Nitrogen and potassium dynamics in fertigation systems
- 格式:pdf
- 大小:328.35 KB
- 文档页数:10
山西农业大学学报第27卷(第5期) 000007J.Shanxi Agr ic.Univ.No.5Vol.272007收稿日期622作者简介张建华(82),女(汉),山西左云人,在读硕士,主要从事植物营养与施肥方面的研究。
氮钾钙配施对生菜生长的影响张建华,卜玉山(山西农业大学资源与环境学院,山西太谷030801)摘 要:采用盆栽试验研究了石灰性土壤施用氮、钾、钙肥对生菜生长的影响。
结果表明,氮钾钙配施对生菜生长有显著的影响,适宜的氮钾钙配比可以促进生菜的生长,使产量提高915%。
适宜的氮钾钙配施可以使生菜叶绿素和维生素C 含量分别提高19%和13%。
关键词:石灰性土壤;生菜;氮;钾;钙中图分类号:S15813 文献标识码:A 文章编号:167128151(2007)0520018204The Effect s of Appl ica t ion of N itr ogen Pota ssium an d Calcium on the G r ow t h of Ro 2ma ine Let t uce ZH ANG Jian 2hua et al.(Colle ge of Resources and Envi ronment ,S ha nxi A gricur al U nive rsit y ,Tai gu Sha nxi 030801,China)Abstra ct :A pot cultivation e xpe riment wa s conducted to study the eff ects of application of N.K a nd Ca fer tilizers on the growth of romaine lettuce.The re sult s indicated tha t proper applica tion of N.K and Ca togethe r p romoted the growth of the romaine lettuce .It could make t he yield enha nce 915%.Proper application of N ,K,a nd Ca togethe r could ma ke the content of chlorop hyll and vita 2min C in romaine lett uce inc rease 19%a nd13%.K ey w o r ds :Lime soil ;Romai ne lett uce ;Nitrogen ;Potassium ;Calcium生菜即叶用莴苣,其质地脆嫩,口感鲜嫩清香,具有清肝利胆和养胃的功效。
第29卷第3期2010年3月 分析测试学报FENXI CESH I X UEBAO (J ournal of Ins tru m en talAnal ys i s)V ol 129No 13313~315收稿日期:2009-12-16;修回日期:2010-02-22基金项目:河南省教育厅自然科学研究资助项目(2008B610001,2009A610003)第一作者:周 华(1986-),女,河南中牟人,硕士研究生通讯作者:周艳梅,Te:l 0378-*******,E-m ai:lz houy m@henu 1edu 1cn鲁米诺-铁氰化钾化学发光体系对盐酸环丙沙星的测定周 华1,魏金凤2,周艳梅1,王亚萍1,朱天伟1(1.河南大学 化学化工学院 环境与分析科学研究所,河南 开封 475004;2.河南大学 民生学院,河南 开封 475004)摘 要:环丙沙星对N a OH 介质中的鲁米诺-铁氰化钾的化学发光具有较强的增敏作用,据此建立了一种新的测定痕量环丙沙星药物的流动注射化学发光法。
讨论了介质浓度、发光试剂浓度等因素的影响,在最佳实验条件下,环丙沙星的质量浓度在210@10-5~112@10-4g #L -1范围内与发光强度呈良好线性关系,检出限为112@10-6g #L -1,11次平行测定410@10-5g #L -1环丙沙星的相对标准偏差为312%。
该方法已用于环丙沙星片剂的测定,所得结果与标示值相符。
关键词:化学发光;鲁米诺-铁氰化钾;环丙沙星中图分类号:O 65713;R 917 文献标识码:A 文章编号:1004-4957(2010)03-0313-03do:i 1013969/j 1issn 11004-4957120101031022D eter m i nati on of C i pro fl oxaci n w ith Lu m i no l-Potassi u m Ferricyani deChe m il u m i nescence Syste mZ HOU H ua 1,W E I Jin -feng 2,Z HOU Yan -m ei 1,WANG Y a -ping 1,Z HU T ian -we i1(1.Instit u te o f Env i ron m enta l and A nalytical Sciences ,College o f Che m i stry and Che m i ca l Eng i neering ,H enan U niversity ,K a ifeng 475004,Ch i na ;2.Co llege ofM i nsheng ,H enan U ni v ers it y ,K a ifeng 475004,Chi na)Abstr ac:t B ased on the fact that the che m ilu m i n escence(CL)reaction o f lum i n ol and potassi u m fer -ricyan i d e in a l k ali n e m edi u m cou l d be sensitized by cipro fl o xaci n sign ificantly ,and the che m il u m -inescence i n tensity w as d irectl y proportional to the concentration of cipro fl o xaci n ,a ne w analytica l m ethod w as deve l o ped for the deter m i n ati o n of cipr o floxaci n w ith fl o w i n jecti o n che m il u m inescence .The effect of type o fm edi u m and concentrati o n o f reagents on CL intensity w as i n vesti g ated .Under the opti m u m experi m enta l cond ition,the CL intensity w as proporti o na l to c i p rofl o xac i n concentrati o n over the range of 210@10-5-112@10-4g #L-1w it h a detection li m it of 112@10-6g #L -1.There lative standard dev i a ti o ns(RSDs)of 410@10-5g #L-1c i p rofloxacin w ith 11consecutive m easure -m ents w as found to be 312%.The m ethod w as app li e d in the deter m inati o n o f c i p rofloxacin drug tab -lets ,and the resu lts obta i n ed w ere i n good agree m entw ith that o f the labelled values .Key wor ds :che m il u m i n escence ;lum i n ol-potassi u m ferricyan i d e ;c i p rofloxacin环丙沙星(CF)的化学名为1-环丙-6-氟-104-二氢-4-氧-7[1-哌嗪基]-3-喹啉羧酸,是第三代喹诺酮类药物,对需氧革兰阴性杆菌及绝大多数菌株有较好的抗菌活性[1],在临床上应用广泛。
无机物英文命名法则Unit 3 The Nomenclature of Inorganic Compounds一、元素与单质的命名“元素”和“单质”的英文意思都是“element”,有时为了区别,在强调“单质”时可用“free element”。
因此,单质的英文名称与元素的英文名称是一样的。
下面给出的既是元素的名称,同时又是单质的名称。
IAH Hydrogen [ˈhaɪdrədʒən] 氢Li Lithium [ˈlɪθiəm] 锂Na Sodium [ˈsodiəm] 钠K Potassium [pə'tæsɪəm] 钾Rb Rubidium [ruˈbɪdiəm] 铷Cs Cesium ['si:zɪəm] 铯Fr Francium [ˈfrænsiəm] 钫IIABe Beryllium [bəˈrɪliəm] 铍Mg Magnesium [mægˈni:ziəm] 镁Ca Calcium [ˈkælsiəm] 钙Sr Strontium [ˈstrɑntiəm] 锶Ba Barium [ˈbeəriəm] 钡Ra Radium [ˈrediəm] 镭IIIAB Boron ['bɔ:rɑ:n] 硼Al Aluminium [ˌæljəˈmɪniəm] 铝Ga Gallium [ˈɡæliəm] 稼In Indium ['ɪndɪəm] 铟Tl Thallium [ˈθæliəm] 铊IV AC Carbon ['kɑ:bən] 碳Si Silicon [ˈsɪlɪkən] 硅Ge Germanium [dʒɚˈmeniəm] 锗Sn Tin [tɪn] 锡Pb Lead [lid] 铅V AN Nitrogen [ˈnaɪtrədʒən] 氮P Phosphorus [ˈfɒsfərəs] 磷As Arsenic [ˈɑ:snɪk] 砷Sb Antimony [ˈæntɪməni] 锑Bi Bismuth [ˈbɪzməθ]铋VIAO Oxygen [ˈɒksɪdʒən] 氧S Sulfur ['sʌlfə] 硫Se Selenium [sɪˈliniəm] 硒Te Tellurium [teˈljʊəriəm] 碲Po Polonium [pəˈləʊniəm] 钋VIIAF Fluorine [ˈflɔ:ri:n] 氟Cl Chlorine [ˈklɔ:ri:n] 氯Br Bromine [ˈbrəʊmi:n] 溴I Iodine [ˈaɪədi:n] 碘At Astatine [ˈæstəti:n] 砹He Helium [ˈhi:liəm] 氦Ne Neon [ˈni:ɑ:n] 氖Ar Argon [ˈɑ:rgɑ:n] 氩Kr Krypton [ˈkrɪptɑ:n] 氪Xe Xenon [ˈzenɑ:n] 氙Rn Radon [ˈreɪdɑ:n] 氡常见过渡金属Fe iron [ˈaɪərn] 铁Cu copper [ˈkɒpə] 铜Hg mercury [ˈmɜ:kjəri] 汞Au gold [gəʊld] 金Mn manganese [ˈmæŋgəni:z] 锰Zn zinc [zɪŋk] 锌Ag silver [ˈsɪlvə] 银单质名称H atomic hydrogen [əˈtɔmik ˈhaidrədʒən] monohydrogen [mɒnəʊ'haɪdrədʒən]O2 oxygen [ˈɒksɪdʒən] dioxygen [daɪ'ɒksɪdʒən]O3 ozone [ˈəʊzəʊn] trioxygenP4 phosphorus tetraphosphorus ['tetrəˈfɒsfərəs]二、阳离子1.单价阳离子单价阳离子直呼其名,即读其元素名称。
糖厂滤泥发酵制成生物有机肥谭宏伟【摘要】[目的]掌握采用糖厂滤泥经功能菌发酵制成生物有机肥的特点和规律,为促进广西蔗区糖料蔗产业可持续生产提供技术支持,同时为政府制定农业种植环境保护相关政策提供决策参考.[方法]在广西重要蔗糖生产区(来宾市兴宾区和崇左市大新县)开展以糖厂滤泥为原料、发酵生产生物有机肥的田间试验,研究糖厂滤泥发酵生产生物有机肥的特征及肥效.[结果]采用功能菌发酵糖厂滤泥生产生物有机肥的腐熟速度快,受环境因素影响较小,发酵效果稳定,发酵温度最高达77.2℃,且70.0~77.2℃的维持时间长达12 d;发酵后的有机质含量和有机酸转化率优势明显,分别较传统(自然)发酵提高30.2%和12.3%(绝对值).功能菌发酵生物有机肥对水稻、黄瓜和甘蔗有明显的增产作用,对应的平均产量分别为5971.5、76705.5和118780.5 kg/ha,较施等量传统(自然)发酵生物有机肥处理分别增产7.83%、41.19%和6.91%.施用功能菌发酵生物有机肥的土壤理化性状指标均高于施用传统(自然)发酵生物有机肥处理,其中土壤有机质、速效氮、速效磷和速效钾的含量分别为15.75 g/kg、67 mg/kg、14 mg/kg和69 mg/kg,而氮、磷和钾利用率分别为39.3%、12.8%和52.8%.[结论]采用功能菌发酵糖厂滤泥生产生物有机肥较传统(自然)发酵糖厂滤泥生产生物有机肥更具优势,具体表现为腐熟速度快、发酵温度高且保持时间长、发酵后有机质含量和有机酸转化率优势明显,同时具有增产、提高土壤肥力和肥料利用率的作用,生产上可大面积推广应用.%[Objective]The present study investigated characteristics and regulation of bio-organic fertilizer made by fermentation of filter mud from sugar refinery, in orderto provide technical support for sustainable development of sugar-cane industry in Guangxi sugarcane planting area and offer reference forgovernment to formulate agricultural planting and environmental protection policies. [Method]Field trial was conducted in important sugarcane planting area in Guangxi (Xingbin district in Laibin city, Daxin county in Chongzuo city) . Filter mud from sugar refinery was taken as raw materials and fermented into bio-organic fertilizer. Characteristics and fertilizer efficiency of the bio-organic fertilizer were studied.[Result]Bio-organic fertilizer fermented via functional bacteria rotted rapidly, hardly affected by environmental factors. Fermentation effects were stable, fermentation temperature could reach 77.2 ℃, and the temperature maintaining at 70.0-77.2 ℃ for 12 days. Organic matter content and organic acid conversion rate after fermented were 30.2% and 12.3%(abso-lute value) higher than those in traditional(natural) mode. Bio-organic fertilizer fermented via functional bacteria could im-prove yield of rice, cucumber and sugarcane greatly. Average yield of rice was 5971.5 kg/ha, an increase of 7.83% com-pared with the rice applied with bio-organic fertilizer fermented in traditional(natural) mode; average yield of cucumber was 76705.5 kg/ha, an increase of 41.18%, average yield of sugarcane was 118780.5 kg/ha, an increase of 6.91%.After application of bio-organic fertilizer fermented via functional bacteria, physical and chemical properties of soil were superior than those applied with bio-organic fertilizer fermented in traditional(natural) mode. In the soil, organic matter content was 15.75 g/kg, available nitrogen content 67 mg/kg, available phosphorus content 14 mg/kg, available potassium content 69 mg/kg. Utilization efficiency of nitrogen, phosphorus and potassium were 39.3% ,12.8% and 52.8% , respectively.[Conclusion]Bio-organic fertilizer fermented via functional bacteria using filter mud from sugar refinery is better thanfer-mentation in traditional(natural) mode. The advantages include rapid rotting speed, high fermentation temperature and long duration, superior organic matter content and organic acid conversion rate after fermentation. Meanwhile, it can increase the yield, soil fertility and fertilizer utilization efficiency. Therefore, it can be promoted for large scale application.【期刊名称】《南方农业学报》【年(卷),期】2017(048)003【总页数】5页(P428-432)【关键词】糖厂滤泥;发酵;生物有机肥;肥效;特征【作者】谭宏伟【作者单位】广西农业科学院甘蔗研究所, 南宁 530007【正文语种】中文【中图分类】S141.5【研究意义】广西是我国最大的糖业基地,蔗糖产量约占全国的70%(李杨瑞等,2014;覃泽林等,2015;谭芳等,2016)。
氮气物理吸附英文Nitrogen Gas Physical AdsorptionNitrogen gas, with its chemical formula N2, is a colorless, odorless, and inert gas that makes up approximately 78% of the Earth's atmosphere. This ubiquitous gas has a wide range of applications, from industrial processes to medical and scientific research. One of the fundamental properties of nitrogen gas is its ability to undergo physical adsorption, a process that has significant implications in various fields.Physical adsorption, also known as physisorption, is a phenomenon where molecules or atoms of a substance (the adsorbate) accumulate on the surface of another substance (the adsorbent) without forming chemical bonds. This process is driven by the attractive forces between the adsorbate and the adsorbent, such as van der Waals forces and electrostatic interactions. In the case of nitrogen gas, the physical adsorption of N2 molecules onto various adsorbents has been extensively studied and has found numerous applications.One of the primary applications of nitrogen gas physical adsorption is in the field of gas separation and purification. Nitrogen gas can beselectively adsorbed onto specific adsorbents, such as activated carbon, zeolites, or metal-organic frameworks (MOFs), while other gases, such as oxygen or carbon dioxide, are not adsorbed as strongly. This selective adsorption allows for the efficient separation and purification of nitrogen gas from air or other gas mixtures. This process is particularly useful in industrial settings, where high-purity nitrogen gas is required for various applications, such as in the electronics industry, food packaging, or the production of chemicals.Another important application of nitrogen gas physical adsorption is in the area of gas storage and transportation. Nitrogen gas can be adsorbed onto porous adsorbents, such as activated carbon or metal-organic frameworks, to create high-density storage systems. These adsorbent-based storage systems can store a significantly larger amount of nitrogen gas compared to traditional compressed gas cylinders, making them more efficient and cost-effective for transportation and storage. This technology is particularly relevant in applications where large volumes of nitrogen gas are required, such as in the industrial or medical sectors.The physical adsorption of nitrogen gas is also crucial in the field of catalysis. Many catalytic processes involve the interaction of reactants with the surface of a catalyst, and the adsorption of nitrogen gas can provide valuable information about the catalyst's surface properties and accessibility. By studying the physicaladsorption of nitrogen gas on catalyst surfaces, researchers can gain insights into the catalyst's pore structure, surface area, and other characteristics that are essential for optimizing catalytic performance.In the field of material science, the physical adsorption of nitrogen gas is used to characterize the porous structure and surface properties of various materials, such as zeolites, activated carbon, and metal-organic frameworks. The analysis of nitrogen adsorption-desorption isotherms, which describe the relationship between the amount of nitrogen adsorbed and the pressure at a constant temperature, can provide information about the material's surface area, pore size distribution, and other structural features. This information is crucial for the development and optimization of materials with specific applications, such as in catalysis, adsorption, or energy storage.Furthermore, the physical adsorption of nitrogen gas is widely used in the field of environmental science and engineering. Nitrogen-based compounds, such as nitrates or nitrites, can be adsorbed onto various adsorbents, including activated carbon or clay minerals, for the removal of these pollutants from water or soil. This process is particularly important in the treatment of wastewater or the remediation of contaminated sites, where the removal of nitrogen-containing compounds is crucial for environmental protection.In conclusion, the physical adsorption of nitrogen gas is a fundamental phenomenon with a wide range of applications across various scientific and technological fields. From gas separation and purification to gas storage, catalysis, material characterization, and environmental remediation, the understanding and manipulation of nitrogen gas physical adsorption have been instrumental in advancing scientific knowledge and driving technological innovation. As research in this field continues to evolve, new and exciting applications of nitrogen gas physical adsorption are likely to emerge, further expanding its impact on our modern world.。
不同复合肥对小麦生长和土壤养分特征的影响蔡云彤1,王晓云1,赵海涛2㊀(1.兴化市现代农业发展服务中心,江苏泰州225700;2.扬州大学环境科学与工程学院,江苏扬州225127)摘要㊀采用田间试验方法,以镇麦12为研究对象,研究不同配方的常规复合肥和控释肥对土壤肥力和小麦产量及其构成因子的影响,为泰州地区培肥地力和提高粮食产量提供理论依据㊂结果表明,常规复合肥和控释肥均能提高土壤有机质㊁全氮㊁有效磷和速效钾含量,其中控释肥(28-15-6)培肥效果最好;施肥可促进小麦生长发育,提高有效穗数㊁穗粒数和千粒重等,小麦产量增幅72.3% 89.0%,控释肥增产效果优于复合肥㊂综上,兴化地区小麦施肥推荐一次性施用控释肥(28-15-6)525kg/hm2㊂关键词㊀小麦;复合肥;控释肥;土壤肥力;产量中图分类号㊀S147.4㊀㊀文献标识码㊀A㊀㊀文章编号㊀0517-6611(2023)20-0147-03doi:10.3969/j.issn.0517-6611.2023.20.035㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):EffectsofDifferentCompoundFertilizersonWheatGrowthandSoilNutrientCharacteristicsCAIYun⁃tong1,WANGXiao⁃yun1,ZHAOHai⁃tao2㊀(1.XinghuaModernAgricultureDevelopmentServiceCenter,Taizhou,Jiangsu225700;2.CollegeofEnvironmentalScienceandEngineering,YangzhouUniversity,Yangzhou,Jiangsu225127)Abstract㊀Fieldexperimentswereconductedtostudytheeffectsofconventionalcompoundfertilizerandcontrolled⁃releasefertilizerwithdif⁃ferentformulasonsoilfertility,wheat(Zhenmai12)yieldanditsconstituentfactors,soastoprovideatheoreticalbasisforimprovingsoilfer⁃tilityandgrainyieldinTaizhouregion.Resultsshowedthatbothconventionalcompoundfertilizerandcontrolled⁃releasefertilizercouldin⁃creasethecontentofsoilorganicmatter,totalnitrogen,availablephosphorusandavailablepotassium,andthecontrolled⁃releasefertilizer(28-15-6)wasthebest.Fertilizationcouldpromotethegrowthanddevelopmentofwheat,increasethenumberofeffectiveears,grainsperearand1000grainweight,andincreasetheyieldofwheatby72.3%-89.0%.Atthesametime,theeffectofcontrolledreleasefertilizerwasbetterthanthatofcompoundfertilizer.Tosumup,itwasrecommendedtoapplycontrolledreleasefertilizer(28-15-6)onceforwheatinXin⁃ghuaarea,withadosageof525kg/hm2.Keywords㊀Wheat;Compoundfertilizer;Controlledreleasefertilizer;Soilfertility;Yield基金项目㊀江苏现代农业产业技术体系建设项目(JATS 2022 498,JATS 2022 354)㊂作者简介㊀蔡云彤(1971 ),男,江苏兴化人,高级农艺师,从事耕地质量技术研究与推广工作㊂收稿日期㊀2022-08-17;修回日期㊀2022-11-25㊀㊀我国是世界上最大的小麦生产国之一,小麦产量占全国粮食总产的20.1%[1],占全球小麦总产的17.6%[2],确保小麦增产稳产对我国粮食安全和全球粮食市场稳定至关重要㊂土壤是小麦生产的基础,肥料投入能进一步为小麦生长提供养分,提高产量㊂化肥投入对粮食产量增长的贡献率达56.81%[3],但我国单位面积肥料施用量已远超国际标准,对生态环境造成严重破坏[4]㊂因此,优化施肥迫在眉睫㊂控释肥可以通过控制养分释放速率,使其与作物生长需求相一致,从而达到提高肥效的目的㊂与常规施肥相比,施用脲甲醛缓释肥能使水稻增产2.1%[5]㊂施用缓释氮肥能使玉米增产15.16%,显著提升玉米的穗粒数㊁千粒重㊁籽仁中钾含量及秸秆中氮㊁磷㊁钾含量[6]㊂施用缓控释肥可以促进花生植株生长,增加单株结果数和单株果重[7]㊂泰州是国家小麦主产区,明确控释肥对小麦产量的影响至关重要㊂笔者探究不同配比控释肥和普通复合肥对土壤养分和小麦产量的影响,旨在为小麦高产栽培提供科学依据㊂1㊀材料与方法1.1㊀试验地概况㊀试验于2020年11月至2021年6月在江苏泰州兴化市周庄镇界河村的周庄镇农业园区(119.9476ʎE,32.6898ʎN)试验田进行㊂属北亚热带地区,年平均气温15ħ,年降水量1020mm㊂试验土种为黄杂土勤砂土,质地为壤土,前茬为水稻㊂供试土壤基本理化性质为有机质含量36.7g/kg㊁全氮含量2.08g/kg㊁有效磷含量18.7mg/kg㊁速效钾含量158mg/kg㊁pH7.06㊂1.2㊀试验设计㊀设置基肥施用不同氮磷钾配比的常规复合肥和控释肥处理㊂RF,常规施肥,基肥一次性施用375kg/hm2普通复合肥(15-15-15)和375kg/hm2尿素;R1,施用氮磷钾配比为20-12-8的普通复合肥,基肥一次性施用600kg/hm2普通复合肥(20-12-8)和60kg/hm2尿素;R2,施用氮磷钾配比为20-15-7的普通复合肥,基肥一次性施用600kg/hm2普通复合肥(20-15-7)和60kg/hm2尿素;R3,施用氮磷钾配比为28-15-6的小麦专用控释肥,基肥一次性施用525kg/hm2;R4,施用氮磷钾配比为23-12-5的小麦专用控释肥,基肥一次性施用600kg/hm2;R5,施用氮磷钾配比为18-10-12的普通复合肥,基肥一次性施用675kg/hm2普通复合肥(18-10-12)和60kg/hm2尿素;R6,施用氮磷钾配比为22-12-8的小麦专用控释肥,基肥一次性施用675kg/hm2;R7,施用氮磷钾配比为24-14-5的普通复合肥,基肥一次性施用525kg/hm2普通复合肥(24-14-5)和60kg/hm2尿素;CK,空白对照,小麦全生育期不施任何肥料㊂共计9个处理,每个处理3次重复㊂供试小麦品种为镇麦12,小区面积30m2(5mˑ6m),随机区组排列㊂在小麦拔节孕穗期,各处理施用300kg/hm2普通复合肥(24-0-4),CK不施肥,其他管理同一般大田㊂1.3㊀测定项目与方法㊀小麦产量:小麦按262.5kg/hm2均匀播种,于2020年11月20日播种,2021年6月3日收割㊂小麦成熟后,每个小区随机选择5穴植株测定有效穗㊁穗粒数㊁安徽农业科学,J.AnhuiAgric.Sci.2023,51(20):147-149㊀㊀㊀千粒重,同时测定每个小区实际产量㊂土壤肥力:小麦收获后,取0 20cm耕层土壤样品,测定土壤理化性质㊂土壤有机质含量采用重铬酸钾氧化-外加热法测定,土壤全氮含量采用开氏消毒法测定,土壤有效磷含量采用盐酸-硫酸浸提法测定,土壤速效钾含量采用乙酸铵浸提-火焰光度法测定㊂1.4㊀数据处理㊀采用Excel2019对试验数据进行分析,利用Origin2021进行绘图㊂2㊀结果与分析2.1㊀小麦产量构成㊀由表1可知,与CK相比,所有施肥处理均可以显著提高小麦产量,增幅达72.3% 89.0%㊂其中R3处理下小麦产量最高,增产3204.0kg/hm2㊂R6处理小麦有效穗数最高,与其他处理相比高7.5万 60.0万穗/hm2㊂所有施肥处理下小麦千粒重均高于空白对照,但各施肥处理间无显著差异,说明与千粒重相比,有效穗数和穗粒数是影响产量的主要原因[8]㊂不同磷钾配比对产量影响不同㊂相同施肥量下,R2展鹏复合肥(20-15-7)相较R1展鹏复合肥(20-12-8)产量增加1.6%,说明磷钾配比能影响小麦产量,合理的磷钾配比能进一步提高作物产量㊂与RF农户常规施肥相比,其他施肥处理小麦产量均出现不同程度的提高㊂其中R3控释肥(28-15-6)㊁R4控释肥(23-12-5)㊁R6控释肥(22-12-8)处理下增产率均高于8%,其他复合肥处理下,增产率均低于6%,说明控释肥增产效果优于复合肥㊂另外,控释肥的施用能进一步降低肥料使用量,其中R3肥料使用量最少,可进一步节约肥料成本,提高经济效益㊂表1㊀不同肥料种类对小麦产量及其构成因子的影响Table1㊀Effectsofdifferentfertilizertypesonwheatyieldanditscomponentfactors处理Treatment有效穗数Effectivepaniclenumberʊ万穗/hm2穗粒数Numberofgrainsperspike千粒重1000⁃grainweightʊg产量Yieldkg/hm2较CK增产率ComparedwithCKʊ%较RF增产率ComparedtoRFʊ%CK477.0243.048.33600.0-42.0RF522.0393.052.16202.572.3㊀ R1501.0429.052.36434.078.73.7R2498.0436.552.26535.581.55.4R3519.0432.053.36804.089.09.7R4529.5417.052.86720.086.78.3R5507.0423.052.46436.578.83.8R6537.0415.552.76703.586.28.1R7519.0423.052.66570.082.55.92.2㊀土壤养分变化㊀由图1可知,与CK相比,不同肥料种类处理均提高了土壤有机质㊁全氮㊁有效磷和速效钾含量㊂其中各施肥处理中土壤有机质含量㊁全氮含量㊁有效磷含量和速效钾含量均以R3处理最高,分别为45.8g/kg㊁2.81g/kg㊁32.7mg/kg㊁287mg/kg,说明控释肥(28-15-6)提高土壤肥力效果最显著㊂与CK相比,常规施肥处理下土壤图1㊀不同肥料种类对土壤肥力的影响Fig.1㊀Effectofdifferentfertilizertypesonsoilfertility841㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年有机质㊁全氮㊁有效磷和速效钾含量分别增加4.09%㊁6.73%㊁25.67%和24.68%㊂相较于空白对照,不同施肥处理对土壤养分含量的增幅不同,其中有效磷和速效钾增幅较大,分别增加25.67% 74.87%㊁24.68% 81.65%,有机质和全氮含量增幅较小,分别为4.09% 24.80%㊁6.73%% 35.10%㊂3 结论与讨论耕地土壤中养分含量与肥料施用效果密切相关㊂施用控释肥能显著改善土壤环境,减少土壤中氮素的流失,降低对环境和地下水污染的风险[9]㊂研究发现,施肥能促进植物生长,改善土壤环境,提高土壤养分含量[10],施用控释肥土壤有机质含量高于施用化肥处理后的土壤[11]㊂研究发现,施用缓释肥后可提高土壤中有机质和氮磷钾含量[12]㊂施用控释肥能提高土壤中微生物含量和酶活性,合理施用控释肥不仅可促进作物生长㊁提高肥料利用率,而且可提高土壤肥力[13]㊂该研究发现,施用控释肥能够明显提升土壤有机质㊁全氮㊁有效磷㊁速效钾等含量,这与前人研究结果相一致㊂其中氮磷钾配比为28-15-6的控释肥处理提升土壤养分含量的综合效果最明显,原因是控释肥的养分释放相对较慢,当小麦生育后期的养分需求和吸收能力下降,控释肥释放的养分残留在土壤中,从而导致土壤养分含量增加[11]㊂产量因子受气候环境㊁土壤肥力㊁作物品种㊁栽培方式等因素的影响,从而导致不同肥料对构成产量相关性状的影响不同㊂研究发现,不同肥料运筹对小麦单位面积有效穗数影响显著[14],也有研究认为不同施肥处理间小麦穗粒数差异最大[15]㊂该研究中各施肥处理对有效穗数和穗粒数影响较大,对千粒重影响较小,这与前人研究结果相似[16]㊂氮磷钾配比是影响小麦生长的因素之一,与小麦产量形成有直接关系[17]㊂合理的氮磷钾配比能够明显改善作物生长发育,进一步促进养分吸收,提高产量和经济效益[18]㊂该研究中R2处理磷含量占比比R1处理高,小麦产量提高1.7%,说明氮磷钾配比明显影响小麦产量㊂作物产量及其构成因子是评价肥料效果的重要因子[19]㊂控释肥增产效果明显,其主要通过增加小麦成穗数和穗粒数来提高产量[20]㊂与基施普通复合肥(15-15-15)相比,基施控释肥的增产效果明显[19]㊂该研究表明,与常规施肥(RF)相比,基施28-15-6控释肥(R3)增产效果最高,增幅9.7%;其次基施23-12-5控释肥(R4)和22-12-8控释肥(R6)㊂其主要原因是控释肥能有效延长肥效期,通过控制养分释放速率满足作物不同时期对养分的需求,进一步提高肥料利用率,减少养分流失,从而提高作物产量[20-21]㊂与普通施肥相比,施用控释肥后小麦纯收益能够提高4352元/hm2[20]㊂与优化施肥相比,一次性施用控释氮肥经济效益提高137元/hm2[22]㊂该研究中,与常规施肥相比,施用控释肥处理不仅显著提高产量,而且减少了化肥施用量,R3㊁R4㊁R6处理下化肥施用量分别减少225㊁150㊁150kg/hm2,间接提高经济效益㊂这主要是因为控释肥虽然价格较高,但显著提高作物产量,同时节约人工成本,因此小麦纯经济效益增加㊂综上,不同施肥处理均可以提高土壤养分,促进小麦生长,提高小麦产量㊂基肥施用控释肥比施用普通复合肥更能提升小麦产量㊂其中基施氮磷钾配比为28-15-6控释肥增产效果最为明显㊂参考文献[1]韩天富,李亚贞,曲潇林,等.中国农田小麦和玉米产量时空演变及驱动因素[J].农业工程学报,2022,38(1):100-108.[2]朱聪,曲春红,王永春,等.新一轮国际粮食价格上涨:原因及对中国市场的影响[J].中国农业资源与区划,2022,43(3):69-80.[3]王祖力,肖海峰.化肥施用对粮食产量增长的作用分析[J].农业经济问题,2008,29(8):65-68.[4]陶源,周玉玺,胡继连.中国化肥施用强度的驱动因素分解与控制路径研究[J].浙江农业学报,2021,33(10):1956-1970.[5]马良,朱玉祥,张乐平,等.不同缓控释肥对水稻甬优1540产量和效益的影响[J].浙江农业科学,2018,59(4):561-563.[6]刘苹,李庆凯,林海涛,等.不同缓控释肥品种对玉米养分吸收㊁氮肥利用率及产量的影响[J].江西农业学报,2020,32(4):73-77.[7]郑国栋,黄金堂,龚屾.不同缓控释肥对花生农艺性状㊃产量及品质的影响[J].安徽农业科学,2019,47(6):163-165,177.[8]郑建敏,李浦,廖晓虹,等.四川冬小麦产量构成因子初步分析[J].作物杂志,2012(1):105-108.[9]丁洪,王跃思,秦胜金,等.控释肥对土壤氮素反硝化损失和N2O排放的影响[J].农业环境科学学报,2010,29(5):1015-1019.[10]罗蜜,黄昌谋,韩华,等.袋控缓释肥对桉树和杉木人工林生长及土壤理化性质的影响[J].林业资源管理,2021(5):104-111.[11]张华艳,牛灵安,郝晋珉,等.秸秆还田配施缓控释肥对土壤养分和作物产量的影响[J].土壤通报,2018,49(1):140-149.[12]姚云柯,徐卫红,周豪,等.脲酶/硝化抑制剂缓释肥对番茄养分吸收和土壤肥力的影响[J].西南农业学报,2018,31(4):748-753.[13]马松,许自成,苏永士,等.控释肥对土壤肥力与生物活性的影响[J].浙江农业科学,2010,51(5):1067-1070.[14]王飞,徐梦彬,周娜娜,等.不同氮肥运筹对晚播小麦农艺性状㊁产量及品质的影响[J].山东农业科学,2018,50(12):59-63.[15]杨晓,郝明德,李芳林.黄土区长期施肥对小麦产量和养分吸收的影响[J].土壤通报,2010,41(1):164-169.[16]陶永清,廖尔华,杨世民.攀西地区小麦高产施肥模式的研究[J].四川农业大学学报,1998,16(3):300-303.[17]滕树川,杨朝勇,王再勇,等.氮磷钾配比及用量不同对小麦产量的影响[J].中国农学通报,2004,20(5):159-161.[18]武庆慧,汪洋,赵亚南,等.氮磷钾配比对潮土区高产夏播花生产量㊁养分吸收和经济效益的影响[J].中国土壤与肥料,2019(2):98-104.[19]吴子峰,刘倩倩,郑良勇,等.不同类型新型肥料对冬小麦产量和氮素利用率的影响[J].安徽农业科学,2020,48(3):167-170.[20]缑培欣,陈智勇,张阳阳,等.不同类型肥料对潮土冬小麦产量和品质及氮肥利用效率的影响[J].麦类作物学报,2021,41(8):1023-1032.[21]古慧娟,石元亮,于阁杰,等.我国缓/控释肥料的应用效应研究进展[J].土壤通报,2011,42(1):220-224.[22]谭德水,江丽华,房灵涛,等.控释氮肥一次施用对小麦群体调控及养分利用的影响[J].麦类作物学报,2016,36(11):1523-1531.94151卷20期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀蔡云彤等㊀不同复合肥对小麦生长和土壤养分特征的影响。
第38卷㊀第6期2020年6月环㊀境㊀工㊀程Environmental EngineeringVol.38㊀No.6Jun.㊀2020碳氮比对蔬菜废弃物好氧发酵腐熟度及臭气排放的影响刘文杰1,2,3㊀王黎明1∗㊀沈玉君2,3㊀张㊀曦2,3㊀孟海波2,3㊀范盛远1,2,3㊀张大牛1,2,3(1.黑龙江八一农垦大学工程学院,黑龙江大庆163319;2.农业农村部规划设计研究院农村能源与环保研究所,北京100125;3.农业农村部资源循环利用技术与模式重点实验室,北京100125)摘要:为了提高蔬菜废弃物发酵效率㊁减少臭气排放㊁确定其好氧发酵最佳碳氮比,以蔬菜废弃物为主料㊁猪粪和玉米秸秆为辅料进行好氧发酵,设置C /N 为20㊁25㊁303个处理,探讨不同C /N 对发酵产品腐熟度及臭气排放浓度的影响,以温度㊁含水率㊁pH ㊁电导率(EC )㊁腐植酸光学特性(E 4/E 6值)㊁种子发芽指数以及全氮㊁全磷㊁全钾含量变化评价发酵产品的腐熟度㊂T1处理(C /N 为20)高温期持续时间最长为6d ,种子发芽指数最高为82.23%,其腐熟效果最好,且全氮㊁全磷㊁全钾含量分别提高了24.22%㊁78.94%㊁51.45%;从臭气排放浓度来看,T2(C /N 为25)处理组NH 3排放浓度最高达368000μg /m 3,T3(C /N =30)处理组H 2S 排放浓度最高达671μg /m 3,TI 处理TVOC 排放浓度最高,但最高与最低排放浓度差仅为4.3ˑ10-6㊂因此,建议蔬菜废弃物㊁猪粪㊁玉米秸秆联合好氧堆肥的C /N 为20,可满足好氧发酵无害化和减少臭气排放的要求㊂关键词:蔬菜废弃物;好氧发酵;碳氮比;腐熟度;臭气排放DOI:10.13205/j.hjgc.202006038㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2019-05-13基金项目:国家重点研发计划 好氧发酵过程重金属钝化及高效生物除臭关键技术与设备研究 (2016YFD0800603);校级创新科研项目 蔬菜废弃物好氧发酵臭气与氮素转化原位控制研究 (YJSCX2019-Y46)㊂第一作者:刘文杰(1995-),女,硕士研究生,主要研究方向为农业生物环境与能源工程㊂1309433909@ ∗通信作者:王黎明(1967-),女,博士,教授,主要研究方向为生物质技术与装备研究㊂dlidxy@EFFECTS OF CARBON TO NITROGEN RATIO ON MATURITY AND ODOREMISSION IN AEROBIC FERMENTATION OF VEGETABLE WASTELIU Wen-jie 1,2,3,WANG Li-ming 1∗,SHEN Yu-jun 2,3,ZHANG Xi 2,3,MENG Hai-bo 2,3,FAN Sheng-yuan 1,2,3,ZHANG Da-niu 1,2,3(1.College of Engineering,Heilongjiang Bayi Agricultural Reclamation University,Daqing 163319,China;2.Institute of Energy and Environmental Protection,Chinese Academy of Agricultural Engineering Planning &Design,Beijing 100125,China;3.Key Laboratory of Technology and Model for Cyclic Utilization from Agricultural Resources,Ministry of Agriculture and Rural Affairs,Beijing 100125,China)Abstract :In order to improve the fermentation efficiency of vegetable waste and reduce the emission of odor to determine theoptimal carbon nitrogen ratio of aerobic fermentation.Aerobic fermentation was carried out with vegetable waste as the mainmaterial,and pig manure and corn straw as the auxiliary materials.Three C /N ratios (20,25and 30)were set to investigate their effects on maturity and odor emission concentration of fermented products.Temperature,moisture content,pH,electricalconductivity (EC),E4/E6,seed germination index and total nitrogen,total phosphorus and total potassium content were usedto evaluate the maturity of fermented products.The results showed that:in T1treatment (C /N =20),the longest duration of high temperature period was 6days,the seed germination index was up to 82.23%;then its maturation effect was the best,and the content of total nitrogen,total phosphorus and total potassium were increased by 24.22%,78.94%and 51.45%respectively.In terms of odor emission concentration,the highest emission concentration of NH 3appeared in T2(C /N =25)环㊀境㊀工㊀程第38卷treatment group,368000μg/m3,the highest emission concentration of H2S appeared in T3(C/N=30)treatment group, 671μg/m3;the highest TVOC emission concentration appeared in T1treatment group,but the maximum difference of TVOC emission concentration between all groups was only4.3ppm.Therefore,it was suggested that the optinum C/N ratio of vegetable waste,pig manure and corn straw combined with aerobic compost was20,which could meet the requirements of harmless aerobic fermentation and reduce the emission of odor.Keywords:vegetable waste;aerobic fermentation;carbon to nitrogen ratio;maturity;odor emission0㊀引㊀言据中国蔬菜协会统计,2019中国蔬菜产量达7.69亿t,高产的同时也造成大量蔬菜废弃物的产生[1]㊂蔬菜废弃物养分丰富,其含氮量(烘干基)约为3.5%,磷含量约为0.4%,钾含量约为3.6%[2]㊂大量蔬菜废弃物的丢弃,造成了极大的资源浪费,而且蔬菜长期堆放会被病原菌间接或直接浸染,造成病原菌传播,危害环境及人类健康[3]㊂目前,蔬菜废弃物资源化利用的主要途径有直接还田㊁好氧发酵㊁沼气化利用㊁简易厌氧沤肥㊁饲料化利用,其中好氧发酵是蔬菜废弃物无害化处理和资源化利用的有效途径[1,4]㊂好氧发酵过程中会产生恶臭气体,一方面是由于堆体内部通风不均匀导致部分厌氧,产生H2S 以及大量的VOCs;另一方面在好氧环境下,有机物降解会产生氨气[5]㊂由于蔬菜废弃物含水率较高,C/N较低,结构性差,易腐烂变质,难以单独进行好氧发酵资源化利用[6],需添加畜禽粪便和农作物秸秆,以调节混合物料的C/N㊁含水率㊁有机质㊁自由空域等指标在合理范围内,保证发酵产品的质量以及安全利用[7,8]㊂有研究表明,C/N对发酵产品的腐熟及臭气排放有重要影响[9,10],C/N过低,氨气大量挥发,会导致臭气浓度升高及氮元素大量损失,腐熟期滞后[11];C/N过高,则微生物分解缓慢,导致发酵周期延长,C/N为20~30有利于微生物的生长繁殖[12,13]㊂韩萌等[14]研究发现,污泥好氧发酵过程中,随着原料C/N升高,氨气的产生速率及浓度都降低;孟凡书[15]研究发现,改变污水处理中的C/N对VOCs的排放量有一定的影响, VOCs的排放量随着C/N增加而增加;刘超等[16]研究发现,牛粪㊁蘑菇渣㊁稻壳高温堆肥条件下的最佳C/N为25;刘成琛等[12]研究发现,采用猪粪-玉米秸秆混合堆肥,C/N为20时发酵产品的腐熟效果最好㊂目前,针对猪粪㊁牛粪㊁厨余垃圾等不同C/N比好氧发酵腐熟度研究较多[12,16,17],但对于蔬菜废弃物好氧发酵腐熟度和臭气排放浓度变化规律的研究较少㊂因此,本研究以蔬菜废弃物㊁猪粪㊁玉米秸秆为原料进行联合好氧发酵,设置3组不同C/N,探讨发酵产品腐熟度及发酵过程中臭气排放浓度及规律,以确定蔬菜废弃物好氧发酵的最佳C/N㊂1㊀试验部分1.1㊀试验材料供试蔬菜废弃物采自菜市场废弃蔬菜,包括大白菜㊁小白菜㊁菠菜㊁包菜㊁茼蒿㊁空心菜等叶菜类蔬菜,切割至3~5cm;供试猪粪取自北京市顺义区东华山村养殖场;玉米秸秆购自山东省济南市,粉碎机切割为1~3cm㊂供试材料的基本理化性质见表1㊂表1㊀试验材料基本理化性质Table1㊀Basic properties of experimental materials%材料TC TN含水率蔬菜废弃物39.48ʃ1.22 3.5ʃ0.2986.29ʃ0.48猪粪35.01ʃ0.27 2.87ʃ0.0672.31ʃ1.25玉米秸秆42.5ʃ0.410.76ʃ0.0617.61ʃ0.31 1.2㊀试验方法本试验采用密闭式强制通风好氧发酵工艺,堆肥采用60L好氧发酵装置,如图1所示㊂以蔬菜废弃物㊁猪粪㊁玉米秸秆为原料进行联合好氧发酵,设置3组处理,C/N分别为20㊁25㊁30,记为T1㊁T2㊁T3㊂各处理原料配比如表2所示,通风速率均为25L/min,经调节后含水率均在68%左右㊂试验周期为20d,在第1~7,9,11,15,17,20天采集气体;第0,1,4,7,9, 12,16,20天取固体样品150g,从上㊁中㊁下3点采样,保证样品具有代表性㊂样品分为2部分,一部分鲜样储存在4ħ的冰箱中待用,另一部分经冷冻干燥后碾磨过筛(80目)㊂发酵开始后,分别于第3,8,12天进行翻堆㊂表2㊀各处理原料配比Table2㊀Raw materials ratio of different treatments处理原料添加量/kg蔬菜废弃物猪粪玉米秸秆C/N T1105320T2105625T3105930432第6期刘文杰,等:碳氮比对蔬菜废弃物好氧发酵腐熟度及臭气排放的影响1 通风㊁温度控制系统;2 温度采集器;3 盖子;4 取样孔;5 保温层;6 物料填充区;7 筛板;8 渗滤液出口;9 气泵;10 排气孔;11 温度传感器㊂图1㊀好氧发酵装置示意Figure 1㊀Schematic diagram of aerobic fermentation device1.3㊀测定指标及方法1)温度:采用PT100探头电脑连接连续监测记录堆肥过程中温度变化㊂2)含水率:取5g 鲜样,置于精密鼓风干燥箱(上海慧泰仪器制造有限公司)105ħ下烘干6h㊂3)EC㊁pH 值㊁腐植酸光学特性E 4/E 6㊁种子发芽指数:首先将鲜样用去离子水浸泡,固液比为1ʒ10,振荡2h,离心过滤后取滤液㊂采用DDS-307A 型电导率仪(上海精密仪器仪表有限公司)测定EC 值;采用PHS-3C 型pH 计(上海精密仪器仪表有限公司)测定pH 值;E 4/E 6用UV752型紫外分光光度计(上海佑科仪器仪表有限公司)在465nm 和665nm 处测定各自吸光值后做比值;种子发芽指数的测定是取滤液5mL 于垫有滤纸的培养皿中,加入10粒颗粒饱满的小白菜种子,放入25ħ的HWS 型培养箱(北京中兴伟业仪器有限公司)中培养72h,计算方法见式(1):GI =浸提液种子发芽率ˑ根长对照组种子发芽率ˑ根长ˑ100%(1)4)全氮采用凯式定氮法(LY /T 1228 2015)测定[18];全磷采用碱熔法(LY /T 1232 2015)测定[19];全钾采用酸溶法(LY /T 1234 2015)测定[20]㊂5)氨气用2%的硼酸溶液吸收后,采用0.05mol /L 的HCl 滴定㊂6)H 2S 采用亚甲基蓝分光光度法测定㊂7)TVOC 采用复合气体测试仪测定(用异丁烯标定)㊂2㊀结果与讨论2.1㊀不同处理好氧发酵物料腐熟度指标的变化2.1.1㊀温度和含水率的变化发酵温度不仅直接影响堆体内部微生物的生长和种类,还与发酵周期有关,是好氧发酵无害化的一个重要标志[21,22]㊂图2是不同处理好氧发酵过程中温度和含水率变化㊂由图2a 可知:环境温度在10ħ左右时,T2㊁T3处理堆体温度在发酵第1天可达50ħ以上,但高温期维持时间均较短,随后温度持续下降接近室温,未达到好氧发酵GB 7959 2012‘粪便无害化卫生要求“㊂T1处理组在发酵第3天达到50ħ以上,高温期持续6d,且在发酵第6㊁7天温度达到70ħ以上,说明C /N 为20有利于微生物分解有机物,为堆体提供热量㊂一般认为,畜禽粪便好氧发酵高温期在50ħ以上须持续至少10d,才能达到无害化标准[23];也有研究表明,蔬菜废弃物好氧发酵高温须达到70ħ以上,才能杀灭病毒性病原菌[6]㊂T2㊁T3处理高温期持续较短,一方面是由于秸秆添加量大,木质素含量高较难分解,多余的碳不能被微生物完全利用;另一方面由于堆体内孔隙度较大,温度易散失,高温难以维持[24]㊂含水率是影响好氧发酵的重要因素,由图2b 可知:各处理均呈现先升高后降低的趋势㊂由于蔬菜自身含水率较高,尽管以玉米秸秆来调节含水率,但在发酵过程中蔬菜废弃物会不断地析出水分,导致升温期堆料含水率升高,随着温度的升高加快了水分散失[25]㊂发酵结束时各处理含水率分别为64%㊁61%㊁53%,T3处理含水率下降最多,是由于T3秸秆添加量最高,堆料孔隙度较大有利于水分散失[26]㊂2.1.2㊀pH 值和电导率(EC)的变化pH 值可影响微生物分解有机物的能力㊂图3是不同处理好氧发酵过程中pH 和EC 变化㊂可知:各处理pH 值先快速升高随后趋于平稳,这是由于微生物分解含氮有机物产生氨,且易挥发[12],最终各组pH 值分别为8.5㊁8.8㊁7.5,pH 在8~9堆体属于腐熟[27]㊂T3处理pH 值低于另外2组处理,是由于低C /N 会产生大量的NH 3[17]㊂发酵后期T1㊁T2处理pH 值再次升高,原因是翻堆为微生物分解有机酸及有机氮矿化提供了足够的O 2[28],而T3处理pH 值降低,是由于T3处理C /N 较高,有效氮源不足,堆体内532环㊀境㊀工㊀程第38卷ʏ C/N=20; Ә C/N=25; һ C/N=30㊂图2㊀不同处理好氧发酵过程中温度和含水率的变化Figure2㊀Variation of temperature and moisture content of differenttreatments during aerobic fermentation有机酸得到积累[29]㊂EC值反映好氧发酵物料中可溶性盐的浓度,肥料中高可溶性盐浓度可影响植物对水分的吸收[24]㊂由图3b可知:T1㊁T2处理EC值均<2mS/cm,T3处理最终EC值>4mS/cm,而EC值超过4mS/cm会对作物产生毒害作用[17,30]㊂各处理进入高温期后EC 值迅速上升,微生物分解有机物产生大量的无机盐[26]㊂T3处理秸秆添加量最高,木质素含量高较难分解,堆体中的可溶性盐含量低,电导率就越低,但其EC值却远大于另外2组处理,这与林皓等[24]研究结果不一致,此现象仍需进一步研究㊂2.1.3㊀腐植酸光学特性(E4/E6)的变化E4/E6可表现堆肥腐植酸分子的稳定程度,其值高低直接与腐植酸的分子大小或者分子的缩合度大小有关,一般随着堆肥液相(水浸提液)腐植酸相对分子质量或缩合度的减小而增加[31]㊂图4为不同处理好氧发酵过程中E4/E6变化㊂可知:最终各处理值E4/E6值分别为4.23㊁4.10㊁2.90㊂T1和T2处理, E4/E6值从高温期至堆肥结束呈上升趋势,随着发酵的进行,液相中的腐植酸相对分子质量和缩合度减ʏ C/N=20; Ә C/N=25; һ C/N=30㊂图3㊀不同处理好氧发酵过程中pH值和EC值的变化Figure3㊀Variation of pH and EC of different treatmentsduring aerobic fermentation小,小分子有机酸含量较高㊂T3处理中E4/E6值呈先升高后下降趋势,表明发酵后期小分子有机酸在向高分子的腐植酸转化㊂ʏ C/N=20; Ә C/N=25; һ C/N=30㊂图4㊀不同处理好氧发酵过程中E4/E6值的变化Figure4㊀Variation of E4/E6of different treatments duringaerobic fermentation2.1.4㊀种子发芽指数(GI)的变化种子发芽指数既能体现堆肥腐熟度又能反映其对种子的毒害程度,当种子发芽指数>50%时,表示发酵产品对种子基本无毒害;当>80%时,表示堆料达到632第6期刘文杰,等:碳氮比对蔬菜废弃物好氧发酵腐熟度及臭气排放的影响完全腐熟[32]㊂发酵初期种子发芽指数均为0,直至发酵结束,各处理GI 值分别为81.23%㊁71.81%㊁60.56%,均>50%,可达到对种子无害化要求㊂T1处理GI 最高,表明T1处理堆体物料腐熟程度最高㊂图5㊀不同处理种子发芽指数GI Figure 5㊀Variation of GI in different treatments2.1.5㊀全氮㊁全磷㊁全钾的变化好氧发酵是微生物不断分解有机物的过程,物料㊀㊀会产生浓缩效应[33],体积减少,因此,发酵后全氮㊁全磷和全钾含量因相对浓缩效应而增加[34-36]㊂图6是不同处理发酵开始和第30天间全氮㊁全磷㊁全钾变化㊂可知:各组全氮含量有不同程度的增加,最终分别提高了24.22%㊁22.53%和0.81%,这可能是由于NH 3挥发量小于物料相对浓缩全氮增量,与王亚飞等[37]研究结果一致㊂而T1处理全氮含量最高且增加幅度也最大,这由于堆肥中N 的损失70%是以NH 3-N 形式损失[38],T1处理氨气排放量最低,因此,其全氮含量相对较高㊂对于全磷含量,由图6b 可知:T1处理最终全磷含量提高了78.94%,T2㊁T3处理相较初始降低了20.80%和21.81%,是浓缩效应和淋溶作用损失共同作用的结果,T2㊁T3处理渗滤液损失减少的含量大于相对浓缩增加的含量[36]㊂对于全钾含量,由图6c 可知:堆肥中钾素不易流失,随着物料的降解与减少[37,38],最终各处理全钾含量分别提高了51.45%㊁99.19%和23.05%,与陈建军等[39]研究结果一致㊂第0天;第30天㊂图6㊀不同处理发酵开始和第30天全氮㊁全磷㊁全钾含量变化Figure 6㊀Total nitrogen,phosphorus and potassium contents in different treatments on beginning of fermentation and day 302.2㊀不同处理NH 3㊁H 2S ㊁TVOC 排放浓度的变化2.2.1㊀NH 3和H 2S图7为不同处理好氧发酵过程中NH 3浓度的变化㊂可知:在发酵初期,堆体表面NH 3浓度均为0,堆体处于厌氧发酵状态,之后随着温度的升高,堆体含氮有机物被微生物分解,产生大量NH 3,降温期阶段由于可降解有机物减少,因此NH 3排放浓度降低[29]㊂T2㊁T3处理在发酵第2天浓度达到最高,T1处理则在第4天浓度达到最高,说明NH 3排放浓度与温度有关㊂Pagans 等[40]研究发现,在好氧发酵中温阶段,NH 3的排放量与温度呈线性相关㊂各处理堆体表面NH 3最高浓度分别为89440,368000,240220μg /m 3,T1处理NH 3排放浓度最低,这与秦莉[41]研究结果不一致,可能是由于堆肥原料不同造成的㊂一般来说,C /N 低,氮素相对过剩,多余的氮会以NH 3的形式挥发出去[42],而本试验T1处理C /N 最低,其氨气排放浓度也最低,可能是由于氮素以其他形式被转化㊂H 2S 的产生是在氧气供应不足的条件下,厌氧菌对有机物分解不彻底的产物[5]㊂由图7b 可知:发酵初期堆体处于厌氧状态,H 2S 含量较高㊂随着好氧发酵的进行,强制性通风方式保证了堆体内生长微生物所需的氧气含量,在氧气充足的条件下,堆体进行好氧发酵,H 2S 浓度逐渐降低㊂发酵第7天,各处理H 2S 堆体表面浓度趋于稳定且几乎为0㊂H 2S 堆体表面最高浓度分别为446,125,671μg /m 3,其中T3处理H 2S 堆体表面浓度最高㊂2.2.2㊀TVOC好氧发酵过程中,有机物的不彻底分解,会产生732环㊀境㊀工㊀程第38卷ʏ C/N=20; Ә C/N=25; һ C/N=30㊂图7㊀不同处理好氧发酵过程中NH3浓度的变化Figure7㊀Variation of NH3during aerobic fermentation挥发性有机物VOCs㊂TVOC是3种影响室内空气品质污染中影响较为严重的一种[43]㊂图8为不同处理好氧发酵过程中TVOC浓度的变化㊂可知:随着发酵的进行,TVOC浓度呈先上升后下降趋势㊂各组TVOC最高浓度分别为28.5,25.6,24.2ˑ10-6,T1处理C/N较低,为好氧微生物生长提供的有效碳源不足[44],或由于高温期温度太高,大部分好氧微生物被杀死,导致有机物分解不彻底,产生大量的VOC㊂在好氧发酵中后期微生物活性逐渐增强,剩余的可分解有机物被分解,最终TVOC浓度降低㊂3㊀结㊀论1)从温度来看,只有T1处理(C/N=20)高温期持续时间最长;从其他腐熟指标来看,各处理均达到无害化要求,但T1处理腐熟效果最好;从全氮㊁全磷㊁全钾含量来看,T1处理氮磷钾最终含量均高于另外2组处理,分别提高了24.22%㊁78.94%㊁51.45%㊂2)NH3排放浓度最高的为T2处理,最高浓度达到368000μg/m3,H2S排放浓度最高的为T3处理,最高浓度达到671μg/m3,TVOC排放浓度最高为T1处理,但各处理组TVOC最高排放浓度差最大仅为ʏ C/N=20; Ә C/N=25; һ C/N=30㊂图8㊀不同处理好氧发酵过程中TVOC浓度的变化Figure8㊀Variation of TVOC in different treatments duringaerobic fermentation4.3ˑ10-6㊂由NH3㊁H2S和TVOC浓度变化特征可知:蔬菜废弃物好氧发酵臭气主要产生阶段为升温期和高温期阶段,随着物料的腐熟化进程,臭气浓度逐渐降低并趋于0㊂3)综合以上腐熟指标和臭气排放浓度,T1处理各项均达到堆肥无害化要求且发酵产品腐熟效果最好,臭气排放浓度相对较低㊂因此,建议将蔬菜废弃物㊁猪粪㊁玉米秸秆好氧发酵C/N调节为20,可满足堆肥无害化和臭气污染较少要求㊂参考文献[1]㊀刘玉升.设施蔬菜废弃物资源化与生态植物保护利用现状及前景[J].农业工程技术,2019,39(28):25-27.[2]㊀董永亮.果蔬废弃物厌氧处理产能实验研究[D].哈尔滨:哈尔滨工程大学,2008.[3]㊀王丽英,吴硕,张彦才,等.蔬菜废弃物堆肥化处理研究进展[J].中国蔬菜,2014(6):6-12.[4]㊀YOGEV A,RAVIV M,HADAR Y,et al.Induced resistance as aputative component of compost suppressiveness[J].BiologicalControl,2010,54(1):46-51.[5]㊀沈玉君,陈同斌,刘洪涛,等.堆肥过程中臭气的产生和释放过程研究进展[J].中国给水排水,2011,27(11):104-108.[6]㊀常瑞雪.蔬菜废弃物超高温堆肥工艺构建及其过程中的氮素损失研究[D].北京:中国农业大学,2017.[7]㊀黄光群,黄晶,张阳,等.鸡粪沼渣联合好氧堆肥基质降解与气体排放研究[J].农业机械学报,2016,47(9):220-226. [8]㊀宋彩红,李鸣晓,魏自民,等.初始物料组成对堆肥理化㊁生物和光谱学性质的影响[J].光谱学与光谱分析,2015,35(8):2268-2274.[9]㊀OGUNWANDE G A,OSUNADE J A,ADEKALU K O,et al.Nitrogen loss in chicken litter compost as affected by carbon tonitrogen ratio and turning frequency[J].Bioresource Technology,2008,99(16):7495-7503.832第6期刘文杰,等:碳氮比对蔬菜废弃物好氧发酵腐熟度及臭气排放的影响[10]㊀张鹤,李孟婵,杨慧珍,等.不同碳氮比对牛粪好氧堆肥腐熟过程的影响[J].甘肃农业大学学报,2019,54(1):60-67. [11]㊀ZHU N W.Effect of low initial C/N ratio on aerobic composting ofswine manure with rice straw[J].Bioresource Technology,2007,98(1):9-13.[12]㊀刘成琛,袁蓉芳,周北海.碳氮比对猪粪-玉米秸秆混合堆肥的影响[J].中国资源综合利用,2018,36(9):23-26. [13]㊀李剑.蔬菜废弃物堆肥技术参数的优化研究[D].上海:上海交通大学,2011.[14]㊀韩萌,张彩杰,刘明.堆肥工艺参数对高氮污泥堆肥氨气产生的影响[J].环保科技,2014,20(3):4-6,11.[15]㊀孟凡书.污水曝气阶段碳源㊁碳氮比对VOCs排放影响及减排研究[D].江苏:扬州大学,2018.[16]㊀刘超,王若斐,操一凡,等.不同碳氮比下牛粪高温堆肥腐熟进程研究[J].土壤通报,2017,48(3):662-668. [17]㊀张红玉.碳氮比对厨余垃圾堆肥腐熟度的影响[J].环境工程,2013,31(2):87-91.[18]㊀国家林业局.森林土壤氮的测定:LY/T1228 2015[S].北京:中国标准出版社,2016.[19]㊀国家林业局.森林土壤磷的测定:LY/T1232 2015[S].北京:中国标准出版社,2016.[20]㊀国家林业局.森林土壤钾的测定:LY/T1234 2015[S].北京:中国标准出版社,2016.[21]㊀MIYATAKE F,IWABUCHI K.Effect of compost temperature onoxygen uptake rate,specific growth rate and enzymatic activity ofmicroorganismsin dairy cattle manure[J].Bioresource Technology,2006,97(7):961-965.[22]㊀TURNER C,WILLIAMS A,WHITE R,et al.Inferring pathogeninactivation from the surface temperatures of compost heaps[J].Bioresource Technology,2005,96(5):521-529. [23]㊀中华人民共和国卫生部,中国国家标准化管理委员会.粪便无害化卫生要求:GB7959 2012[S].北京:中国标准出版社,2013.[24]㊀林皓,卓倩,吴菁,等.碳氮比对半静态强制通风堆肥反应器堆肥腐熟度的影响[J].福建师范大学学报(自然科学版),2017,33(6):43-49.[25]㊀邱珊,赵龙彬,马放,等.不同通风速率对厌氧残余物沼渣堆肥的影响[J].中国环境科学,2016,36(8):2402-2408. [26]㊀李赟,袁京,李国学,等.辅料添加对厨余垃圾快速堆肥腐熟度和臭气排放的影响[J].中国环境科学,2017,37(3):1031-1039.[27]㊀李艳霞,王敏健,王菊思.有机固体废弃物堆肥的腐熟度参数及指标[J].环境科学,1999(2):99-104.[28]㊀张玉冬,张红玉,顾军,等.翻堆频率对厨余垃圾堆肥过程中H2S和NH3排放的影响[J].环境工程,2016,34(4):127-131.[29]㊀沈玉君,李国学,任丽梅,等.不同通风速率对堆肥腐熟度和含氮气体排放的影响[J].农业环境科学学报,2010,29(9):1814-1819.[30]㊀杜龙龙,袁京,李国学,等.通风速率对厨余垃圾堆肥NH3和H2S排放及腐熟度影响[J].中国环境科学,2015,35(12):3714-3720.[31]㊀史殿龙,张志华,李国学,等.堆高对生活垃圾中15mm筛下物堆肥腐熟的影响[J].农业工程学报,2010,26(1):324-329. [32]㊀CUNHA-QUED A C,RIBEIROA H M,RAMOS A,et al.Studyof biochemical and microbiological parameters duringcomposting ofpine and eucalyptus bark[J].Bioresource Technology,2007,98(17):3213-3220.[33]㊀LI Y X,LIU B,ZHANG X L,et al.Effects of Cu exposure onenzyme activities and selection for microbial tolerances duringswine-manure compostin[J].Journal of Hazardous Materials,2015,238:512-518.[34]㊀EKLIND Y,KIRCHMANN posting and storage of organichousehold waste with different litter amendments.Ⅱ:nitrogenturnover and losses[J].Bioresource Technology,2000,74(2):125-133.[35]㊀SÁNCHEZ-MONEDERO M A,ROIG A,PAREDES C,et al.Nitrogen transformation during organic waste composting by theRutgers system and its effects on pH,EC and maturity of thecomposting mixtures[J].Bioresource Technology,2001,78(3):301-308.[36]㊀陈镇新,檀笑,解启来,等.不同辅料配比对城市污泥堆肥效果及重金属形态转化的影响[J].江苏农业科学,2017,45(1):227-234.[37]㊀王亚飞,李梦婵,邱慧珍,等.不同畜禽粪便堆肥的微生物数量和养分含量的变化[J].甘肃农业大学学报,2017,52(3):37-45.[38]㊀史春梅,王继红,李国学,等.不同化学添加剂对猪粪堆肥中氮素损失的控制[J].农业环境科学学报,2011,30(5):1001-1006.[39]㊀陈建军,陈海燕,湛方栋,等.城市污泥堆肥处理养分及重金属变化研究[J].云南农业科技,2012(增刊1):180-183. [40]㊀PAGANS E,BARRENA R,FONT X,et al.Ammonia emissionsfrom the composting of different organic wastes.Dependency onprocess temperature[J].Chemosphere,2006,62(9):1534-1542.[41]㊀秦莉,沈玉君,李国学,等.不同C/N比对堆肥腐熟度和含氮气体排放变化的影响[J].农业环境科学学报,2009,28(12):2668-2673.[42]㊀EGHBALL B,LESOING G W.Viability of weed seeds followingmanure windrow composting[J].Compost Science&Utilization,2000,8(1):46-53.[43]㊀罗英姿.气相色谱法对TVOC的测定[J].化工时刊,2018,32(12):31-32.[44]㊀罗泉达.C/N比值对猪粪堆肥腐熟的影响[J].闽西职业技术学院学报,2008(1):113-115.932。
Nitrogen Nutrition Characteristics and Nitrogen FertilizerManagement of PotatoYU Jing,CHEN Yang,FAN Mingshou*(College of Agronomy,Inner Mongolia Agricultural University,Hohhot,Inner Mongolia 010019,China )A bstract:Nitrogen (N)fertilizer are most used presently in potato production,however,N use efficiency is relatively lower.In order to understand the potential of improving potato N use efficiency,and to formulate reasonable technical measures of reducing nitrogen fertilizer input in potato production in China,the research progress in potato N nutrition was summarized from the aspects of potato N demand,N absorption and regulation of N form on potato development.In addition,the research progress in potato root architecture and potato field N leaching were summarized as well in the review.Finally,special principles for potato nitrogen fertilizer management were proposed,which are staged regulation,light application in early stage and heavy application in late stage,proper combination of NH 4-N and NO 3-N,real time N monitoring,and coupling water with nitrogen.For making up the lower efficiency of nitrogen fertilizer utilization in potato season,the root characteristics of succeeding crops in potato rotation system should be considered as well.Key Words:potato;root architecture;nitrogen leaching;N fertilizer management;N use efficiency马铃薯氮素营养特性及氮肥管理于静,陈杨,樊明寿*(内蒙古农业大学农学院,内蒙古呼和浩特010019)收稿日期:2021-04-07基金项目:内蒙古自治区成果转化项目(2019CG030);国家自然科学基金(31960637);内蒙古自然科学基金(2019BS03021)。
固氮速率的英文English:"Nitrogen fixation rate refers to the speed at which nitrogen gas (N2) from the atmosphere is converted into ammonia (NH3) or other nitrogen compounds by nitrogen-fixing bacteria or through industrial processes. This process is vital for sustaining life on Earth as nitrogen is an essential element for the synthesis of amino acids, proteins, and nucleic acids, which are the building blocks of life. The rate of nitrogen fixation can vary depending on environmental factors such as temperature, moisture, pH level, and the availability of certain nutrients like phosphorus and iron. In natural ecosystems, nitrogen fixation primarily occurs through biological processes mediated by symbiotic or free-living nitrogen-fixing bacteria such as Rhizobia and Cyanobacteria, as well as through lightning strikes which can convert nitrogen gas into reactive nitrogen compounds. Industrial processes, such as the Haber-Bosch process, also play a significant role in fixing nitrogen for the production of fertilizers and other industrial chemicals. Understanding the nitrogen fixation rate is crucial for managing ecosystems, agricultural productivity, andmitigating environmental issues such as eutrophication and greenhouse gas emissions."中文翻译:"固氮速率是指氮气(N2)从大气中被氮固定菌或工业过程转化为氨(NH3)或其他氮化合物的速度。
NO. CHINESE ENGLISH1 制氧厂(空分设备)air separation unit2 氧气oxygen3 氮气Nitrogen ['naɪtrədʒ(ə)n]4 氩气Argon['ɑːgɒn]5 吹氧(鼓风)oxygen blowing6 富氧oxygen enrichment [ɪn'rɪtʃmənt]7 空气压缩机air compressor8 流量discharge flow9 主控室main control room10 冷却水塔water cooling tower11 水泵房water pump house [pʌmp]12 储气罐gasholder['gæshəʊldə]13 大气atmospheric air[ætməs'ferɪk]14 大气压力Atmospheric pressure15 大气温度Atmospheric temperature16 相对湿度Relative humidity17 海拔Sea elevation[,elɪ'veɪʃ(ə)n]Ambient conditions in the plant site['æmbɪənt] 18 厂区大气条件(外界条件)19 湿度humidity20 年平均温度Annual mean temperature21 年平均相对湿度Annual mean relative humidity22 年平均大气压力Annual mean atmospheric pressure23 最高大气压力Highest atmospheric pressure[haɪɪst]24 最低大气压力Lowest atmospheric pressure[ləʊɪst]25 风向Wind direction26 风速wind velocity[vəˈlɒsəti]27 风压wind pressure28 日照sunshine29 主导风向Most wind direction30 年平均日照Annual average sunshine31 雷电lightning['laɪtnɪŋ]32 地质条件Geological Conditions[dʒɪə'lɒdʒɪkl]33 含氧量oxygen content34 公用设施utility and facilities35 冷却水温度Temperature of circulating cooling water36 回水温度backwater temperature37 蒸汽条件Steam conditions38 电力electric power39 液氧liquid oxygen40 液氮liquid nitrogen41 气氧gaseous oxygen['gæsɪəs; 'geɪsɪəs]42 气氮gaseous nitrogen44 工艺流程technological process['prəʊses]45 填料塔packed column['kɒləm]46 压缩internal compression47 常温分子筛预净化ambient molecular sieve purification[mə'lekjʊlə]48 冷量cooling capacity49 空气增压膨胀air boosting and expansion50 液氧泵liquid oxygen pump51 双塔精馏double-Column Distillation52 全精馏制氩full rectify and produce argon['rektɪfaɪ]53 氢气hydrogen['haɪdrədʒ(ə)n]54 贮存storage55 蒸发evaporation[ɪ,væpə'reɪʃən]56 联锁interlock57 预冷precooling58 纯化purification[,pjʊərɪfɪ'keɪʃən]59 分子筛molecular sieve[mə'lekjʊlə] [siv]60 空气过滤air filtering61 压缩compression62 过滤器filter63 灰尘dust64 主空压机main air compressor65 空气冷却塔air cooling tower66 多级压缩multi-stages compression[mʌlti'steidʒ]67 污氮气waste nitrogen68 空气(原料状态的)raw air[rɔː]69 分子筛吸附器molecular sieve absorber[əb'sɔːbə]70 上部upper71 电加热器electric heater72 精馏rectify73 下部lower74 主交换器main heat exchanger75 吹氧时间Oxygen blowing time76 冷凝condensation[kɒnden'seɪʃ(ə)n]77 精氩塔pure argon column78 粗塔冷凝器crude column condenser79 冷箱cold box80 液体贮槽liquid tank81 再生reactivation82 烃hydrocarbon83 液氧离心泵liquid oxygen centrifugal pump[,sentrɪ'fjuːg(ə)l]84 自洁式self-cleaning85 能耗energy consumption86 高效筛板塔high efficient sieve plate column[ɪ'fɪʃ(ə)nt]87 规整填料structured packing['strʌktʃəd]88 调节阀regulating valve['regjə,leɪtɪŋ]89 控制阀control valve90 仪表instrument91 配管tubing92 效率efficiency93 过滤阻力filtration resistance [fɪl'treɪʃn]94 脉冲反吹Pulse jet Cleaning[dʒet]95 介质media96 润滑系统Lubrication System97 电机motor98 消声器silencer99 空气预冷器air precooler100 水冷却塔water cooling tower101 水过滤器water filter102 深冷水泵deep cooling pump103 自动球阀automatic ball valve104 热虹吸换热器Thermosyphon heat exchanger['θə:məu,saifɔn] 105 粗氩塔crude argon column106 楼梯stair107 平台platform108 放空系统flare system110 折射仪refractometer[,riːfræk'tɒmɪtə]111 氧气浓度oxygen concentration112 安全safety113 二氧化碳Carbon Dioxide [daɪ'ɒksaɪd]114 乙烯Ethylene['eθɪliːn]116 手动的manual117 卸压Depressurize[diː'preʃəraɪz]118 隔离Isolation119 浮阀塔valve tower[vælv]120 压力泵force pump121 往复泵(循环泵)reciprocating pump122 流量计flowmeter123 球形阀spherical valve ['sferɪk(ə)l]124 动力阀dynamic valve125 接头tie-in温度计thermometer[θə'mɒmɪtə]127 传感器sensor128 转子流量计rotameter129 反应塔reaction tower130 容器container131 升降机lifter132 透平turbine['tɜːbaɪn; -ɪn]分离器separator134 压差计differential draft gauge[,dɪfə'renʃ(ə)l] ['geidʒid]密度density136 浓度concentration137 阻力resistance模型mode串联in series140 传热heat transfer141 熔剂solvent142 溶质solute['sɒljuːt]143 相平衡phase equilibrium[,iːkwɪ'lɪbrɪəm] 144 沸点boiling point145 溶解度solubility[,sɒljʊ'bɪlətɪ]146 分子molecule['mɒlɪkjuːl]147 原子atom148 扩散diffuse[dɪ'fjuːz]149 对流convection[kən'vekʃ(ə)n]150 原理principle['prɪnsɪp(ə)l]151 萃取extraction152 恒沸constant boiling153 渗析dialysis[ˌdaɪˈæləsɪs]154 常量constant155 标注label['leɪb(ə)l]156 方程equation[ɪ'kweɪʒ(ə)n]157 节流阀throttle valve['θrɒt(ə)l]158 单向阀check valve159 止回阀check valve160 截止阀shut-off valve161 三通阀three-way valve162 减压阀pressure reducing valve 电磁阀solenoid valve['səʊlənɒɪd]164 产冷production cold165 声音控制sound control166 绝热insulation167 密封seal168 电磁流量计electromagnetic flowmeter[ɪ,lektrə(ʊ)mæg'netɪk] 169 明渠流量计open channel flowmeter170 孔板流量计orifice plate flowmeter171 斯特林循环stirling cycle['stə:liŋ]172 环流circulation173 不冻结性non-freezability174 升华sublimation[,sʌblɪ'meɪʃən]175 温差temperature difference176 液氧循环量liquid oxygen circulation177 入上塔膨胀空气expanded air to upper column178 液泛flooding179 漏液weeping180 变压吸附pressure swing adsorption[æd'sɔːpʃən]181 冷量损失loss of refrigeration capacity182 提取率recovery rate183 单位能耗specific power consumption[spə'sɪfɪk]184 低压流程low pressure process185 中压流程medium pressure process高压流程high pressure process187 带切换式换热器低压流程low pressure process with reversing heat exchanger188 带分子筛吸附器低压流程low pressure process with molecular sieve adsorber大型空气分离设备large scale air separation plant190 低温精馏塔cryogenic rectification column[,kraɪə'dʒenɪk] 191 单级精馏的塔single rectification column[,rektɪfɪ'keɪʃən] 192 双级精馏塔double rectification column193 下塔lower column筛板塔sieve-tray column泡罩塔bubble cap tray column精馏段rectifying section['rektifaiiŋ]提馏段stripping section塔板tray环流塔板circular flow tray200 对流塔板counter flow tray201 溢流槽overflow downcomer['daun,kʌmə]202 单溢流single overflow203 双溢流double overflow204 多溢流multi-overflow205 溢流堰overflow weir[wɪə]206 填料packing207 板翅式换热器plate-fin heat exchanger208 隔板partition plate[pɑː'tɪʃ(ə)n]209 封条side bar210 多孔翅片perforated fin['pə:fəreitid]211 平直翅片plain fin212 锯齿翅片serrated fin[sə'retɪd]213 导流翅片distributing fin[di s'tribju:tiŋ]214 波纹翅片corrugated fin['kɒrəɡeɪtɪd]215 切换板翅式换热器plate-fin type reversing heat exchanger 216 管式换热器tubular heat exchanger['tjuːbjʊlə]217 列管式换热器shell and tube heat exchanger218 盘管式换热器coiled pipe heat exchanger[kɔild]219 过冷器subcooler220 污氮waste nitrogen['naɪtrədʒ(ə)n]221 蒸发器vaporizer['veɪpəraɪzə]222 液体喷射蒸发器liquid jet evaporato r[ɪ'væpəreɪtə]223 蓄冷器regenerato r[rɪ'dʒenəreɪtə]224 袋式过滤器bag filter225 纯化器purifier['pjuərifaiə]226 干燥器drye r['draɪə]227 空气预冷系统air precooling systerm228 卸荷阀unloading valve229 槽型阀channel valve230 针型阀thimble valve['θɪmb(ə)l]231 压力开关回路pressure switch circuit ['sɜːkɪt]232 手控阀hand valve233 排出阀discharge valve234 安全阀旁通线relief by pass line235 手控开关manual switch236 进口过滤消音器intake filtersilencer237 三相交流电源three-phase AC power238 变压器transformer239 气动变压器starter transformer240 气动按钮(启动) start button241 放空管线vent line242 电磁三通导流阀three-way solenoid pilot valve ['səʊlənɒɪd] ['paɪlət] 243 空气进口air inlet244 阀体valve body245 卸荷阀弹簧unloading valve spring246 压缩机入口compressor inlet247 制动衬套retaining bushing[ri'teiniŋ]248 卸压阀pressure release249 漏气孔bleed port[bliːd]250 活塞式进口阀position inlet valve251 阀盖板valve cover252 阀座板seat plate253 valve plate254 扣环retainer ring [rɪ'teɪnə]255 阀板valve plate256 升限限制器stop plate257 阀片槽valve channel258 支点support point259 空分膜air separating membrane ['sepəreitiŋ]['sepəreitiŋ] 260 空分信道air spatial channel allocation ['speɪʃ(ə)l] [ælə'keɪʃ(ə)n] 261 贮氧罐oxygen accumulater262 乙炔acetylene [ə'setɪliːn]263 作用acting264 双程double acting265 单程single acting266 动作action267 直接动作direct action268 反向动作reverse action269 促动器actuator ['æktjʊeɪtə]270 转矩促动器torque actuator [tɔːk]271 绝热条件下adiabatically272 调整器adjuster273 压缩空气air compressed274 分馏空气fractionated air275 液化空气liquefied air ['lɪkwɪfaɪd]276 liquid air277 回流空气reflux air ['riːflʌks]278 空分塔air separation apparatus [ˌæpəˈreɪtəs] 279 空分车间air separation plant280 钎焊铝板brazed alumimum281 角钢angle steel282 退火annealing283 控制装置control apparatus284 捕抓器arrester285 避雷器lightning arrester286 总装assembly [ə'semblɪ]287 双孔板orifice assembly ['ɒrɪfɪs]288 附件attachment [ə'tætʃm(ə)nt]289 袋室bag house290 袋band291 支承环wear band292 母线bars [ba:z]293 底座base294 轴承bearing295 滚珠轴承ball bearing296 增速齿轮轴承increasing gear bearing297 止推轴承thrust bearing298 偏压bias299 blade300 反向叶片backward blade301 罗茨风机roots blower302 顶板ceiling board['s iːlɪŋ]303 前板front board304 侧板side board305 切换板(配电盘)switching board306 螺栓bolt307 地脚螺栓anchor bolt [bəʊlt]308 阀帽bonnet ['bɒnɪt]309 自动阀箱check valve box310 继电器箱relay switch311 开关箱switch box312 分线盒(接线盒)terminal box313 托架bracket314 断路器breaker315 无熔断器的断路器no-fuse circuit breaker 316 油浸断路器oil immersed circuitbreaker 317 电刷brush318 电刷架brush holder319 电刷弹簧brush spring320 缓冲板buffer plate321 电阻温度计resistance bulb322 bulk323 上部支架(隔板)bulk head324 衬套bush325 轴套neck bush326 丁基橡胶butyl rubber ['bjutɪl]327 蜂鸣器buzzer['bʌzə]328 电缆cable329 补偿导线extension cable330 外部电缆external cable331 电力电缆power cable332 校准calibration [kælɪ'breɪʃ(ə)n] 333 凸轮cam334 容量capacity[kə'pæsɪtɪ]335 轴承箱bearing casing336 透平机壳turbine casing['tɜːbaɪn; -ɪn] 337 铸件casting['kɑːstɪŋ]338 精密铸件precision casting[prɪ'sɪʒ(ə)n] 339 槽钢channel steel340 图表chart342 过冷液化器chiller-liquefier343 凿chipping344 电路electric circuit345 高压线路high tension circuit346 interlocking circuit347 离合器clutch348 旋塞cock349 规,符号code350 线圈coil351 跳闸线圈tripping coil353 氧压机线路系统图loop-sketch for oxygen compressor 354 多级压缩机multi-stage compressor355 单轴承压缩机one-shaft compressor356 活塞式压缩机reciprocating compressor[ri'siprəkeitiŋ] 357 透平压缩机turbo compressor358 同心的concentric359 导管conduit360 接头,接管connection361 触头contact362 固定触头fixed contact363 滑动触头moving contact364 接触器contactor365 电磁接触器magnetic contactor[ri'siprəkeitiŋ]366 液位指示控制器level indicating controller367 压力指示控制器pressure indicating controller368 冷却器cooler369 后冷却器after cooler370 evaporator cooler371 液空过冷器liquid air super cooler372 液氮过冷器liquid nitrogen super cooler373 喷淋冷却器spray cooler374 油冷却器oil cooler375 水淋冷却器trickling cooler376 冷单元cold core377 联轴节(联轴器)coupling378 密封盖sealing cover379 隔音罩sound insulating cover ['insjuleitiŋ] 380 曲轴crankshaft381 电动机柜motor cubicle ['kjuːbɪk(ə)l]382 受电柜receiving cubicle383 截口cutout384 汽缸cylinder385 解冻defrosting386 解冻风机defrosting blower387 去霜deriming388 检验器detector389 偏差deviation390 净化装置cleaning device391 输出控制装置delivery control device392 排出控制装置discharge pressure control device 393 safety device394 取样分析装置sampling device395 标度盘dial396 薄片diaphragm ['daɪəfræm]397 距离快(隔离段)distance piece399 罐drum400 配线槽wiring duct401 肘管(弯头)elbow402 设备衬垫liners for equipment403 安装erection404 激磁器exciter405 膨胀接头(膨胀节)expansion joint406 系数,因数factor407 安全系数safety factor408 风扇fan409 膜film410 油膜oil film411 初级油过滤器primary oil filter ['praɪm(ə)rɪ]412 烧结金属过滤器sintered metallic filter ['sintəd] [mɪ'tælɪk] 413 冷却片cooling fin414 法兰flange415 闪光flicker416 浮标float418 radial inward flow419 流量速度reflux rate420 总流量图general flow-sheet421 流体fluid['fluːɪd]422 焊剂flux423 水平力horizontal force [hɒrɪ'zɒnt(ə)l] 424 锻件forging425 基础总图general foundation426 框架frame427 制冷freeze428 全开fully-open429 火焰炉flame furnace ['fɜːnɪs]430 竖炉shaft furnace[ʃɑːft]431 平炉open hearth furnace [hɑːθ] 432 转炉底rotary hearth['rəʊt(ə)rɪ]433 保险丝fuse [fjuːz]434 液位表level gauge [geɪdʒ]435 垫片gasket ['gæskɪt]436 胶gel437 磨光grinding['graɪndɪŋ]438 接地grounding439 灌浆grout440 导板guider441 header442 氦helium444 碳氢化合物hydrocarbon445 叶轮impeller446 杂质impurities447 吸入intake448 引言introduction449 等温的isothermal450 垫板liner451 贫液lean liquid452 富液rich liquid453 满负荷full load454 压力计manometer455 驱动机构driving mechanism 456 同步电动机synchronous457 氖neon458 径流泵axial pump459 循环泵circulating pump 460 备用泵stand-by pump 461 流量记录器flow recorder462 油脂密封grease seal463 塞板塔sieve tray465 气体产品gaseous product 467 intercooler468 管壳式中冷器shell and tube intercooler469 二级后冷却器double stage aftercooler470 转子impeller471 绝热压缩adiabatic compression472 衰减attenuate473 冷凝水排水器condensate trap474 氟利昂冷冻机freon refrigerator475 水冷却机water chiller476 网雾gauze-fog477 交换循环alternating cycle478 塔板塔tray column479 冷凝蒸发器(主冷)reboiler condenser480 底槽sump481 馏分fraction482 气流stream483 放散vent484 抽出withdraw485 触媒catalyst487 缓冲罐snubber488 增压压缩机make up compressor489 真空储槽vacuum storage490 液氩冷凝盘管internal condensing coil using LIN 491 instantaneous back up492 储罐storage493 罐车称量站trailer loading station494 深冷产品罐车cryogenic trailer track495 罐车充填泵tanker fill pump496 预纯化器pre-purifier497 再生加热器ETH(electric thaw heater)499 吸附器后过滤器cartridge aftercooler500 悬浮物suspended solid501 潜热latent heat502 冷源refrigeration503 热对流thermo siphon504 氮液化系统nitrogen recycle liquefier 505 无油压缩机oil free conpressor506 原料空气raw air507 加温解冻系统defrosting system508 液空吸附器liquid air adsorber514 氨厂ammonia plant515 钯触媒palladium catalyst516 百分误差percent error517 半连续炉,间歇炉semi-continuous furnace 518 薄壁式液体储槽thin wall liquid storage tank 519 薄膜membrane520 wafer valve521 饱和saturation522 饱和温度saturation temperature 523 饱和蒸汽saturation steam524 保持泵holding pump525 保持块retainer526 保护层buffer527 保护端盖protective end cover 528 保护气protective gas529 保护罩protective cover530 保冷材料cold insulation531 保温管线insulated line532 保温管道insulated piping533 保温表面insulated surface534 保温阶段holding period535 报疲rejection536 备用透平膨胀机stand by turbine537 泵效率pump efficiency538 比热specific heat539 比容specific volume540 比重specific gravity541 壁厚wall thickness542 闭路控制closed loop control 543 boundary layer544 变送器transmitter546 变压吸附法pressure swing adsorption 547 标准沸点normal boiling point548 标准规定设计压力normal design pressure 549 表面氧化surface oxidation550 冰点freezing point551 丙烷propane552 丙烯propylene553 并联装置conneted in parallel554 泊片foil555 玻璃棉glass wool556 玻璃纤维glass fiber557 玻璃纤维绳fiber glass cord558 不纯液氧impure liquid oxygen 559 不合格零件unqualified workpiece 560 不贵的inexpensive561 不可燃液体non-flammable liquid 562 不冷凝液non-condensable liquid 563 不平直角misalignment564 不平度out of level565 布氏硬度brinell hardness566 部分冷凝particl condensation567 partical oxidation568 部分压力partical pressure569 步进电机stepper motor570 残余水分residual moisture571 残余应力residual stress572 侧壁板side wall plate573 侧封头side header574 测力仪dynamometer575 测流side stream576 产品纯度product purity577 产品流量product flow578 产品氩蒸发器product argon subcooler 579 超临界流体supercritical fluid580 翅片fin configuration581 翅片成型冲床fin corrugation machine 582 冲程stroke583 充氮nitrogen back filling 584 除霜管道thawing line585 除霜气体defrost gas586 除雾器demister587 除雾器丝网块mist eliminator pad 588 除氧后冷却机deoxo aftercooler589 除氧速度deoxo speed590 degressing591 传热安全系数heat transfer safty factor592 传热翅片heat transfer fin593 喘振surge594 喘振线surge line595 瓷漆enamel paint596 磁力线flux597 粗抽泵rough pump598 粗氪氙馏分crude krypton-xenon fraction 599 粗氩冷凝蒸发器crude argon reboiler condenser 600 脆化embrittlement601 搭接overlap602 带翅片表面finned surface603 带翅片通道finned passage604 单级压缩机single stage compressor605 氮回流液nitrogen reflux606 导流段distribution section607 低温材料cryogenic material608 低温脆性cold brittleness609 低温产品气cold product gas610 低温分馏设备subambient distillation apparatus 611 低压塔low pressure column612 底板base plate613 resistance heated welding614 电子加热器electic resistant heater 615 丁二醇水溶液glycol/water solution 616 丁烷butane617 顶部回流液冷凝器overhead fefluxconderser 618 动载live load619 冻结freezing620 堵塞blockage621 杜瓦容器dewar622 镀铬chroming623 多孔板perforated plate624 多孔塔板perforated tray625 多流路管箱multi-pass channel626 惰性气体保护inert gas blanketing627 惰性气体介质innert gas medium628 分流槽pass partition groove 629 辅助冷凝器auxiliary condensor630 干冰dry ice631 干膜dry film632 干燥剂desiccant633 高位油箱oil rundown tank634 锆钨极zirconium tungsten635 隔离阀门isolation636 bate insulation637 割刀;割枪cutting torch638 工件work pice639 工业喷砂清洁法commercial blast cleaning 640 攻丝tapping641 共轭环conjugate ring642 共晶体eutectics643 固态冰晶体solid ice crystal644 固态二氧化碳solid carbon dioxide645 固态颗粒solid particle646 管箱bonnet647 管箱盖channel cover648 管箱分流隔板channel pass partition 649 惯性矩inertia moment650 光管bare tube651 光泽仪glossmeter652 含硅量silicon content653 合成氨synthetic ammonia654 合成氨装置synthetic ammonia plant 655 合成燃料工程synthetic ammonia project 656 呼吸阀breather valve657 护目镜safety goggles658 滑动轴承plain spring659 sheave660 环境空气蒸发器ambient air evaporator661 缓冲层buffer layer662 换能器transducer663 挥发氧volatile oxygen664 回流back flow665 活化剂activating agent666 活性炭activated carbon667 浸入式加热器immersion heater668 浸蚀试验etching test669 进/出口裙座access apron670 进口,吸入suction671 进口过滤器suction filter672 进口温度suction temperature673 进口堰inlet weir674 进气feed675 进气放空消声器inlet vent silencer676 进气喷嘴inlet nozzle677 进入口inlet port678 精馏级数number of distillation stagepure argon overhead condenser 679 (顶部的)精氩冷凝器680 精氩冷凝蒸发器pure argon reboiler-condenser 681 精氩储槽pure argon tank682 laned fin683 绝对零度absolute zero684 绝对压力absolute humidity685 绝热等级insulation class686 绝热厚度insulation thickness687 绝热膨胀adiabatic expansion688 绝缘纤维防护版masonite protector689 绝热效率adiabatic efficiency690 均热温度soak temperature691 均热性temperature uniformity692 可燃材料inflammable material693 可燃气体inflammable gas694 可燃液体combustible liquid695 空冷塔direct contact after performance 696 空气导流air director697 空气分离air separation698 空气干燥器air drier699 空气管air duct700 空气净化air purification701 空气冷凝air condensation702 空气流air current703 空气流量air flow704 空气流路air flow route705 ambient temperature gasifier706 冷壁式cold wall type707 冷冻干燥系统refrigerating -dring system 708 冷端cold end709 临界点critical point710 临界温度criticaltemperature711 流体分配flow distribution712 露天防雨罩open drop-proof enclosure 713 罗茨鼓风机roots blowers714 耐腐蚀衬里corrosion resistant lining 715 耐腐蚀性corrosion resistance716 逆流换热器counterflow heat exchanger 717 泡沫玻璃glass foam718 泡沫塑料cellular plastic719 喷淋冷却塔spray cooler720 喷淋冷却机surface spray cooler721 平直多孔翅片plain perforated fin722 上填料床upper bed723 上塔upper column724 摄氏centigrade725 塔釜column sump726 吸附床adsorbant bed727 吸附过滤器adsorber vessel728 吸附剂adsorbant729 吸附剂再生adsorbant reactivation730 吸附净化系统adsorption purification system 731 吸附能力adsorptive capacity732 吸附塔absorption column733 向上流动蒸汽upper flow vaper734 向下流动液体down flowing liquid735 泄放阀escape valve736 循环压缩机recycle compressor737 压氧系统oxygen compression system 738 氩纯化装置argon purification unit739 氧化膜oxide film740 液膜liquid film741 再沸腾釜reboiler sump742 再生温度regenerating temperature743 增压机booster744 胀管tube expansion745 折流板baffle746 真空度vacuum level747 中间冷却器intermediate cooler。
雪茄烟品种楚雪26号“3414”肥效试验王斌斌1杨春雷2*饶雄飞2李小坤1廖世鹏1(1华中农业大学资源与环境学院/农业农村长江中下游耕地保育重点实验室/华中农业大学微量元素研究中心,湖北武汉430070;2湖北省烟草科学研究院,湖北武汉430030)摘要采用“3414”试验设计,研究氮磷钾肥料不同用量处理对雪茄烟品种楚雪26号产量和养分吸收利用的影响。
结果表明:与不施肥处理相比,各施肥处理显著提高雪茄烟叶的产量,增产效果顺序为氮肥>钾肥>磷肥;氮磷钾肥料合理施用可以优化烟叶等级结构,增加茄衣和茄套的产量,提高产值;通过一元二次回归拟合发现,烟叶最大产量时的施氮量为138.75kg/hm 2、施磷量为71.85kg/hm 2、施钾量为361.65kg/hm 2。
综合考虑产量、产值、养分吸收等指标,氮肥推荐施用量为130~140kg/hm 2、磷肥推荐施用量为60~70kg/hm 2、钾肥推荐施用量为340~360kg/hm 2。
关键词雪茄烟品种;楚雪26号;“3414”肥效试验;产量;养分含量中图分类号S572;S147.5文献标识码A文章编号1007-5739(2023)22-0034-05DOI :10.3969/j.issn.1007-5739.2023.22.010开放科学(资源服务)标识码(OSID ):"3414"Fertilizer Efficiency Test of Cigar Tobacco Variety Chuxue 26WANG Binbin 1YANG Chunlei 2*RAO Xiongfei 2LI Xiaokun 1LIAO Shipeng 1(1College of Resources and Environment,Huazhong Agricultural University/Key Laboratory of Agricultural and Rural Cultivated Land Conservation in the Middle and Lower Reaches of the Yangtze River/Microelement Research Center,Huazhong Agricultural University,Wuhan Hubei 430070;2Hubei Academy of Tobacoo Science,Wuhan Hubei 430030)Abstract Using the "3414"experimental design,this paper studied the effects of different amounts of nitrogen,phosphorus,and potassium fertilizers on the yield and nutrient absorption and utilization of cigar tobacco variety Chuxue 26.The results showed that compared with no fertilization treatment,each fertilization treatment significantly increased the yield of cigar tobacco leaves,and the order of yield increase effect was nitrogen fertilizer>potassium fertilizer>phosphorus fertilizer.Reasonable application of nitrogen,phosphorus and potassium fertilizers could optimizethe grading structure of tobacco leaves,increase the yield of wrapper and binder,and increase the output value.Through the univariate quadratic regression fitting,it is found that the nitrogen application rate leaves was 138.75kg/hm 2,the phosphorus application rate was 71.85kg/hm 2,and the potassium application rate was 361.65kg/hm 2when the tobacco leaves reached their maximum yield.In view of indicators such as yield,output value,and nutrient absorption,the recommended application rates were nitrogen fertilizer 130-140kg/hm 2,phosphorus fertilizer 60-70kg/hm 2,andpotassium fertilizer 340-360kg/hm 2.Keywordscigar tobacco variety;Chuxue 26;"3414"fertilizer efficiency test;yield;nutrient content雪茄烟是一种特殊的烟草制品,具有劲头大、香气醇厚丰满、吃味香苦透甜、焦油和烟碱量较少的特点,深受广大消费者青睐[1-4]。
含氮代谢物英文学名When it comes to nitrogen-containing metabolites, you gotta know they're like the building blocks of life. These compounds are essential for all sorts of biochemical reactions in our bodies. You know, like amino acids and urea, they're key players in the nitrogen cycle.Talk about nitrogen-containing metabolites, and I'm reminded of how important they are in the agricultural industry. Fertilizers rich in nitrogen help plants grow strong and healthy. But it's not just plants; animals and humans rely on these compounds, too.So, what's the buzz about nitrogen-containing metabolites? Well, they're kind of like the unsung heroes of biochemistry. You don't hear much about them, butthey're crucial for so many functions in our bodies. From protein synthesis to waste removal, they're always there, quietly doing their job.And let's not forget about the environmental aspect. Nitrogen-containing metabolites play a huge role in maintaining the balance of ecosystems. They're involved in the nitrogen cycle, which is essential for the survival of all life on Earth. So, yeah, they're pretty important!In conclusion, nitrogen-containing metabolites are essential for life. Whether you're a plant, animal, or human, you can't do without.。
低碳钒氮微合金钢中V(C,N)在奥氏体中的析出动力学研究才福,龚维幂,永权钢铁研究总院构造材料研究所,100081摘要:控制VN在奥氏体中的有效析出是利用VN诱导晶铁素体细化铁素体晶粒的关键技术。
本文采用应力松弛法研究了低碳钒氮微合金钢V(C,N)在奥氏体区的等温析出行为,结果说明,试验钢的析出-温度-时间(PTT)曲线呈典型的“C〞形状,本实验条件下析出开场时间最短的“鼻子〞温度为870℃左右。
增加钢中的碳、氮含量以及形变量等对PTT曲线有较大影响,均使“C〞曲线向短时间方向移动,特别是氮含量对V(C,N)析出的影响最显著。
在碳含量为0.10%左右的试验钢中,当氮含量从36ppm增加到140ppm时,可使870℃的析出开场时间从400s 缩短到70s左右。
关键词:V(C,N) 析出应力松弛法氮含量1前言传统的控轧工艺通常是在低温〔奥氏体未再结晶区〕大变形的工艺条件下,来细化铁素体晶粒,但由于受轧机、生产速率等条件的限制,长形材、厚壁H 型钢等产品通过传统的TMCP工艺获得高强度高韧性的配合是十分困难的。
为了寻找细化铁素体晶粒改善强韧性的新方法,人们开展了大量的研究工作,过去在中碳钢中开发的夹杂物冶金和IGF(Intra-granular ferrite)技术为实现这一目标提供了新的思路。
Kimura等人通过对不同颗粒上铁素体形核的界面能和驱动力的计算发现,TiN、VN、TiC、VC等颗粒十分有利于铁素体形核[1]。
根据这一理论根底,人们开发出了适合在小变形生产条件下获得细晶铁素体组织的新一代TMCP工艺〔也称为第三代TMCP工艺〕。
付俊岩、孟繁茂等进一步指出VN与bcc-Fe共格性最好,TiN次之。
高N-V-Ti 钢中VN和TiN为晶铁素体形核的最正确触媒[2]。
在钒氮微合金钢中,利用VN 作为晶铁素体异质形核的核心从而细化铁素体晶粒,正受到日益广泛的关注。
众所周知,只有在奥氏体中析出的VN颗粒才能提供形核的位置,并促进IGF的形成。
Symposium no. 14Paper no. 1045Presentation: poster Nitrogen and potassium dynamics infertigation systemsSINGH A.K., CHAKRABORTY D., MISHRA P.and SINGH D.K.Water Technology Centre, Indian Agricultural Research Institute, New Delhi-110012, IndiaAbstractWater and nutrients are the two key inputs in agriculture but their use efficiency is low and their injudicious use leads to environmental degradation. Among the various techniques of water application, drip or trickle irrigation is the most efficient method of delivering water to the root zone. Applying fertilizers through irrigation water, particularly through the drip system, termed as fertigation, also provides the most effective way of supplying nutrients to the plant roots. In fact, the supply can be tailored to meet the precise requirement of the plant depending on its growth stage. A considerable amount of work has been done on drip irrigation and also on fertigation, but studies on the dynamics of nutrients in soil after their exit from the emitter are very few. In this paper, results of two separate experiments conducted to study the fate of nitrogen and potassium in soil applied through fertigation have been presented.In both the experiments, water-soluble fertilizer was applied through a drip system (T1). In the second treatment (T2), the fertilizer was applied on soil but water was applied through drip system while in the third treatment (T3) fertilizer was applied on the soil with conventional irrigation method (check basin/furrow). In the experiment in which nitrogen dynamics were studied, the crop was broccoli while potassium dynamics were studied in radish.In the experiment on nitrogen dynamics, it was observed that in the fertigation treatments, ammonium form of nitrogen dominated in the upper soil layers. Almost all the nitrogen applied remained confined to the root zone. In the conventional method of irrigation, the nitrate-nitrogen dominated and a significant amount was leached out. Leaching losses were also observed when the fertilizer was applied on soil and water through a drip system. In the second experiment, in which potassium dynamics were studied, it was observed that in fertigation treatments, potassium was confined to the root zone of the radish crop, while it moved in significant quantities beyond the root zone in the conventional method (furrow irrigation). Movement beyond the root zone was also observed in the soil-based fertilizer application with water through a drip system but to a lesser degree.Keywords:fertigation, nitrogen, potassium, broccoli, radish, water useIntroductionSustainability of any production system requires optimal utilization of resources be it water, fertilizer or soil. Apart from the economic considerations, it is also well known that the adverse effect of injudicious use of water and fertilizers can have far reaching implications on the environment. There is, therefore, a need for technological optionsthat will help in minimizing the use of the precious resources and maximizing crop production without any detrimental impact on the environment. Drip irrigation also referred to as trickle irrigation or microirrigation, represents a definite advancement in irrigation technology with very wide implications (Sivanappan et al., 1972; Magar and Firake, 1991). It is a technique in which water is applied in precise amounts at a rate which matches the plant requirement and also maintains an optimum soil water status around the vicinity of plant roots. This technology has the greatest potential where water is either very expensive or scarce or the soils are sandy, rocky or the terrain is undulating and difficult to level. Poor quality water can also be used without significant yield reductions (Nightingale et al., 1991). As water, labour and land preparation become costlier, this technique of water application is bound to replace conventional systems. Drip irrigation has another advantage because it can also be used to apply any water soluble fertilizer or chemical in precise amounts, as and when required to match the plant needs (Clothier and Saucer, 1988; Bar-Yosef and Sagiv, 1992; Bafna et al., 1993), directly into the root zone of the crop which is referred to as Fertigation or Chemigation. This provides a means of improving nutrient use efficiency as the fertilizer applied remains confined to the root zone of the crop.Considerable amount of work has been conducted on drip irrigation in recent years but studies on the nutrient movement and distribution using drip irrigation are very few. The information on the nutrient dynamics under drip fertigation would be very useful in desiging efficient fertigation systems. In addition to nitrogen, the single most important plant nutrient, potash, a nutrient considered adequate in soils all over the world, has now been reported to be deficient in vast areas in recent years. Bar-Yosef and Sagiv (1985) showed that at the time of maximum nutrient uptake rate by several crops grown under drip irrigation, K must be supplied through the water even when it is in sufficient concentration (as exchangeable ion) in the soil. The fact that in India, the entire requirement of potassic fertilizers are imported signifies the importance of improving the potassium use efficiency through appropriate application methods. In this paper, results of experiments on the movement and distribution of nitrogen and potassium under drip fertigation have been presented and compared with conventional irrigation methods.Materials and MethodsThe studies were carried out on the experimental farm of the Water Technology Centre, Indian Agricultural Research Institute, New Delhi, India situated at 28o 38' N latitude and 77o 10' E longitude and at an altitude of 228.7 meters above mean sea level. The soil is sandy loam classified as Typic Ustocrept with the average pH and EC of the 1:2.5 soil water suspension ratio being 7.51 and 0.48 dSm-1, respectively. The organic carbon content was 0.32 percent. The available N, P and K status of surface soil was 120, 20 and and 170 kg ha-1, respectively. Nitrogen movement was studied in Sprouting Broccoli (Brassica oleracea var. italica L.) variety-Packman, sown in the nursery on 20th October, transplanted in the field on 23rd November, and harvested on 10th February. The plant to plant spacing was 30 cm while the row to row spacing was 60 cm. The recommended fertilizer dose was 200:120:150 of N:P:K kg ha-1. For Potassium studies, radish (Raphanus Sativus L. cv. Pusa Chetaki) was sown at a spacing of 45 cm x 15 cm on March 28, 2000. The recommended dose of fertilizer was 120 kg of N, 75 kg of P and 100 kg of K and harvested on May 18, 2000. The marketable yield wastaken as the total fresh weight at harvest. The following three treatments, replicated four times, were adopted for the study:T1 : Fertigation with fertilizer applied along with irrigation water in the drip system;T2 : Drip irrigation with fertilizer applied on soil; and,T3 : Conventional irrigation [Check basin (Broccoli) and Furrow (Radish)]In drip system, water was applied every alternate day based on the evapotranspiration demand of the crop computed from historical weather data. For check basin/furrow treatment, water was applied on the basis of soil moisture tension value (0.03 MPa approximately) measured by tensiometers installed in the field at 25 cm depth for broccoli and 15 cm depth for radish. All necessary measures were taken to keep the crop pest free.During the crop growth period in broccoli, observations were taken on soil moisture content, ammonium and nitrate concentrations in the various soil layers. Sampling was done from 0-5, 5-10, 10-20, 20-30, 30-50, 50-70 and 70-90 cm depth of the profile at the emitting point, and 15, 30, 45 and 60 cm horizontally away from the emitting point. The drip line was placed mid-way between the two rows of Broccoli plants. Water content of the soil samples was determined gravimetrically. Nitrate-and Ammonical-N was determined in the soil samples collected from the above depths initially, before and after each fertigation and fertilization using Tecator Automated 5020 Flow Injection Analyzer.To study the potassium movement (both horizontal and vertical) under different treatments, soil samples were collected from 0-5, 5-10, 10-20, 20-30, 30-40 cm depth of soil profile at the plant, 10 and 22.5 cm horizontally away from the plant. In case of T1, the soil samples were collected before and after each fertigation and in case of T2 and T3 at 7 DAS, 19 DAS and 31 DAS and at harvest. Concentration of Potassium (K) in the collected soil samples was evaluated using Flame Photometer method.Results and DiscussionSoil water movement and distributionInnumerable studies have been conducted on the soil water uptake and movement under drip and conventional irrigation systems. It has been established that considerable savings in water use can be achieved through drip systems and our results also indicate that at least 30 percent savings in water use can be achieved without affecting the yield. Results on this aspect are not being presented in this paper.Nitrogen movement and distributionNO3-N and NH4-N movement and distribution at different stages for T1, T2 and T3 treatments are presented here under different subheads.NO3-N movement and distributionThe distribution of nitrate-N throughout the profile varied both horizontally and vertically from the emitting point. Before the first fertigation, the nitrate nitrogen was observed to be uniformly distributed throughout the profile. When the soil samples were taken 24 hours after first fertigation, the peak NO3-N concentration below the emitter (16.16 g/g of dry soil) was found to be in 30-50 cm depth whereas for locations 15 cm, 30 cm and 45 cm away from the emitter, the peak was within 10-20 cm depth. The peak concentration was maximum for the point 15 cm from the emitter (32.13 g/g of dry soil) and observed in the 10-20 cm layer. At a distance of 60 cm from emitter the peak (14.3g/g of dry soil) was again found within 30-50 cm depth. For the point below the emitter, the NO3-N distribution at first decreased steadily upto a depth of about 25 cm followed by a sudden increase in the peak concentration in 30-50 cm layer. For 15 and 30 cm horizontal distance from the source there was a decrease in NO3-N concentration from surface to 10 cm depth, then a steep increase in concentration upto a depth of 15 cm (32.13 and 19.87 g/g of dry soil) followed by an almost uniform distribution within 15-25 cm and then a decrease in NO3-N concentration up to 90 cm. For a layer 60 cm away from the emitting point, the concentration gradually increased to a depth of 10-20 cm (17.19 g/g of dry soil) and then decreased up to 30-50 cm layer. Beyond this depth, the concentration was found to be uniform through the profile up to 70-90 cm depth. Again, the decrease in NO3-N concentration from the respective peak concentrations, for all the specified horizontal distances from the emitting point, is steeper for the point immediate to the emitting point than the locations horizontally away from the emitting point.In samples taken 24 hours before 2nd fertigation, the distribution of NO3-N was found to follow a definite pattern (increase in concentration upto a depth, then steep decrease followed by a uniform decrease) for each distance from emitter. For all distances from emitting point, the NO3-N is found to be minimum in the upper 0-10 cm (0.59 to 2.01 g/g of dry soil) and 10-20 cm (0.6-2.98 g/g of dry soil) layer. The concentration below 10-20 cm depth was found to decrease with increase in distance from emitter. The peak concentrations for the point immediate to the emitter and 15 cm from the emitter (26.45 and 18.03 g/g of dry soil) were found in 20-30 cm depth whereas for 30, 45 and 60 cm horizontal distance from emitter, the peak concentrations were 13.41, 15.02 and 11.12 g/g of dry soil, respectively and found in 30-50 cm depth.Twenty four hours after 2nd fertigation, the distribution of NO3-N was almost similar to that at 24 hours after 1st fertigation. The only difference was that the peak NO3-N concentration for the soil profile at a distance of 30 cm from emitting point was in 20-30 cm layer rather than 10-20 cm layer as found at 24 hours after first fertigation. The concentration at surface layer (0-5 cm) was more for the point near the emitter and the point 15 cm away from the emitter (15.47 and 18.62 g/g of dry soil, respectively). It was less for 30 cm from the emitter (9.45 g/g of dry soil) and almost same (7.49 and 6.07 g/g of dry soil) for points 45 cm and 60 cm distance from emitter, as compared to that found 24 hours after 1st fertigation.The peak concentration of NO3-N, was again located at the same depth 24 hours before 3rd fertigation as was observed before 2nd fertigation, but the concentrations were higher at all the points. The concentrations in 50-70 cm depth also increased for all the sampling points as compared to the sampling after the 2nd fertigation but the concentration below 70 cm remained almost the same.The distribution of NO3-N throughout the profile under study 24 hours after 3rd fertigation followed the same trend as 24 hours after 1st and 2nd fertigations. The peak NO3-N concentrations for the points 15 and 45 cm from the emitting point were found at a lower depth (20-30 cm) but for other points the peaks were found at the same depth as observed earlier.The peak NO3-N concentration for the point immediately below the emitter 24 hours before the 4th and last fertigation was more (29.73 g/g of dry soil) as compared to the previous values. The peak concentration of the point 15 cm from the emitter (31.08g/g of dry soil) was significantly higher and more than the point near the emitter. This peak concentration was located at the 30-50 cm layer.The peak NO3-N concentrations for all the points 24 hours after 4th and last fertigation were found at a depth of 30-50 cm except for the point 15 cm from the source which was found in 20-30 cm soil layer and was significantly higher (32.75 g/g of dry soil).At harvesting i.e., 8 days after last fertigation maximum NO3-N concentration was found within 30-50 cm layer (Figure 1). The peak values for the points below the emitter (27.16 g/g of dry soil) and 15 cm from emitter (29.15 g/g of dry soil) was much higher than those of other points (ranging from 12.74 to 14.26 g/g of dry soil).There were marked differences in the distribution of nitrate nitrogen t in the soil profile among fertigation (T1), drip irrigation (T2) and check basin (T3) treatments (Figure 1). For the drip fertigation treatments, the nitrate nitrogen concentration, at 24 hours following fertigation, was less in upper 0-10 cm layer with a peak concentration in 30-50 cm layer for the point immediate to the source (emitting point) and 10-20 cm for other points at different distances from the source. For the fertigation treatments, the maximum NO3-N concentration 19-20 days after each of the fertigations was found to be in 20-30 cm layer.Figure1Distribution of NO3-N and NH4-N in soil profile at harvest for (T1) fertigation, (T2) drip irrigation with soil application of fertilizer and (T3)check basin treatment.In T2, the NO3-N distribution, 24 hours after each dose of fertilizer application decreased steadily without any peak NO3 concentration within the profile under study. Here the maximum concentration was found in the upper 0-10 cm layer and decreasedwith depth. This trend was similar for all the sampling points at different distances from the emitter. The NO3-N was observed to increase 18-20 days after following application of fertilizer with an uniform distribution with 0-30 cm depth and then followed a gradual decrease. This is true for all the locations in the soil profile. The NO3-N concentrations as found in lower depths were more in this treatment as compared to other fertigation treatments, suggesting the possibility of some leaching losses of NO3-N. The NO3-N concentration was significantly higher in surface soil in this treatment than that in fertigation treatments and found to increase with each fertilizer application. In T3 (check basin treatment), NO3-N moved to deeper layer with the advance of the experiment and at the harvest, the NO3-N peak was found in 70-90 cm layer, indicating maximum leaching loss.The significant difference of NO3-N movement and distribution observed between drip fertigation, drip irrigation and check basin treatments a few days following fertigation or fertilization was that the peak concentrations of NO3-N in fertigation treatment was found at some depth in the profile (for the point near the emitter peak was formed at a greater depth than any other points following fertigation), whereas maximum NO3-N concentration in T2 treatments was found in the surface layer gradually decreasing down the profile. The peak concentration for the points near the emitting point and 15 cm from that in T1 treatment was much more than that for other points. This range was not so large for T2 treatment. For check basin treatment, the peak concentration moved to a much lower depth than other treatments with drip system, indicating loss of NO3-N out of the root zone which was found to be 10-50 cm. In both T2 and T3 treatments, urea was applied but for T2, the water was applied through drip whereas in T3, the flood irrigation system was employed. This resulted in the difference in the quantum of water applied at a time between the two treatments following application of fertilizer. Hence, NO3-N moved to a greater depth greater than 50 cm with water in check basin (T3) but in T2, it was confined within 50 cm depth.NH4-N movement and distributionThe NH4-N concentration, 24 hours after each fertigation was found mostly in the upper 0-30 cm soil layer. As NH4 is not mobile and is adsorbed to the soil matrix, its peak concentration (99.45 g/g of dry soil) was in the top 0-10 cm layer, decreased towards the deeper layers upto 40-50 cm layer and then maintained a constant value till 70-90 cm depth. For the point located close to the source, NH4-N was concentration was greater in the 0-10 cm (66.09 g/g of dry soil) than any other point. At the point 15 cm from the emitter the variation in concentration of NH4-N from top layer to the bottom layer of the profile studied was less than that for the point immediate to the source and this difference was significant. For other points, the distributions were uniform throughout the profile, indicating restricted movement of NH4-N.In T2 treatment, NH4-N was concentrated in 0-50 cm layer. In this treatment, the NH4-N concentration was more in the 0-50 cm layer than found in fertigation treatments for both the points next to the emitter and 15 cm from the emitter. In samples taken 24 hours before the next urea application, NH4-N was found more in the upper 50 cm layer than 24 hours after application, indicating urea hydrolysis.In T3 treatment (check basin), NH4-N concentration peak was found in 30-50 cm depth 24 hours after urea application. But 20 days after application, its peak wasobserved at 20-30 cm depth. This indicated conversion of NH4-N to NO3-N in the deeper layers and was reflected in NO3-N profiles.The NH4-N concentration in T1 treatment was maximum in the surface layers i.e., between 0-40 cm layer with peak values in the surface layer, decreasing depth wise. At the start of the experiment, NH4-N concentration in the deeper layer was less. But these differences increased towards the end of the experiment for all fertigation treatments both horizontally and vertically. In T2 treatment, except for the point near the emitter, the NH4-N concentration did not show any marked difference and was same throughout the profile. Figure 1 shows the distribution of NH4-N in the soil profile at harvest in the various treatments.In check basin treatment (T3), the peak was always found between 20-50 cm depth with minimum NH4-N concentration in the surface layer (0-10 cm) which was in sharp contrast to the drip irrigation and fertigation treatments, where maximum NH4-N concentration was always found in the surface layers.The increase in NH4-N concentration immediately in the vicinity of the emitter is a consequence of the hydrolysis of urea (Haynes, 1990). The consistently wet condition around the emitter also ensures that the conversion of NH4-N to NO3-N occurs some distance away from the emitter in a relatively drier zone, where more oxygen is available (Laher and Avnicmelech, 1980). This results in the peak concentration of NO-3N occurring below the soil surface in the layer (30-50 cm) and more than 15 cm away from the emitter. Ammonium ion is absorbed by the soil matrix and, therefore, the maximum concentration changes were confined to the top layer and around the emitter. There was no appreciable change beyond 30 cm away from the emitter up to the third fertilizer application. It is only after the third fertigation that the changes in NH4-N content percolate down to deeper layers. NO3-N ions, on the other hand, are considered very mobile. But unlike T3 (check basin treatment) where the soil is comparatively drier, the higher soil water status in the root zone in T1 and T2 treatments restricts the mobility of NO3 ions to the 20-30 and 30-50 cm layers. These results confirm to the observations of Dalbro and Dorph-Peterson (1976) and Haynes (1990), who have reported that solute penetration is more in an initially dry soil compared to an initially moist soil. Ghuman and Prihar (1980) who reported salt movement under different soil texture also supported these observations.In T1 and T2, the amount of fertilizer applied was identical but as a result of higher amount of water applied in T3, a significant amount of fertilizer was leached down which was reflected in the relatively lesser amounts of NH4-N and NO3-N being retained in the profile. The soil profile was relatively drier in T3 compared to other treatments and this resulted in the conversion of NH4-N to NO3-N the latter being mobile was leached down.It is often reported that nitrate ion being mobile has a tendency to more away from the emitter to the periphery of the water front (Dalbro and Dorph-Peterson, 1976) and not be available to the plant. The distribution of NO3-N in the soil profile has shown that it neither accumulates at the periphery of the wetting zone nor is leached out from the root zone under drip systems. The design of the drip irrigation system coupled with the discharge rate can, therefore, optimize both water and fertilizer use by a crop.Potassium (K) movement and distributionPotassium movement, its horizontal and vertical distribution at harvest in various treatments has been presented in Figure 2. Under the fertigation treatment T1, the distribution of Potassium varied both vertically and horizontally from the emitting point. Before first fertigation (7 DAS) itself the initial Potassium concentration indicated the decreasing trend with respect to the depth. However, before first fertigation the Potassium concentration was found to be fairly uniform with respect to horizontal distance from the emitter. After each fertigation, the similar trend was observed. Thus, in general, the potassium content was found to decrease irrespective of before or after fertigation with depth under all the fertigation treatments (Figure 2). In general, higher concentration of Potassium was found in the upper layers of the soil i.e. at 0-25 cm soil depth and lower concentration of potassium was found in the lower layers of the soil i.e. 25-40 cm soil depth. However, the peak quantity of Potassium under fertigation treatments was always found to be in the soil depth of 0-10 cm at the emitter, 10 cm and 22.5 cm from the emitter irrespective of before or after fertigation.It can also be observed that at the emitter, higher quantity was deposited in the upper layers (0-25 cm depth of soil). But at 10 cm and 22.5 cm distance from the emitter slight decrease in the quantity of Potassium was observed in the upper layers (0-25 cm depth) of the soil. Thus, as the distance from the emitter increased the Potassium quantity was found to decrease. However, the Potassium at lower depths (25-40 cm) remained almost similar and equal to the initial Potassium concentration irrespective of the distance from or at the emitter.K distribution pattern under T2 treatment indicated lower concentration of Potassium in the 0-20 and 30-40 cm depth of soil and higher concentration in the middle layers of soil (i.e. 20-30cm) irrespective of the distance from the emitter. This can be explained in the light of the fact that regular application of irrigation water has taken down the soluble Potassium to the middle layers from the upper layers. However, there was not much difference of Potassium content between that present at emitter and 10 cm from the emitter. As the distance from the emitter increased to 22.5 cm, higher level of Potassium concentration was noticed. This may be due to the depletion of the available Potassium by the plants at the emitter and 10 cm from emitter more than that at 22.5 cm from the plant.The resultant Potassium distribution profiles under T2 treatment indicated lower concentration of Potassium in the 0-20 cm depth and higher concentration in the lower layers of soil i.e. 20-40 cm soil depth irrespective of the distance from the emitter. However, the Potassium content was found to be lower near the plant compared to that present at 10 cm and 22.5 cm from the plant in the upper layers of the soil i.e. in the soil depth range of 0-20 cm. Within the depth range of 0-20 cm, the Potassium content was found to decrease with respect to depth where as that in the depth range of 20-40 cm was found to be fairly uniform with respect to depth (Figure 2). The presence of higher amount of Potassium beyond the crop root zone is not useful to crop and probably lead to more leaching loss of Potassium as a result of flood irrigation by way of furrow irrigation which ultimately resulted into lower yield under T3 treatment compared to other treatments of the present study.Figure2Distribution of potassium in soil under different treatments I: 31 days after sowing; II: at harvest; a, b, c refer to sampling points near the plant, 10 cmand 22.5 cm away from the plants, respectively T1: fertigation; T2: griipirrigation with soil application of fertilizer; and T3: furrow irrigation.Yield and water use efficiencyYields obtained in the various treatments along with the water use efficiency have been presented in Table 1. Fertigation has resulted in higher yields indicating that it is one technology that can enhance both the nutrient and water use efficiency.Table1Yield and water use of broccoli and radish in various treatments.Broccoli RadishTreatmentsYieldkg ha-1WaterappliedmmWater useefficiencykg ha-1 mmYieldkg ha-1WaterappliedmmWater useefficiencykg ha-1 mmT14301217 18.7015200 205 74.15T22343217 10.8711200 205 54.63T31997306 6.5010300 310 33.23ConclusionsThe findings of the foregoing experiments have clearly established that fertigation is definitely advantageous over drip irrigation with soil application of fertilizer and check basin irrigation with broadcast application of fertilizer. Fertigation is, therefore, a technique which economises in water and fertilizer application and increases their use efficiency.ReferencesBafna, AM, S.Y. Daftardar, K.K. Khade, P.V. Patel and R.S. Dhotre. 1993. Utilization of nitrogen and water by tomato under drip irrigation system. J. Water Management 1(1):1-5.Bar-Yosef and B. Saglv. 1985. Potassium supply to the field crops grown under drip irrigation and fertigation, pp. 185-188. In Proceedings, K Symposium, International Potash Research Institute, Praetorian.。