经过圆心O作弦AB的垂线OD,D为垂足,与 AB 相交于点C.根
据由垂题径设定得理A ,D是 B A7 .B2 的,C 中点 D ,2 C.是4 ,H AB 的 中N 1 点M ,CD 就1 N 是.5 .拱高.
AD 1 AB 17.2 3.6,
2
2
2
O D O CD CR2.4.
在Rt△OAD中,由勾股定理,得
F
OE CD, D CF 1 CD 1 600 300(m).
的三角形 的特点.
O
2
2
根据勾股定理,得 OC 2 CF 2 OF 2 ,即
R2 3002 R 902.
解这个方程,得R 545. 这段弯路的半径约为545m.
随堂练习 3
赵州石拱桥
驶向胜利 的彼岸
• 1.1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥 拱是圆弧形,它的跨度(弧所对是弦的长)为 37.4 m,拱高 (弧的中点到弦的距离,也叫弓形高)为7.2m,求桥拱的半 径(精确到0.1m).
• 2 . 如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶 高出水面2.4米.现有一艘宽3米、船舱顶部为长方形并 高出水面2米的货船要经过这里,此货船能顺利通过这 座拱桥吗?
• 相信自己能独立 完成解答.
做一船做 能6过拱桥吗
驶向胜利 的彼岸
• 解:如图,用 AB 表示桥拱,AB 所在圆的圆心为O,半径为Rm,
A
60D0
B
O ø650
C
随堂练习 10
挑战自我
驶向胜利 的彼岸
• 1、要把实际问题转变成一个数学问题来解决.
• 2、熟练地运用定理及其推论、勾股定理,并用方 程的思想来解决问题.