ni i ini i in n n nna a a a a a a a a a a a 则除其第j 行与行列式D 的第j 行不相同外,其余各行均与行列式D 的对应行相同.但因该行列式第i 行与第j 行相同,故行列式为零.将其按第j 行展开,便得ai 1Aj 1+ai 2Aj 2+…+ainAjn=0.同理可证a1iA1j+a2iA2j +…+aniAnj=0.将定理4.1与推论综合起来得∑nk=1aikAjk =D,i =j,0,i ≠j,或∑nk=1akiAkj =D,i =j,0,i ≠j.下面介绍更一般的拉普拉斯(Laplace)展开定理.先推广余子式的概念.定义4.1在一个n 阶行列式D 中,任意取定k 行k 列(k ≤n),位于这些行与列的交点处的k 2个元素,按原来的顺序构成的k 阶行列式M ,称为行列式D 的一个k 阶子式;而在D 中划去这k 行k 列后余下的元素,按原来的顺序构成的n-k 阶行列式N ,称为k 阶子式M 的余子式.若k 阶子式M 在D 中所在的行、列指标分别为i 1,i 2,…,ik 及j 1,j 2,…,jk ,则(-1)(i 1+i 2+…+ik )+(j 1+j 2+…+jk )N称为k 阶子式M 的代数余子式.如在五阶行列式111213141521222324255152535455a a a a a a a a a a a a a a a 中选定第2、第5行,第1、第4列,则二阶子式21245154a a M a a =的余子式121315323335424345a a a N a a a a a a =而代数余子式为2514(1).N N +++-=*定理4.2(拉普拉斯定理)设在行列式D 中任意选定k(1≤k ≤n-1)行(或列),则行列式D 等于由这k 行(列)元素组成的一切k 阶子式与它们对应的代数余子式的乘积之和.(不证)例4用拉普拉斯定理计算行列式12140121.10130131D -=解若取第1、第2行,则由这两行组成的一切二阶子式共有246C =个123456121114,,,010*********,,.121121M M M M M M ===-===--其对应的代数余子式为123456130301,,,311113131110,,.010301A A A A A A ==-===-=则由拉普拉斯定理得D=M1A1+M2A2+…+M6A6=(-1)×(-8)-2×(-3)+1×(-1)+5×1-6×3+(-7)×1=-7.注当取定一行(列)即k=1时,就是按一行(列)展开.从以上计算看到,采用拉普拉斯定理计算行列式一般并不简便,其主要是在理论上的应用.。