东南大学_数学建模试卷_09-10-3A(含答案)
- 格式:doc
- 大小:185.58 KB
- 文档页数:7
09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
精品文档10分)叙述数学建模的基本步骤,并简要说明每一步的基本要求。
1.(模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息。
(1)模型假设:为了利用数学方法,通常要对问题做出必要的、合理的假设,使问题的(2) 主要特征凸现出来,忽略问题的次要方面。
模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系,把问题(3) 化为数学问题,注意要尽量采用简单的数学工具。
此时往往还要作出利用已知的数学方法来求解上一步所得到的数学问题,4)模型求解:进一步的简化或假设。
特别要注意当数据变化时所得结果是否稳定。
(5)模型分析:对所得到的解答进行分析,模型检验:分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如(6) 果不够理想,应该修改、补充假设,或重新建模,不断完善。
模型应用:所建立的模型必须在实际应用中才能产生效益,在应用中不断改进和完(7) 善。
分)试建立不允许缺货的生产销售存贮模型。
.(102kk?r r,销售速率为常数。
设生产速率为常数,T?0?tT内,开始一段时间(在每个生产周期)0T?T?t边生产边销售,后一段时间()只销售不0)q(t生产,存贮量的变化如图所示。
设每次生产开工cc,以总费用最小为准则确定最优周,每件产品单位时间的存贮费为费为21kkr?r??T和期的情况。
,并讨论k2cTr)cr(k?c*1=T21?)?c(T)?rcr(k )(cT k2T达到最小的最优周期使单位时间总费用。
,22c*1=Tcr*k??kr?r??T,因为产量,相当于不考虑生产的情况;当时,当时,2被售量抵消,无法形成贮存量。
x(t)t的人口,.(10分)设表示时刻3试解释阻滞增长(Logistic)模型xdx??r(1?)x?xdt?m?x(0)?x?0中涉及的所有变量、参数,并用尽可能简洁的语言表述清楚该模型的建模思想。
t——时刻;x(t)t时刻的人口数量;——r——人口的固有增长率;x——自然资源和环境条件所能容纳的最大人口数量;m x——初始时刻的人口数量0人口增长到一定数量后,增长率下降的原因:资源、环境等因素对人口增长的阻滞作用。
东南大学考试试题及答案一、选择题(每题2分,共10分)1. 东南大学位于我国的哪个省份?A. 江苏B. 浙江C. 安徽D. 福建答案:A2. 下列哪项不是东南大学的主要学科领域?A. 工程学B. 医学C. 法学D. 管理学答案:C3. 东南大学的校训是什么?A. 厚德博学B. 求是创新C. 明德至善D. 笃学尚行答案:B4. 东南大学成立于哪一年?A. 1902年B. 1903年C. 1904年D. 1905年答案:A5. 东南大学校园内著名的历史建筑是?A. 鼓楼B. 钟楼C. 明孝陵D. 紫金山天文台答案:B二、填空题(每空1分,共10分)1. 东南大学是中国教育部直属的全国重点大学,也是“211工程”和“985工程”重点建设的高校之一。
2. 东南大学的主要校区位于江苏省南京市的_______区。
3. 东南大学在国内外享有良好的学术声誉,其_______学科在国内外具有较高的影响力。
4. 东南大学的校徽以_______颜色为主,象征着学校的学术精神和历史传统。
5. 东南大学注重培养学生的_______能力和_______能力,以适应社会的发展需求。
三、简答题(每题10分,共20分)1. 简述东南大学的发展历程。
答案:东南大学起源于1902年创建的三江师范学堂,后经过多次更名和发展,于2000年由原东南大学、南京铁道医学院、南京交通高等专科学校合并组建成新的东南大学。
学校秉承“止于至善”的校训,致力于培养高素质人才,推动科学研究和社会服务。
2. 东南大学在国际交流与合作方面有哪些举措?答案:东南大学积极开展国际交流与合作,与世界各地的多所高校建立了合作关系,包括学生交换项目、联合研究项目和国际学术会议等。
此外,学校还设立了多个国际合作研究中心,以促进学术研究和人才培养的国际化进程。
四、论述题(每题20分,共40分)1. 论述东南大学在科技创新方面的主要成就。
答案:东南大学在科技创新方面取得了显著成就。
目录前言................................................................................................. 错误!未定义书签。
目录........................................................................................................................... - 0 - 一、什么是数学模型............................................................................................... - 3 -2001年B题……公交车调度......................................................................... - 4 - 2001年C题……基金使用计划..................................................................... - 9 - 2002年A题……车灯线光源的优化设计................................................... - 10 - 2002年B题……彩票中的数学................................................................... - 11 - 2003年A题……SARS的传播.................................................................... - 15 - 2003年B题……露天矿生产的车辆安排................................................... - 26 - 2003年D题……抢渡长江........................................................................... - 29 - 2004年C题……饮酒驾车........................................................................... - 32 - 2004年B题……电力市场的输电阻塞管理............................................... - 34 - 电力市场交易规则:............................................................................. - 35 -输电阻塞管理原则:............................................................................. - 36 -表1各机组出力方案(单位:兆瓦,记作MW) ............................ - 39 -表2各线路的潮流值(各方案与表1相对应,单位:MW) ......... - 41 -表3各机组的段容量(单位:MW) ................................................. - 42 -表4各机组的段价(单位:元/兆瓦小时,记作元/MWh)............. - 42 -表5各机组的爬坡速率(单位:MW/分钟) .................................... - 43 -表6各线路的潮流限值(单位:MW)和相对安全裕度 ................. - 43 -2008年B题……高等教育学费标准探讨................................................... - 43 - 2008年D题……NBA赛程的分析与评价 ................................................. - 45 - 2009年A题……制动器试验台的控制方法分析....................................... - 47 - 2009年B题……眼科病床的合理安排....................................................... - 50 - 【附录】2008-07-13到2008-09-11的病人信息 ................................ - 51 - 2009年D题……会议筹备........................................................................... - 77 - 附表1……10家备选宾馆的有关数据................................................. - 78 -附表2……本届会议的代表回执中有关住房要求的信息(单位:人)- 79 -附表3……以往几届会议代表回执和与会情况.................................. - 80 -附图(其中500等数字是两宾馆间距,单位为米)......................... - 81 -二、为什么要学习数学模型................................................................................. - 83 -1、数学模型无处不在,我们的生活、工作、学习都离不开它............... - 83 -例1买房贷款问题................................................................................. - 83 -例2物体冷却过程的数学模型............................................................. - 84 -2、是学好数学用好数学的必经之路........................................................... - 86 -3、是数学教学改革的重要手段和有效路径............................................... - 88 -4、数学建模竞赛所提唱的团队精神是现代大学生必须具备素质........... - 91 -5、数学建模竞赛鼓励学生用跳跃式的、发散式的形象思维方法,这有利于培养学生的创新意识。
共 8 页 第 1 页东 南 大 学 考 试 卷(A 卷)课程名称高等数学A 期末考试学期 09-10-3得分适用专业 选修高数A 的各专业 考试形式 闭卷 考试时间长度 150分钟一.填空题(本题共9小题,每小题4分,满分36分) 1. 将22222d ()d x y f x y z z -++⎰⎰(其中()f t 为连续函数)写成球面坐标系下的三次积分 ;2. 球面22230x y z x ++-=在点(1,1,1)处的切平面方程为 ;3. 设1,0()2,0x f x x x ππ-<≤⎧=⎨<≤⎩,且以2π为周期,()S x 为()f x 的Fourier 级数的和函数,则(3)S π= ,(2)S π-= ;4. 已知3222(cos )d (1sin 3)d axy y x x by x x y y -+++为某个二元函数(,)f x y 的全微分,则____,____a b ==;5. 设C 为圆周2z =,取逆时针方向,则1d (i)(4)C z zz =+-⎰ ;6. 留数ln(12)Res ,01cos z z +⎡⎤=⎢⎥-⎣⎦;7. 设{,,},x y z r ===r r div(e )r =r ;8.设∑是锥面1)z z =≤≤下侧,则3d d 2d d (1)d d x y z y z x z x y ∑∧+∧+-∧=⎰⎰ ;9. 设()(,)d d x y tF t f x y x y +≤=⎰⎰,其中2,0(,)0,x y x x f xy ⎧≥≥=⎨⎩且其它,则(2)F = . 二. 计算下列各题(本题共4小题,每小题7分,满分28分)共 8 页 第 2 页10.设 (,)z z x y =是由方程e e e z y xz x y =+所确定的隐函数,求,z z x y∂∂∂∂. 11.计算22222d ed d d yy x y x y x y x ----+⎰⎰⎰.12.判断级数111(1)!179n n n n n-∞-=-⎛⎫⎪⎝⎭∑的敛散性.13. 求幂级数ln 12n nn x n∞=∑的收敛域. (注:级数若在收敛区间的端点处收敛,须说明是绝对收敛还是条件收敛.)共 8 页 第 3 页三(14).(本题满分7分)设1,022()0,2x f x x πππ⎧≤<⎪⎪=⎨⎪≤<⎪⎩在[0,]π上展开成正弦级数,并写出它的和函数.四(15)。
东 南 大 学 考 试 卷(A 卷)课程名称 数学建模与数学实验 考试学期09-10-3得分适用专业 理工各专业考试形式 开卷闭卷半开卷 考试时间长度 120分钟(可带计算器)注:以下各题只需计算到小数点后两位。
一 填空与选择(每题3分,共30分) 1 已知113,(mod19)02A A -⎡⎤==⎢⎥⎣⎦则 。
2 已知一组(1,1),(2,1),(3,2)-观测数据,则其分段线性插值多项式为 。
3 根据一组等距节点的观测数据分析知其2阶差分波动最小,则其最合适的拟合多项式阶数是 。
4 已知微分方程'()0.005(1/10000)(0)2000x t x x x =-⎧⎨=⎩,则其变化率最大时间为 。
5考虑V olterra 模型'0.050.001'0.10.0001x x xyy x xy=-⎧⎨=-+⎩, 则,x y 的周期平均值为x y ⎛⎫⎪ ⎪⎝⎭= 6 已知非线性差分方程 21(2)n n n x bx x +=-的正平衡点稳定 (b>0),则参数b 的取值范围为 。
7 记123()((),(),())a k a k a k a k =考虑马氏链0.40.30.3(1)()0.40.40.2(0)(0.3.0.4.0.3)0.30.20.5a k a k a ⎡⎤⎢⎥+==⎢⎥⎢⎥⎣⎦,,其正平衡点为 。
自觉 遵 守 考 场 纪 律 如 考 试 作 弊 此 答 卷 无 效8 轮渡船上甲板总面积为A 。
它能运载小轿车,每辆小轿车所占甲板面积为C ,能运载卡车,每辆卡车所占甲板面积为 L 。
每辆小轿车要付渡船费p 元;每辆卡车要付q 元。
调度想知道在渡船上运载多少辆小轿车(x) 和多少辆卡车(y)才能获取最大的利润? 下列哪一个选项给出利润函数及需满足的约束条件? ( )A. yq xp +,满足 A xL yC ≤+B. yq xp +,满足 A yL xC ≤+C. ))((q p y x ++, 满足A yL xC ≤+D. ))((q p y x ++ ,满足A L C y x ≤++))((9 下面哪一个选项最接近小轿车从静止开始起步的的速度变化模型? ( )A t e --1B 2)1(t -C2t t - D 1t e -+10 模型检验是建模过程中的必要步骤,以下哪一个选项不是常见的模型检验过程。
东南大学高等数学期末考试试卷(含答案) 一、高等数学选择题
1.不定积分.
A、
B、
C、
D、
【答案】A
2.设函数,则.
A、正确
B、不正确
【答案】B
二、二选择题
3.设函数,则().
A、
B、
C、
D、
【答案】C
4.函数在点处连续.
A、正确
B、不正确
【答案】A
5.设函数,则().
A、
B、
C、
D、
【答案】A
6.函数的图形如图示,则是函数的
( ).
A、极小值点也是最小值点
B、极小值点但非最小值点
C、最大值点
D、极大值点
【答案】A
7.函数的单调减少区间是().A、
B、
C、
D、
【答案】D
8.微分方程的通解是().A、
B、
C、
D、
【答案】A
一、一选择题
9.().
A、
B、
C、
D、
【答案】B
10.设函数,则().
A、
B、
C、
D、
【答案】D
11.曲线在点处切线的方程为().A、
B、
C、
D、
【答案】D
12.是偶函数.
A、正确
B、不正确
【答案】A
13.().
A、
B、
C、
D、
【答案】C
14.定积分.
A、正确
B、不正确
【答案】A
15..
A、正确
B、不正确
【答案】B。
共4页 第1页东 南 大 学 考 试 卷(A 卷)课程名称 数学模型与数学实验考试学期 03-04-3 得分 适用专业 数学各专业考试形式 闭 考试时间长度 120分钟一. (15`)在计时工资制体系下,雇主与雇员的付薪方式是按计时工资率付薪.如果雇主要增加雇员的工作时间,他有两种方式:第一种方式是提高计时工资率,在协议线的另一点(22,w t )达成协议,另一种方式是在21t t t <=先达成协议,对工时12t t -付给更高的计时工资.试用图示法分析哪种方式对雇主更有利? 二. (15`) 速度为v 的风吹在迎风面积为s 的风车上,空气密度为ρ,用 量纲分析法确定风车获得的功率p 与v ,s ,ρ的关系。
共4页 第2页三. (20`)(1) n 个队在同一个场地进行单循环赛,证明最优方案中,两场比赛的间隔场次数的最小值为[23-n ]. (2) 对7=n ,8分别给出一个满足(1)的方案.四.(25`)(1)养老保险是与人们生活密切相关的一种保险类型。
通常保险公司会提供多种方式的养老金计划让投保人选择,在计划中详细列出保险费和养老金的数额。
某保险公司的一份材料指出:在每月交费200元至60岁开始领取养老金的约定下,男子若25岁起投保,届时月养老金2282元;估算所交保险费获得的利率。
(2) 假如保险公司请你帮他们设计一个险种:35岁起保,月利率为0.0046,60岁开始领取养老金,届时投保人养老金为多少为最宜?共4页第3页共4页 第4页 五.(25`)在传染病的SIR 模型中,用)(),(),(t r t i t s 分别表示健康者、病人和病愈免疫的移出者的比例。
其模型方程为)0,(0)0(,0)0(00>⎪⎪⎪⎩⎪⎪⎪⎨⎧>=>=-=-=μλλμλs s i i si dt ds i si dt di (1)证明 0)(lim =+∞>-t i t (2)证明)(lim t s t +∞>-存在且大于零。
东南大学考试卷(A卷)姓名学号班级课程名称数学建模与实验考试学期 09-10-2 得分适用专业各专业考试形式闭卷考试时间长度120分钟共10页第6页共10页 第6页一.填空题:(每题2分,共10分)1. 阻滞增长模型0.5(10.001)(0)100dx x x dtx ⎧=-⎪⎨⎪=⎩的解为 。
2. 用Matlab 做常微分方程数学实验,常用的命令有 。
3. 整数m 关于模12可逆的充要条件是: 。
4. 根据Malthus 模型,如果自然增长率为2%,则人口数量增长为初值3倍所需时间为(假设初值为正) 。
5. 请补充判断矩阵缺失的元素13192A ⎛⎫⎪=⎪ ⎪⎝⎭。
二.选择题:(每题2分,共10分)1. 在下列Leslie 矩阵中,不能保证模最大特征值唯一的是 ( )A. 0230.20000.40⎛⎫ ⎪⎪ ⎪⎝⎭; B.1.1 1.230.20000.40⎛⎫⎪ ⎪ ⎪⎝⎭; C. 0030.20000.40⎛⎫ ⎪ ⎪ ⎪⎝⎭; D.以上都不对 2. 判断矩阵能通过一致性检验的标准是 ( )A. 0.1CR <B. 0.1CI <C. 0.1CR >D.0.01CR <3. 模28倒数表中可能出现的数是 ( ) A. 12 B.5 C.14 D.74. 线性最小二乘法得到的函数不可能为 ( )A.线性函数B. 对数函数C. 样条函数D. 指数函数5. 关于泛函极值问题,下面的描述正确的有 ( )A.泛函()J x 在x *处取极值的充要条件是泛函变分()0J x δ*=;B. 泛函()J x 在x *处取极值的充分条件是泛函变分()0J x δ*=;C. 泛函()J x 在x *处取极值的必要条件是泛函变分()0J x δ*=;D. A,B,C 均正确三.判断题(每题2分,共10分)1. Hill 密码体系中,任意一个可逆矩阵都可以作为加密矩阵。
( )2. 拟合函数不要求通过样本数据点。
共10页 第1页东 南 大 学 考 试 卷(A 卷)姓名 学号 班级课程名称 数学建模与实验 考试学期 09-10-2得分适用专业 各专业考试形式闭卷考试时间长度 120分钟一.填空题:(每题2分,共10分)1. 阻滞增长模型0.5(10.001)(0)100dx x x dtx ⎧=-⎪⎨⎪=⎩的解为 。
2. 用Matlab 做常微分方程数学实验,常用的命令有 。
3. 整数m 关于模12可逆的充要条件是: 。
4. 根据Malthus 模型,如果自然增长率为2%,则人口数量增长为初值3倍所需时间为(假设初值为正) 。
5. 请补充判断矩阵缺失的元素13192A ⎛⎫⎪=⎪ ⎪⎝⎭。
二.选择题:(每题2分,共10分)1. 在下列Leslie 矩阵中,不能保证模最大特征值唯一的是 ( )A. 0230.20000.40⎛⎫ ⎪⎪ ⎪⎝⎭; B.1.1 1.230.20000.40⎛⎫⎪ ⎪ ⎪⎝⎭; C. 0030.20000.40⎛⎫ ⎪ ⎪ ⎪⎝⎭; D.以上都不对 2. 判断矩阵能通过一致性检验的标准是 ( )A. 0.1CR <B. 0.1CI <C. 0.1CR >D.0.01CR <3. 模28倒数表中可能出现的数是 ( ) A. 12 B.5 C.14 D.74. 线性最小二乘法得到的函数不可能为 ( )A.线性函数B. 对数函数C. 样条函数D. 指数函数5. 关于泛函极值问题,下面的描述正确的有 ( )A.泛函()J x 在x *处取极值的充要条件是泛函变分()0J x δ*=;B. 泛函()J x 在x *处取极值的充分条件是泛函变分()0J x δ*=;C. 泛函()J x 在x *处取极值的必要条件是泛函变分()0J x δ*=;D. A,B,C均正确三.判断题(每题2分,共10分)1. Hill密码体系中,任意一个可逆矩阵都可以作为加密矩阵。
()2. 拟合函数不要求通过样本数据点。
2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。
二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。
(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。
(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。
2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。
随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。
后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。
谁料,DDT 同样杀死澳洲瓢虫。
结果,介壳虫增加起来,澳洲瓢虫反倒减少了。
试建立数学模型解释这个现象。
3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。
03~10级高等数学(A )(上册)期末试卷2003级高等数学(A )(上)期末试卷一、单项选择题(每小题4分,共16分) 1.设函数()y y x =由方程⎰+-=yx t x dt e 12确定,则==0x dxdy( ).e 2(D) ; 1-e (C) ; e -1(B) ;1)(+e A2.曲线41ln 2+-+=x xx y 的渐近线的条数为( ) . 0 (D) ; 3 (C) ; 2 (B) ; 1 )(A3.设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示, 则导函数)(x f y '=的图形为( )4.微分方程x y y 2cos 34=+''的特解形式为( ).2sin y )( ;2sin 2cos y )(;2cos y )( ;2cos y )( ****x A D x Bx x Ax C x Ax B x A A =+===二、填空题(每小题3分,共18分)1._____________________)(lim 21=-→x xx x e2.若)(cos 21arctanx f e x y +=,其中f 可导,则_______________=dxdy3.设,0,00,1sin )(⎪⎩⎪⎨⎧=≠=αx x xx x f 若导函数)(x f '在0=x 处连续,则α的取值范围是__________。
4.若dt t t x f x ⎰+-=2324)(,则)(x f 的单增区间为__________,单减区间为__________. 5.曲线xxey -=的拐点是__________6.微分方程044='+''+'''y y y 的通解为__________________________=y 三、计算下列各题(每小题6分,共36分)1.计算积分dx x x⎰+232)1(arctan 2.计算积分dx xxx ⎰5cos sin3. 计算积分dx e x x ⎰-2324. 计算积分⎰π+0cos 2xdx5.设)(x f 连续,在0=x 处可导,且4)0(,0)0(='=f f ,求xx dtdu u f t xtx sin ))((lim 3⎰⎰→6.求微分方程0)2(222=+-dx y x xydy 的通解四.(8分)求微分方程xxe y y y 223-=+'-''满足条件0,000='===x x y y 的特解五.(8分)设平面图形D 由x y x 222≤+与x y ≥所确定,试求D 绕直线2=x 旋转一周所生成的旋转体的体积。
第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。
(2)2.1节中的Q值方法。
(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额。
将3种方法两次分配的结果列表比较。
(4)你能提出其他的方法吗。
用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。
比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。
试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。
解释实际意义是什么。
3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。
若知道管道长度,需用多长布条(可考虑两端的影响)。
如果管道是其他形状呢。
5. 用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。
数学建模与数学实验课程练习练习集锦1简述数学建模的一般过程及建模过程中需要注意的问题。
2 简述数学模型及数学建模的特点。
3 简述数学建模的常用分类方法。
4求方程 06/12625.05.04)(=------=xx x x f 的模最大的根的近似值(精确到小数点后两位)。
(3.91)5在抢渡长江模型中,如果水流速度 1.8/v m s =为常数,人的游泳速度1.5/u m s =为常数,江面宽度为1200H m =,终点位置在起点下游1000L m =处的条件,确定游泳者的最佳游泳路径及最短游泳时间。
(T=901.05s)6沿江的某一侧区域将建两个水厂,在江边建一个取水口。
现需要设计最优的管线铺设方案,通过管线从取水口向水厂送水。
水厂与江岸的位置见右图。
如果不用共用管线,城区单位建设费用是郊区的2倍。
(1) 对于最优方案,用α表示,βγ。
(2) 求最优取水口位置(x 取整数)。
(X=4)7在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵31/52a b P c d e f ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, (1)确定矩阵P 的未知元素。
(2)求P 模最大特征值。
(3.004)(3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.6)。
8在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵322P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,(1)将矩阵P 元素补全。
(2)求P 模最大特征值。
(3.73)(3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.6)。
9考虑下表数据(1)用曲改直的思想确定经验公式形式。
(2)用最小二乘法确定经验公式系数。
(x y 6.1*8.0=)10考虑微分方程(0.2)0.0001(0.4)0.00001dxx xy dtdy y xy dtεε⎧=--⎪⎪⎨⎪=-++⎪⎩(1)在像平面上解此微分方程组。
(2)计算0ε=时的周期平均值。
东 南 大 学 考 试 卷(A 卷)
课程名称 数学建模与数学实验 考试学期
09-10-3
得分
适用专业 理工各专业
考试形式 开卷闭卷半开卷 考试时间长度 120分钟
(可
带
计
算
器
)
题目 一 二 三 四 五 六 七 八 总分 得分 批阅人
注:以下各题只需计算到小数点后两位。
一 填空与选择(每题3分,共30分) 1 已知113,(mod19)02A A -⎡⎤
==⎢⎥⎣⎦
则 。
2 已知一组(1,1),(2,1),(3,2)-观测数据,则其分段线性插值多项式为 。
3 根据一组等距节点的观测数据分析知其2阶差分波动最小,则其最合适的拟合多项式阶数是 。
4 已知微分方程'()0.005(1/10000)(0)2000
x t x x x =-⎧⎨
=⎩,则其变化率最大时间为 。
5考虑V olterra 模型'0.050.001'0.10.0001x x xy
y x xy
=-⎧⎨
=-+⎩, 则,x y 的周期平均值为
x y ⎛⎫
⎪ ⎪⎝⎭
= 6 已知非线性差分方程 21(2)n n n x bx x +=-的正平衡点稳定 (b>0), 则参数b 的取值范围为 。
7 记123
()((),(),())a k a k a k a k =考虑马氏链
0.40.30.3(1)()0.40.40.2(0)(0.3.0.4.0.3)0.30.20.5a k a k a ⎡⎤
⎢⎥+==⎢⎥⎢⎥⎣⎦
,,其正平衡点为 。
自
觉 遵 守 考 场 纪 律 如 考 试 作 弊 此 答 卷 无 效
密
封
线
学号 姓名
8 轮渡船上甲板总面积为A 。
它能运载小轿车,每辆小轿车所占甲板面积为C ,能运载卡车,每辆卡车所占甲板面积为 L 。
每辆小轿车要付渡船费p 元;每辆卡车要付q 元。
调度想知道在渡船上运载多少辆小轿车(x) 和多少辆卡车(y)才能获取最大的利润? 下列哪一个选项给出利润函数及需满足的约束条件? ( )
A. yq xp
+,满足 A xL yC ≤+
B. yq xp +,满足 A yL xC ≤+
C. ))((q p y x ++, 满足A yL xC ≤+
D. ))((q p y x ++ ,满足A L C y x ≤++))((
9 下面哪一个选项最接近小轿车从静止开始起步的的速度变化模型? ( )
A t
e --1 B 2
)1(t -
C
2t t - D 1t e -+
10 模型检验是建模过程中的必要步骤,以下哪一个选项不是常见的模型检验过程。
( ) A 已知数据回代 B 分析参数变化对结果影响 C 与相关模型作对比分析 D 对未来趋势作预测 二 (10分) 假设某种物资有10个产地,5个销售地,第i 个产地产量为
i a ,第j 个销售地
的需求量为
j
b ,其中
105
1
1
i j
i j a b
==≥∑∑。
由产地i 到销售地j 的距离为
ij
d ,问如何安排运输,
才能既满足各地销售要求,又使运输总吨公里数(吨公里指运输量×路程)最少?请建立该问题的数学模型(不需求解,记产地i 到销售地j 的运输量为ij x )
三 (12分)已知三阶成对比较矩阵24A x ⎡⎤
⎢⎥=⎢⎥⎢⎥⎣⎦
(1)将矩阵A 的元素补齐 (2)如果A 是一致矩阵,?x =
(3)当5x =时,该矩阵一致性是否在可接受范围内?(3阶随机一致性指标为0.58)
四(12分)已知一组数据
x 1 3 5 7 9
y
3.66
5.47
8.15
12.17
18.15
(1) 已知bx y ae =,用最小二乘法估计,2a b 值(保留到小数点后位) (2) 估计15x y =时的值。
五(12分)假设存在某种药物,当其浓度不低于100毫克/升时,可以治疗疾病。
刚服药时药物的初始浓度为640毫克/升。
从实验中知道,该药物每小时有20%的衰减。
(1)建立该问题关于浓度变化的数学模型
(2)确定第一次服药后,什么时候药物浓度达到100毫克/升。
(3)假设持续有效治疗,则第二次服药后,需多长时间后药物浓度达到100毫克/升。
六 (12分)某公园开展自行车租赁业务,并在公园南北门口各设一个租赁点,经一段时间观察发现各租赁点自行车保有量满足 10010.4150(1)0.6n n n
n n n x ax y x y y a x y ++=+⎧
==⎨
=-+⎩,
(1)如果达到平衡状态时,0.8?x y a ==,则
(2)44?x y ⎛⎫
= ⎪⎝⎭
七(12分)某种群最大年龄为9岁,每3岁分为一个年龄组,每3年观测一次。
多次观测发现该种群已经稳定。
最近两次的统计数据为
幼年组 成年组 老年组 第一次 1000 800 500 第二次
1100
880
550
(1) 该种群1个时段增长率是多少?年龄结构如何?
(2) 3个年龄组1个时段的雌性生育率123,,b b b 满足怎样关系?并给出21322b b b ==时
生育率值。
东 南 大 学 考 试 卷(A 卷)答案
一 1. 18010⎡⎤
⎢⎥
⎣⎦
2. 32,1237,23x x y x x -≤≤⎧=⎨-≤≤⎩
3.2
4.400ln 2277.26=
5.100050⎛⎫ ⎪⎝⎭
,6. 0.5<b<1 7.(26,21,24)/71(0.366,0.296,0.338)= 8.B,9.A,10.D 二
105
1
1
5
10
1
1
min .,
ij
ij i j ij
i ij
j ij j i d
x s t
x
a x
b x ====≤≤≥∑∑∑∑,
,
(3+3+3+3+1)
三
3max 1
2
411/2
1,(2)2
1/4
1/1(3()(1)3(1) 2.90
3.09,0.08
A x x x
f RI λλλλ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦
=----===()) (3+3+3+2+1)
经分析矩阵A 在一致性可接受范围。
四
x 1 3 5 7 9 y 3.66 5.47 8.15 12.17 18.15 lny
1.298
1.699
2.098
2.499
2.899
2 (1)
11 1.29813 1.699,1
5 2.09817 2.49919 2.899A Y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪
⎪ ⎪⎝
⎭⎝⎭
2 ln 0.2,ln 1.098,3
T
T a A A A Y b b a a ⎛⎫
= ⎪⎝⎭
=== 2+2 (2) 60.26y =. 4
五 (1) 0.2'0.2()640(0)640
t c c c t e c -=-⎧=⎨
=⎩ 4
(2) 5ln 6.49.28()t h == (3) 5ln 7.410()t h == 4+4
六 (1)0.40.8(1)0.4
,10.60.5
x a
x a y a y a -=⎛⎫⎡⎤⎛⎫= ⎪ ⎪⎢
⎥-=⎝⎭⎣⎦⎝⎭
6
(2)4
440.50.41501330.50.6150167x y ⎛⎫⎡⎤⎛⎫⎡⎤== ⎪ ⎪⎢⎥⎢⎥⎣
⎦⎝⎭⎣⎦⎝⎭ 6 七 (1)1100/1000 1.1110%*[1,0.8,0.5]n λλ==-==,, 3+3
(2)231213122
112123()///1
/0.8,/0.5
0.80.5 1.1
q b b s b s s s s s b b b λλλλλλλ=++===++==1320.35,0.71b b b === 3+3。