平面向量数量积的坐标表示模夹角
- 格式:docx
- 大小:99.26 KB
- 文档页数:5
§2.4.2平面向量数量积的坐标表示、模、夹角【学习目标】1. 在坐标形式下,掌握平面向量数量积的运算公式及其变式(夹角公式);2. 理解模长公式与解析几何中两点之间距离公式的一致性. 【学习过程】 一、自主学习(一)知识链接:复习:1.向量a 与b 的数量积a b ⋅= .2.设a 、b 是非零向量,e 是与b 方向相同的单位向量,θ是a 与b的夹角,则①a b a b ⊥⇔⋅=;②a = ;③cos θ= . (二)自主探究:(预习教材P106—P108) 探究:平面向量数量积的坐标表示问题1:已知两个非零向量()()1122,,,a x y b x y ==,怎样用a 与b 的坐标表示a b ⋅ 呢?1. 平面向量数量积的坐标表示已知两个非零向量()()1122a=x y ,b=x y ,a b=⋅⋅⋅(坐标形式)。
这就是说:(文字语言)两个向量的数量积等于 。
问题2:如何求向量(),a x y =和两点()11,A x y ,()22,B x y 间的距离?2.平面内两点间的距离公式(1)设a=(x,y),则2a = ________________或a ________________。
(2)若()11,A x y ,()22,B x y ,=___________________(平面内两点间的距离公式)。
问题3:如何求()()1122,,,a x y b x y ==的夹角θ和判断两个向量垂直?3.两向量夹角的余弦:设θ是a 与b 的夹角,则cos θ=_________=_______________向量垂直的判定:设()()1122a=x ,y ,b=x ,y ,则⇔⊥b a _________________二、合作探究1、已知()()(),4,1,2,3,1,2-C B A(1)试判断ABC ∆的形状,并给出证明. (2)若ABDC 是矩形,求D 点的坐标。
2、已知()()1,3,3,1==,求a 与b的夹角θ.变式:已知a=(3,0),b=(k,5)a b 且与的夹角为3,k=4π则______________.三、交流展示1、若()4,3a =- ,()5,6b = ,则234a a b -⋅=2、已知()3,2a =-- ,()4,b k =- ,若()()5355a b b a -⋅-=-,试求k 的值.3、已知,(1,2),(3,2)a b ==-,当k 为何值时, (1)3ka b a b +-与垂直?(2)3ka b a b +- 与平行吗?它们是同向还是反向?四、达标检测(A 组必做,B 组选做)A 组:1. 已知()3,4a =- ,()5,2b =,则a b ⋅ 等于( ) A.23 B.7 C.23- D.7-2. 若()3,4a =- ,()5,12b =,则a 与b 夹角的余弦为( )A.6365 B.3365 C.3365- D.6365- 3. ()2,3a = ,()2,4b =-,则()()a b a b +⋅- = ,4.已知向量()1,2OA =- ,()3,OB m =,若OA AB ⊥ ,则m = 。
平面向量数量积的坐标表示与模夹角教案章节一:平面向量数量积的定义1.1 向量的概念回顾:向量是有大小和方向的量。
1.2 数量积的定义:两个向量a和b的数量积,记作a·b,是它们的模长的乘积与它们夹角的余弦值的乘积。
1.3 数量积的坐标表示:如果向量a和b在坐标系中表示为a=(x1,y1)和b=(x2,y2),则它们的数量积可以表示为a·b=x1x2+y1y2。
教案章节二:数量积的性质2.1 数量积的不变性:无论向量的起点如何,向量的数量积保持不变。
2.2 数量积的对称性:向量a和b的数量积等于向量b和a的数量积,即a·b=b·a。
2.3 数量积的交换律:向量a和b的数量积等于它们的相反向量的数量积,即a·b=-b·a。
教案章节三:模长的计算3.1 向量模长的定义:向量a的模长,记作|a|,是向量a的大小,计算公式为|a|=sqrt(x1^2+y1^2)。
3.2 利用数量积计算模长:向量a的模长可以表示为|a|=sqrt(a·a)。
教案章节四:夹角的余弦值4.1 向量夹角的定义:两个非零向量a和b的夹角,记作θ,是它们的数量积与它们的模长的乘积的比值的的反余弦值。
4.2 余弦值的计算公式:cosθ=(a·b)/(|a||b|)。
教案章节五:向量夹角的范围与性质5.1 向量夹角的范围:向量夹角θ的范围是0°≤θ≤180°。
5.2 向量夹角的性质:当向量a和b同向时,它们的夹角为0°,数量积为正值;当向量a和b反向时,它们的夹角为180°,数量积为负值;当向量a和b垂直时,它们的夹角为90°,数量积为0。
教案章节六:数量积的应用6.1 投影向量:向量a在向量b方向上的投影向量可以表示为proj_ba = (a·b/b·b) b。
6.2 向量间的距离:两个向量a和b之间的距离可以表示为|a b| = sqrt((a b)·(a b))。
宁晋中学“五为”教学高三数学教学提纲
编号:SXTG -
5.3.2 平面向量数量积的坐标表示, 模, 夹角编写:毕朋飞 审核:齐立芳 使用时间: 月 日 班级:______________ 姓名:
______________
[学习目标]
会用坐标形式表示向量的数量积, 模, 夹角
[重点难点]
重点: 理会用坐标形式表示向量的数量积, 模, 夹角; 难点: 利用坐标形式进行向量数量积, 模, 夹角的综合运算
[导学流程]
一、自学互学
1. 向量数量积的坐标表示: 已知两个向量 则_______.
2. 设两个非零向量 则_______.
3. (1) 向量模长公式: 若 则_______.(2) 两点间距离公式: 若 则_______.(3) 向量的夹角公式: 设两个非零向量 设与的夹角为 则_______.
二、深入学习
4. 已知 求 以及的夹角
5. 已知 求
三、迁移学习
6. 已知 试判断的形状, 并给出你的证明.a =(x 1,y 1),b =(x 2,y 2),a ⋅b =a =(x 1,y 1),b =(x 2,y 2),a ⊥b ⇔a =(x ,y ),|a |=A (x 1,y 1),B (x 2,y 2),∣∣∣−−→AB ∣∣∣
=a =(x 1,y 1),b =(x 2,y 2),a b θ,cos θ=a =(1,√3),b =(2,0),a ⋅b ,|a |,∣∣b ∣
∣,a ,b θ.a
=(2,3),b =(−2,4),c =(−1,−2),a ⋅b ,(a +b )⋅(a −b ),a ⋅(b +2c ).A (2,1),B (6,3),C (0,5),ΔABC。
2.4.2平面向量数量积的坐标表示、模、夹角学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.知识点一平面向量数量积的坐标表示设非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.知识点二平面向量模的坐标形式及两点间的距离公式知识点三平面向量夹角的坐标表示cos θ=a·b|a||b|=x1x2+y1y2x21+y21x22+y22.思考若两个非零向量的夹角满足cos θ<0,则两向量的夹角θ一定是钝角吗?答案不一定,当cos θ<0时,两向量的夹角θ可能是钝角,也可能是180°.1.若a=(x1,y1),b=(x2,y2),则a⊥b⇔x1y2-x2y1=0.(×)2.若两个非零向量的夹角θ满足cos θ>0,则两向量的夹角θ一定是锐角.(×)提示当两向量同向共线时,cos θ=1>0,但夹角θ=0,不是锐角.3.两个非零向量a=(x1,y1),b=(x2,y2),满足x1y2-x2y1=0,则向量a与b的夹角为0°.(×)题型一数量积的坐标运算例1(1)已知a=(2,-1),b=(1,-1),则(a+2b)·(a-3b)等于()A.10 B.-10C.3 D.-3考点平面向量数量积的坐标表示与应用题点坐标形式下的数量积运算答案 B解析 a +2b =(4,-3),a -3b =(-1,2),所以(a +2b )·(a -3b )=4×(-1)+(-3)×2=-10. (2)如图所示,在矩形ABCD 中,AB =2,BC =2,点E 在边CD 上,且DE →=2EC →,则AE →·BE →的值是________.考点 平面向量数量积的坐标表示与应用 题点 坐标形式下的数量积运算 答案329解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =2,BC =2,∴A (0,0),B (2,0),C (2,2),D (0,2), ∵点E 在边CD 上,且DE →=2EC →,∴E ⎝⎛⎭⎫223,2.∴AE →=⎝⎛⎭⎫223,2,BE →=⎝⎛⎭⎫-23,2, ∴AE →·BE →=-49+4=329.反思感悟 数量积坐标运算的技巧(1)进行数量积运算时,要正确使用公式a·b =x 1x 2+y 1y 2,并能灵活运用以下几个关系: ①|a |2=a ·a .②(a +b )·(a -b )=|a |2-|b |2. ③(a +b )2=|a |2+2a ·b +|b |2.(2)在平面几何图形中求数量积,若几何图形规则易建系,可先建立坐标系,写出相关向量的坐标,再求数量积.跟踪训练1 向量a =(1,-1),b =(-1,2),则(2a +b )·a 等于( ) A .-1 B .0 C .1 D .2考点 平面向量数量积的坐标表示与应用 题点 坐标形式下的数量积运算 答案 C解析 因为a =(1,-1),b =(-1,2),所以2a +b =2(1,-1)+(-1,2)=(1,0),则(2a +b )·a =(1,0)·(1,-1)=1,故选C. 题型二 平面向量的模例2 已知平面向量a =(3,5),b =(-2,1). (1)求a -2b 及其模的大小; (2)若c =a -(a ·b )b ,求|c |.考点 平面向量模的坐标表示与应用 题点 利用坐标求向量的模 解 (1)∵a =(3,5),b =(-2,1),∴a -2b =(3,5)-2(-2,1)=(3+4,5-2)=(7,3), ∴|a -2b |=72+32=58.(2)∵a ·b =-6+5=-1, ∴c =a +b =(1,6), ∴|c |=12+62=37.反思感悟 求向量a =(x ,y )的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系要灵活应用公式a 2=|a|2=x 2+y 2,求模时,勿忘记开方. (2)a ·a =a 2=|a |2或|a |=a 2=x 2+y 2,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.跟踪训练2 已知向量a =(2,1),a·b =10,|a +b |=52,则|b |等于( ) A. 5 B.10 C .5 D .25 考点 平面向量模的坐标表示与应用 题点 利用坐标求向量的模 答案 C解析 ∵a =(2,1),∴a 2=5, 又|a +b |=52,∴(a +b )2=50, 即a 2+2a ·b +b 2=50,∴5+2×10+b 2=50,∴b 2=25,∴|b |=5.题型三 平面向量的夹角与垂直问题命题角度1 向量的夹角例3 已知点A (3,0),B (0,3),C (cos α,sin α),O (0,0),若|OA →+OC →|=13,α∈(0,π),则OB →,OC →的夹角为( ) A.π2 B.π4 C.π3 D.π6考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 答案 D解析 因为|OA →+OC →|2=(OA →+OC →)2=OA →2+2OA →·OC →+OC →2=9+6cos α+1=13, 所以cos α=12,因为α∈(0,π),所以α=π3,所以C ⎝⎛⎭⎫12,32,所以cos 〈OB →,OC →〉=OB →·OC →|OB →||OC →|=3×323×1=32,因为0≤〈OB →,OC →〉≤π,所以〈OB →,OC →〉=π6,所以OB →,OC →的夹角为π6,故选D.反思感悟 利用向量的数量积求两向量夹角的一般步骤 (1)利用向量的坐标求出这两个向量的数量积. (2)利用|a |=x 2+y 2求两向量的模.(3)代入夹角公式求cos θ,并根据θ的范围确定θ的值.跟踪训练3 已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求λ的取值范围. 考点 平面向量夹角的坐标表示与应用 题点 已知坐标形式下的向量夹角求参数 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1.又∵a ,b 的夹角α为钝角,∴⎩⎪⎨⎪⎧λ-1<0,2·1+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0.∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1). 命题角度2 向量的垂直例4 在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 考点 平面向量平行与垂直的坐标表示与应用 题点 已知向量垂直求参数 解 ∵AB →=(2,3),AC →=(1,k ), ∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0,∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k -3)=0,∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0, ∴k =3±132.故所求k 的值为-23或113或3±132.反思感悟 利用向量数量积的坐标表示解决垂直问题的实质是把垂直条件代数化,若在关于三角形的问题中,未明确哪个角是直角时,要分类讨论.跟踪训练4 已知a =(-3,2),b =(-1,0),若向量λa +b 与a -2b 垂直,则实数λ的值为( ) A.17 B .-17 C.16 D .-16考点 向量平行与垂直的坐标表示与应用 题点 已知向量垂直求参数 答案 B解析 由向量λa +b 与a -2b 垂直,得 (λa +b )·(a -2b )=0.因为a =(-3,2),b =(-1,0), 所以(-3λ-1,2λ)·(-1,2)=0, 即3λ+1+4λ=0,解得λ=-17.向量的坐标在解三角形中的应用典例 如图,已知△ABC 的面积为32,AB =2,AB →·BC →=1,求边AC 的长.解 以点A 为坐标原点,AB →为x 轴正方向建立平面直角坐标系,设点C 的坐标为(x ,y )(y >0), ∵AB =2,∴点B 的坐标是(2,0), ∴AB →=(2,0),BC →=(x -2,y ). ∵AB →·BC →=1,∴2(x -2)=1,解得x =52.又S △ABC =32,∴12·|AB |·y =32,∴y =32,∴C 点坐标为⎝⎛⎭⎫52,32,则AC →=⎝⎛⎭⎫52,32, ∴|AC →|=⎝⎛⎭⎫522+⎝⎛⎭⎫322=342, 故边AC 的长为342. [素养评析] 本题通过建立直角坐标系,从而建立形与数的联系.利用平面向量的坐标解决线段的长度问题,提升了学生数形结合的能力,培养了学生数学运算及直观想象的数学核心素养.1.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦值为( ) A.6365 B.65 C.135D.13 考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 答案 A 解析 |a |=32+42=5,|b |=52+122=13.a·b =3×5+4×12=63.设a ,b 夹角为θ,所以cos θ=635×13=6365.2.若向量a =(x ,2),b =(-1,3),a·b =3,则x 等于( ) A .3 B .-3 C.53 D .-53考点 平面向量数量积的坐标表示与应用题点 已知数量积求参数答案 A解析 a·b =-x +6=3,故x =3.3.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( )A .-4B .-3C .-2D .-1考点 平面向量平行与垂直的坐标表示与应用题点 已知向量垂直求参数答案 B解析 因为m +n =(2λ+3,3),m -n =(-1,-1),由(m +n )⊥(m -n ),可得(m +n )·(m -n )=(2λ+3,3)·(-1,-1)=-2λ-6=0,解得λ=-3.4.若平面向量a =(1,-2)与b 的夹角是180°,且|b |=35,则b 等于( )A .(-3,6)B .(3,-6)C .(6,-3)D .(-6,3)考点 平面向量数量积的坐标表示与应用题点 平面向量模与夹角的坐标表示的综合应用答案 A解析 由题意设b =λa =(λ,-2λ)(λ<0),则|b |=λ2+(-2λ)2=5|λ|=35,又λ<0,∴λ=-3,故b =(-3,6).5.已知三个点A (2,1),B (3,2),D (-1,4).求证:AB ⊥AD .证明 ∵A (2,1),B (3,2),D (-1,4),∴AB →=(1,1),AD →=(-3,3).又∵AB →·AD →=1×(-3)+1×3=0,∴AB →⊥AD →,即AB ⊥AD .6.已知a =(4,3),b =(-1,2).(1)求a 与b 的夹角的余弦值;(2)若(a -λb )⊥(2a +b ),求实数λ的值.考点 平面向量平行与垂直的坐标表示与应用题点 已知向量垂直求参数解 (1)∵a ·b =4×(-1)+3×2=2,|a |=42+32=5,|b |=(-1)2+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=255=2525. (2)∵a -λb =(4+λ,3-2λ),2a +b =(7,8),(a -λb )⊥(2a +b ),∴(a -λb )·(2a +b )=7(4+λ)+8(3-2λ)=0,∴λ=529.1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.3.注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若两非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,a ⊥b ⇔x 1x 2+y 1y 2=0.4.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”而忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.一、选择题1.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( )A.π6B.π4C.π3D.π2考点 平面向量夹角的坐标表示与应用题点 求坐标形式下的向量的夹角答案 B解析 ∵|a |=10,|b |=5,a ·b =5.∴cos 〈a ,b 〉=a ·b|a ||b |=510×5=22.又∵a ,b 的夹角范围为[0,π].∴a 与b 的夹角为π4.2.设向量a =(2,0),b =(1,1),则下列结论中正确的是( )A .|a |=|b |B .a·b =0C .a ∥bD .(a -b )⊥b考点 平面向量平行与垂直的坐标表示与应用题点 向量垂直的坐标表示的综合应用答案 D解析 a -b =(1,-1),所以(a -b )·b =1-1=0,所以(a -b )⊥b .3.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为() A. 3 B .3 C .- 3 D .-3考点 平面向量投影的坐标表示与应用题点 平面向量投影的坐标表示与应用答案 D解析 向量a 在b 方向上的投影为a·b |b|=-62=-3.故选D. 4.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( )A .1 B. 2 C .2 D .4考点 平面向量模与夹角的坐标表示与应用题点 利用坐标求向量的模答案 C解析 ∵(2a -b )·b =2a ·b -|b |2=2(-1+n 2)-(1+n 2)=n 2-3=0,∴n 2=3,∴|a |=12+n 2=2.5.若a =(2,-3),则与向量a 垂直的单位向量的坐标为() A .(3,2)B.⎝⎛⎭⎫31313,21313C.⎝⎛⎭⎫31313,21313或⎝⎛⎭⎫-31313,-21313D .以上都不对考点 平面向量平行与垂直的坐标表示与应用题点 向量垂直的坐标表示的综合应用答案 C解析 设与a 垂直单位向量的坐标为(x ,y ),∵(x ,y )是单位向量的坐标形式,∴x 2+y 2=1,即x 2+y 2=1,①又∵(x ,y )表示的向量垂直于a ,∴2x -3y =0,②由①②得⎩⎨⎧ x =31313,y =21313或⎩⎨⎧ x =-31313,y =-21313.6.已知a =(1,1),b =(0,-2),且k a -b 与a +b 的夹角为120°,则k 等于( )A .-1+ 3B .-2C .-1±3D .1考点 平面向量夹角的坐标表示与应用题点 已知坐标形式下的向量夹角求参数答案 C解析 ∵|k a -b |=k 2+(k +2)2, |a +b |=12+(-1)2=2,∴(k a -b )·(a +b )=(k ,k +2)·(1,-1)=k -k -2=-2,又k a -b 与a +b 的夹角为120°,∴cos 120°=(k a -b )·(a +b )|k a -b ||a +b |, 即-12=-22×k 2+(k +2)2,化简并整理,得k 2+2k -2=0,解得k =-1±3.7.已知OA →=(-2,1),OB →=(0,2)且AC →∥OB →,BC →⊥AB →,则点C 的坐标是( )A .(2,6)B .(-2,-6)C .(2,-6)D .(-2,6)考点 向量平行与垂直的坐标表示与应用题点 向量平行与垂直的坐标表示的综合应用答案 D解析 设C (x ,y ),则AC →=(x +2,y -1),BC →=(x ,y -2),AB →=(2,1),∵AC →∥OB →,∴2(x +2)=0,①∵BC →⊥AB →,∴2x +y -2=0,②由①②可得⎩⎪⎨⎪⎧x =-2,y =6,∴C (-2,6). 8.已知向量a =(1,1),b =(1,m ),其中m 为实数,则当a 与b 的夹角在⎝⎛⎭⎫0,π12内变动时,实数m 的取值范围是( )A .(0,1)B.⎝⎛⎭⎫33,3C.⎝⎛⎭⎫33,1∪(1,3) D .(1,3)考点 平面向量夹角的坐标表示与应用题点 已知坐标形式下的向量夹角求参数答案 C解析 如图,作OA →=a ,则A (1,1).作OB 1→,OB 2→,使∠AOB 1=∠AOB 2=π12, 则∠B 1Ox =π4-π12=π6, ∠B 2Ox =π4+π12=π3, 故B 1⎝⎛⎭⎫1,33,B 2(1,3). 又a 与b 的夹角不为0,故m ≠1.由图可知实数m 的取值范围是⎝⎛⎭⎫33,1∪(1,3). 二、填空题9.已知a =(3,3),b =(1,0),则(a -2b )·b =________.考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算答案 1解析 a -2b =(1,3),(a -2b )·b =1×1+3×0=1.10.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )b ,则|c |=________.考点 平面向量模的坐标表示与应用题点 利用坐标求向量的模答案 8 2解析 由题意可得a·b =2×1+4×(-2)=-6,∴c =a -(a ·b )b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+(-8)2=8 2.11.设m =(a ,b ),n =(c ,d ),规定两向量m ,n 之间的一个运算“⊗”为m ⊗n =(ac -bd ,ad +bc ),若已知p =(1,2),p ⊗q =(-4,-3),则q 的坐标为________.考点 平面向量数量积的坐标表示与应用题点 已知数量积求向量的坐标答案 (-2,1)解析 设q =(x ,y ),则p ⊗q =(x -2y ,y +2x )=(-4,-3).∴⎩⎪⎨⎪⎧ x -2y =-4,y +2x =-3,∴⎩⎪⎨⎪⎧x =-2,y =1.∴q =(-2,1). 12.已知向量OA →=(1,7),OB →=(5,1)(O 为坐标原点),设M 为直线y =12x 上的一点,那么MA →·MB →的最小值是________.考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算答案 -8解析 设M ⎝⎛⎭⎫x ,12x , 则MA →=⎝⎛⎭⎫1-x ,7-12x ,MB →=⎝⎛⎭⎫5-x ,1-12x , MA →·MB →=(1-x )(5-x )+⎝⎛⎭⎫7-12x ⎝⎛⎭⎫1-12x =54(x -4)2-8. 所以当x =4时,MA →·MB →取得最小值-8.三、解答题13.(2018·安徽芜湖质检)已知向量a =(1,2),b =(2,-2).(1)设c =4a +b ,求(b ·c )a ;(2)若a +λb 与a 垂直,求λ的值.考点 平面向量平行与垂直的坐标表示与应用题点 向量平行与垂直的坐标表示的综合应用解 (1)∵c =4(1,2)+(2,-2)=(6,6),∴b ·c =(2,-2)·(6,6)=2×6-2×6=0,∴(b ·c )a =0·a =0.(2)∵a +λb =(1,2)+λ(2,-2)=(1+2λ,2-2λ),(a +λb )⊥a ,∴(1+2λ)+2(2-2λ)=0,解得λ=52.14.已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)OA →+λOB →(λ2≠λ). (1)求OA →·OB →及OA →在OB →上的投影;(2)证明A ,B ,C 三点共线,且当AB →=BC →时,求λ的值;(3)求|OC →|的最小值.考点 平面向量夹角的坐标表示与应用题点 平面向量模的坐标表示的综合应用解 (1)OA →·OB →=8,设OA →与OB →的夹角为θ,则cos θ=OA →·OB →|OA →||OB →|=84×4=12, ∴OA →在OB →上的投影为|OA →|cos θ=4×12=2. (2)AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,又因为BC →与AB →有公共点B ,所以A ,B ,C 三点共线. 当AB →=BC →时,λ-1=1,所以λ=2.(3)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2=16λ2-16λ+16=16⎝⎛⎭⎫λ-122+12, ∴当λ=12时,|OC →|取最小值2 3.。
目标要求1.掌握向量数量积的坐标表达式,会进行向量数量积的坐标运算.2.能运用数量积表示两个向量的夹角、计算向量的长度,会用数量积判断两个平面向量的垂直关系.热点提示向量的数量积是高考命题的热点,主要考查数量积的运算、化简、证明,向量平行、垂直的充要条件的应用以及利用向量解决平面几何问题.本节单独命题时,一般以选择、填空题的形式出现,属容易题;本节还可以与平面几何、解析几何、三角等内容交叉出现,一般以解答题形式出现,综合性较强,难度也较大,学习本节时应熟练掌握运算律,记准公式.1.平面向量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.即两个向量的数量积等于它们对应坐标的乘积的和.2.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.知识要点3.三个重要公式(1)向量模公式:设a =(x 1,y 1),则|a |=x 21+y 21.(2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)向量的夹角公式:设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.重要公式观察思考若向量a=(x,y),你可知与a共线的单位向量的坐标是什么吗?与a垂直的单位向量的坐标吗?设与a 共线的单位向量为a 0,则a 0=±1|a |a =±(x |a |,y |a |)=±(x x 2+y 2,y x 2+y 2),其中正号,负号分别表示与a 同向和反向, 易知b =(-y ,x )和a =(x ,y )垂直, ∴与a 垂直的单位向量b 0的坐标为±(-y x 2+y 2,x x 2+y 2),其中正,负号表示不同的方向.温馨提示自我测评1.已知向量a=(-5,6),b=(6,5),则a与b()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解析:已知向量a=(-5,6),b=(6,5),a·b=-30+30=0,则a与b垂直,选A.答案:A2.设向量a=(1,-3),b=(4,-2),λa+b和a垂直,那么λ=()A.2 B.1 C.-2 D.-1答案:D3.已知a=(2,3),b=(-4,7),则a在b方向上的投影为()A.13B.135 C.655 D.65答案:C4.已知向量a =(3,3),2b -a =(-1,1),设向量a 与b 的夹角为θ,且,则cos θ=________.分析:设向量b =(x ,y ),则有2b -a =(2x,2y )-(3,3)解得x =1,y =2,∴b =(1,2),则cos θ=a ·b |a ||b |=(3,3)·(1,2)32×5=31010.所求为 答案:310105.已知向量a=(1,3),b=(2,5),求a·b,|3a-b|,(a+b)·(2a-b).解:a·b=1×2+3×5=17.∵3a=3(1,3)=(3,9),b=(2,5),∴3a-b=(1,4),∴|3a-b|=12+42=17.∵a+b=(3,8),2a=(2,6),∴2a-b=(2,6)-(2,5)=(0,1),∴(a+b)·(2a-b)=3×0+8×1=8.温馨提示过标实现问题数应与(1)通向量的坐表示向量代化,注意方程、函等知的系数识联.(2)向量的理有思路:一是向量式,另一问题处两种种纯种标两补.是坐式,者互相充总结规律我们在进行向量的数量积运算时,要牢记有关的运算法则和运算性质.解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再由已知计算.三是如果涉及图形的数量积运算,只需把握图形特点,求出相关点的坐标,利用向量的三角形减法由终点坐标与起点坐标的差得到向量的坐标即可.1若向量a=(2,-1),向量b=(3,-2),求向量(3a -b)·(a-2b).=?解:由已知得a·b==8,a2==5,b2==13,所以(3a-b)·(a-2b)=-15.所求为b a b a b a a b ⋅=⋅==求求:已知例,43)2(;,//)1(1,21πθ,分两种情况:)由解:(b a //1;2,=⋅b a b a 同向,当。
§2.4.2平面向量数量积的坐标表示、模、夹角
教材分析
本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段.它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一.
课时分配
本节内容用1课时的时间完成.
课题:§2.4.2平面向量数量积的坐标表示、模、夹角
教学目标
重点:平面向量数量积的坐标表示.
难点:向量数量积的坐标表示的应用.
知识点:平面向量数量积的坐标表示、模、夹角.
能力点:通过对向量平行与垂直的充要条件的坐标表示的类比,教给了学生类比联想的记忆方法. 教育点:经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神.
自主探究点:两个向量的数量积等于它们对应坐标的乘积的和.
考试点:平面向量数量积的坐标表示、模、夹角.
易错易混点:若非零向量与的夹角为锐角(钝角),则0(<0)>⋅a b ,反之不成立.
拓展点:1221//0x y x y ⇔-=a b 与12120x x y y ⊥⇔+=a b .
教具准备:多媒体和实物展台
课堂模式
一、引入新课
复习 1.两个非零向量夹角的概念
已知非零向量与,作OA =a ,OB =b ,则(0π)AOB θθ∠=≤≤叫与的夹角.
2.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量
cos θa b 叫与的数量积,记作⋅a b ,即有⋅a b =cos θa b ,(0π)θ≤≤.并规定0与任何向量的数量积为0.
平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,对向量的加、减、数乘运算带来了很大的方便.若已知向量与的坐标,则其数量积是唯一确定的,因此,如何用坐标表示向量的数量积就成为我们需要研究的课题.
【设计意图】回顾两个非零向量夹角的概念及平面向量数量积的意义,为探究数量积的坐标表示做好准备.创设情境激发学生的学习兴趣.
二、探究新知
1.探究一:已知两个非零向量
()()1122,,,x y x y =a =b ,怎样用与的坐标表示数量积⋅a b 呢? 因为()()1122x y x y ⋅++a b =i j i j 22
12122112x x x y x y y y =+⋅+⋅+i i j i j j 又1⋅=i i ,1⋅=j j ,0⋅=⋅=i j j i ,所以⋅a b 2121y y x x +=.
这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即⋅a b 2121y y x x +=.
【设计意图】问题引领,培养学生的探索研究能力
2..探究二:探索发现向量的模的坐标表达式
若
(),x y a =,如何计算向量的模a 呢?
若
(
1,A x )2y ,如何计算向量AB 的模即、两点间的距离呢? AB AB ==
【设计意图】在向量数量积的坐标表示基础上,探索发现向量的模
3.探究三:向量夹角、垂直、平行的坐标表示
设与都是非零向量,
()()1122,,,x y x y =a =b ,如何判定⊥a b 或计算与的夹角a,b 呢?
(1)、向量夹角的坐标表示 cos θ=
(2)、1212=00x x y y ⊥⇔⇔+=a b a b
(3)、
1221//0x y x y ⇔-=a b 【设计意图】在向量数量积的坐标表示基础上两向量垂直,两向量夹角的坐标表达式,提醒学生⊥a b 与//a b 坐标表达式的不同.
三、理解新知
1、向量的坐标表示和向量的坐标运算实现了向量运算的完全代数化,并将数与形紧密结合起来.本节主要应用有:
(1)求两点间的距离(求向量的模);
(2)求两向量的夹角;
(3)证明两向量垂直.
2、已知非零向量
()()1122,,,x y x y =a =b , 若1221//0
x y x y ⇔-=a b ; 1212=00x x y y ⊥⇔⇔+=a b a b
两个命题不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.
【设计意图】让学生学会怎样学习概念;培养学生透过现象看本质的能力,使学生养成细致、全面地考虑问题的思维品质.
四、运用新知
例1、已知向量与同向,
()1,2=b ,10⋅a b =,求: (1)向量的坐标;(2)若
()2,1-c =,求()a c b . 解:(1)∵与同向,且
()1,2=b , ∴(),2(0).
λλλλ>a =b = 又∵10⋅a b =,∴410λλ+=,∴2λ=,∴()2,4.a =
(2)∵22(1)40⋅⨯+-⨯=a c =,∴()0=a c b b =0.
【变式】已知()4,3=-a ,1=b ,且5⋅a b =,求向量的坐标.
=a
解: 设(),x y =b ,则221435x y x y ⎧+=⎨-=⎩ 解得4535x y ⎧=⎪⎪⎨⎪=-⎪⎩∴43,55-⎛⎫= ⎪⎝⎭b . 【设计意图】熟练应用向量数量积的坐标公式.
例2、已知向量()4,3=a ,()1,2=-b .
(1)求与的夹角的余弦值;
(2)若向量λ-a b 与+2a b 垂直,求的值.
解:
(1)5==a
,==b
14322⋅-⨯+⨯=a b =,
∴
cos θ=
==a b a b (2).()()()
4,3,24,32λλλλλ---=+-a b = ()()()
8,61,27,8++-=2a b =. 若λ-a b ⊥+2a b ,
则7(4)8(32)0λλ++-=,解得529λ=.
【设计意图】熟练应用向量的夹角公式.
例3.已知()1,2=a ,()1,λ=b ,分别确定实数的取值范围,使得:
(1)与的夹角为直角;
(2)与的夹角为钝角;
(3)与的夹角为锐角.
解:
设与的夹角为,==a
,==b , ()1,2(1,)12λλ
⋅=+a b = (1)因为与的夹角为直角,
所以0⋅a b =,所以120λ+=,所以12λ=-.
(2)因为与的夹角为钝角,所以cos 0θ<且cos 1θ≠-,
即0⋅a b <且与不反向.
由0⋅a b <得120λ+<,故12λ<-,
由与共线得2λ=,故与不可能反向. 所以的取值范围为
1,2⎛⎫-∞- ⎪⎝⎭. (3)因为与的夹角为锐角,所以cos 0θ>且cos 1θ≠,
即0⋅a b >且与不同向.
由0⋅a b >,得12λ>-,由与同向得2λ=.
所以λ的取值范围为()1,22,2⎛⎫-+∞ ⎪⎝⎭
. 【设计意图】熟练应用向量的夹角公式,由于两个非零向量与的夹角满足(0π)θ≤≤,所以用cos θ=
a b
a b 来判断,可将分五种情况:cos 1,0θθ==︒;cos 0,90θθ==︒;cos 1,180θθ=-=︒;
cos 0θ<且cos 1θ≠-,为钝角;cos 0θ>且cos 1θ≠,为锐角.
五、课堂小结
1.向量夹角的坐标表示
cos θ=
2.1221//0x y x y ⇔-=a b 与12120x x y y ⊥⇔+=a b ;
3.若非零向量与的夹角为锐角(钝角),则0(<0)>⋅a b ,反之不成立;
4.已知两向量的坐标,根据平面向量的数量积的定义和性质,可以求其数量积、两向量的长度和它们的夹角,此外,求解数量积的有关综合问题,应该注意函数思想与方程思想的运用.
【设计意图】培养学生归纳整合知识能力,培养学生思维的灵活性与严谨性.
六、布置作业
1.阅读课本106107P
-
2.必做题课本A 组第9、10、11题
【设计意图】学生养成先复习后做作业的学习习惯. 七、教后反思
1.结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题.在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦.
2.利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣.。