人教版高中数学必修四 平面向量数量积的坐标表示、模
- 格式:doc
- 大小:315.50 KB
- 文档页数:4
2.4.2平面向量数量积的坐标表示、模、夹角 教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.教学重点:平面向量数量积及运算规律. 教学难点:平面向量数量积的应用 教学过程:一、复习引入:1.平面向量数量积(内积)的定义:2.两个向量的数量积的性质: 设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1︒ e ⋅a = a ⋅e =|a|cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a||b|;当a 与b 反向时,a ⋅b = -|a||b|. 特别的a ⋅a = |a|2或a a a ⋅=||4︒cos θ =||||b a ba ⋅ ; 5︒|a ⋅b| ≤ |a||b|3.练习:(1)已知|a|=1,|b|=2,且(a-b)与a 垂直,则a 与b 的夹角是( ) A.60° B.30° C.135° D.45°(2)已知|a|=2,|b|=1,a 与b 之间的夹角为3π,那么向量m=a-4b 的模为( ) A.2 B.23 C.6 D.12 二、讲解新课:探究:已知两个非零向量),(11y x a =,),(22y x b =,怎样用a 和b 的坐标表示b a ⋅?.1、平面两向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x += 2. 平面内两点间的距离公式(1)设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x , 那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x 两向量夹角的余弦(πθ≤≤0)cos θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=二、讲解范例:例1 已知A(1, 2),B(2, 3),C(-2, 5),试判断△ABC 的形状,并给出证明. 例2 设a = (5, -7),b = (-6, -4),求a·b 及a 、b 间的夹角θ(精确到1o) 分析:为求a 与b 夹角,需先求a·b 及|a |·|b |,再结合夹角θ的范围确定其值. 例3 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少? 分析:为求a 与b 夹角,需先求a·b 及|a |·|b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1)有a·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cosθ=22=⋅⋅b a b a 又∵0≤θ≤π,∴θ=4π评述:已知三角形函数值求角时,应注重角的范围的确定. 三、课堂练习:1、P107面1、2、3题2、已知A(3,2),B(-1,-1),若点P(x ,-21)在线段AB 的中垂线上,则x= .四、小结: 1、b a ⋅2121y y x x +=2、平面内两点间的距离公式 221221)()(||y y x x a -+-=3、向量垂直的判定:设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x五、课后作业:《习案》作业二十四。
2.4.2平面向量数量积的坐标表示、模、夹角考点学习目标核心素养向量数量积的坐标表示掌握平面向量数量积的坐标表示,会用向量的坐标形式求数量积数学运算平面向量的模与夹角的坐标表示能根据向量的坐标计算向量的模、夹角及判定两个向量垂直数学运算、逻辑推理问题导学预习教材P106-P107,并思考下列问题:1.平面向量数量积的坐标表示是什么?2.如何用坐标表示向量的模、夹角和垂直?1.两向量的数量积与两向量垂直的坐标表示设两个非零向量a=(x1,y1),b=(x2,y2).数量积两个向量的数量积等于它们对应坐标的乘积的和,即a·b=x1x2+y1y2两个向量垂直a⊥b⇔x1x2+y1y2=0公式a·b=|a||b|cos〈a,b〉与a·b=x1x2+y1y2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.2.三个重要公式判断(正确的打“√”,错误的打“×”) (1)向量的模等于向量坐标的平方和.( )(2)|AB →|的计算公式与A ,B 两点间的距离公式是一致的.( ) 答案:(1)× (2)√已知a =(-3,4),b =(5,2),则a ·b 的值是( ) A .23 B .7 C .-23 D .-7 答案:D已知向量a =(1,-2),b =(x ,2),若a ⊥b ,则x =( ) A .1 B .2 C .4 D .-4答案:C已知a =(3,1),b =(-3,1),则向量a ,b 的夹角θ=______. 答案:120°数量积的坐标运算向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1D .2 【解析】 因为a =(1,-1),b =(-1,2), 所以(2a +b )·a =(1,0)·(1,-1)=1. 【答案】 C数量积坐标运算的两个途径一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.1.设向量a =(1,-2),向量b =(-3,4),向量c =(3,2),则向量(a +2b )·c =( ) A .(-15,12) B .0 C .-3 D .-11 解析:选C.依题意可知,a +2b =(1,-2)+2(-3,4)=(-5,6),所以(a +2b )·c =(-5,6)·(3,2)=-5×3+6×2=-3.2.已知正方形ABCD 的边长为2,E 为CD 的中点,点F 在AD 上,AF →=2FD →,则BE →·CF →=________.解析:建立平面直角坐标系如图所示,则A (0,2),E (2,1),D (2,2),B (0,0),C (2,0),因为AF →=2FD →,所以F (43,2).所以BE →=(2,1),CF →=(43,2)-(2,0)=(-23,2),所以BE →·CF →=(2,1)·(-23,2)=2×(-23)+1×2=23.答案:23平面向量的模(1)已知点A (0,1),B (1,-2),向量AC →=(4,-1),则|BC →|=________. (2)(2019·山东枣庄三中期中检测)已知平面向量a =(2m -1,2),b =(-2,3m -2),且|a +b |=|a -b |,则5a -3b 在向量a 方向上的投影为________.【解析】 (1)设C (x ,y ),因为点A (0,1),向量AC →=(4,-1),所以AC →=(x ,y -1)=(4,-1),所以{x =4,y -1=-1,解得x =4,y =0,所以C (4,0),所以BC →=(3,2),|BC →|=9+4=13.(2)由|a +b |=|a -b |得a ·b =0,所以-2(2m -1)+2(3m -2)=0,解得m =1,所以a =(1,2),b =(-2,1),5a -3b =(11,7),由投影公式可得所求投影为a ·(5a -3b )|a |=255=5 5.【答案】 (1)13 (2)55求向量的模的两种基本策略(1)字母表示下的运算利用|a|2=a2,将向量的模的运算转化为向量与向量的数量积的问题.(2)坐标表示下的运算若a=(x,y),则a·a=a2=|a|2=x2+y2,于是有|a|=x2+y2.已知向量a=(cos θ,sin θ),向量b=(3,0),则|2a-b|的最大值和最小值分别是()A.42,0 B.4,2 2C.25,1 D.5,1解析:选D.因为2a-b=2(cos θ,sin θ)-(3,0)=(2cos θ-3,2sin θ),所以|2a-b|2=(2cos θ-3)2+(2sin θ)2=13-12cos θ,又cos θ∈[-1,1],所以|2a-b|2∈[1,25],所以|2a-b|∈[1,5],故|2a-b|的最大值和最小值分别是5,1,故选D.平面向量的夹角(垂直)已知a=(4,3),b=(-1,2).(1)求a与b夹角的余弦值;(2)若(a-λb)⊥(2a+b),求实数λ的值.【解】(1)因为a·b=4×(-1)+3×2=2,|a|=42+32=5,|b|=(-1)2+22=5,设a与b的夹角为θ,所以cos θ=a·b|a||b|=255=2525.(2)因为a-λb=(4+λ,3-2λ),2a+b=(7,8),又(a-λb)⊥(2a+b),所以7(4+λ)+8(3-2λ)=0,所以λ=529.利用数量积求两向量夹角的步骤1.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m =( )A .23 B. 3 C .0D .- 3解析:选B.因为a =(1,3),b =(3,m ).所以|a |=2,|b |=9+m 2,a ·b =3+3m ,又a ,b 的夹角为π6,所以a ·b |a |·|b |=cos π6,即3+3m 29+m 2=32,所以3+m =9+m 2,解得m = 3.2.已知A (-2,1),B (6,-3),C (0,5),则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等边三角形解析:选A.由题设知AB →=(8,-4),AC →=(2,4),BC →=(-6,8),所以AB →·AC →=2×8+(-4)×4=0,即AB →⊥AC →.所以∠BAC =90°,故△ABC 是直角三角形.规范解答平面向量的夹角和垂直问题(本题满分12分)已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 两条对角线所夹的锐角的余弦值.【解】 (1)证明:因为A (2,1),B (3,2),D (-1,4),所以AB →=(1,1),AD →=(-3,3).(2分)AB →·AD →=1×(-3)+1×3=0,利用数量积为0,证明向量垂直所以AB →⊥AD →,所以AB ⊥AD . (4分)(2)因为AB →⊥AD →,四边形ABCD 为矩形, 所以AB →=DC →.(5分)设点C 的坐标为(x ,y ),则DC →=(x +1,y -4).又因为AB →=(1,1),所以⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.(7分)所以点C 的坐标为(0,5).所以AC →=(-2,4). 又BD →=(-4,2),所以|AC →|=25,|BD →|=25, AC →·BD →=8+8=16.(9分)正确求出这三个量是求两向量夹角的关键设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →||BD →|=1625×25=45.(11分)故矩形ABCD 的两条对角线所夹的锐角的余弦值为45.(12分)(1)解答两向量的夹角的步骤:求数量积、求模、求余弦值、求角.(2)利用cos θ=a ·b|a ||b |判断θ的值时,要注意cos θ<0时,有两种情况:一是θ是钝角,二是θ为180°;cos θ>0时,也有两种情况:一是θ是锐角,二是θ为0°.1.已知向量a =(2,0),a -b =(3,1),则下列结论正确的是( ) A .a ·b =2 B .a ∥b C .b ⊥(a +b ) D .|a |=|b |解析:选C.因为向量a =(2,0),a -b =(3,1),设b =(x ,y ),则⎩⎪⎨⎪⎧2-x =3,0-y =1,解得⎩⎪⎨⎪⎧x =-1,y =-1,所以b =(-1,-1),a +b =(1,-1),b ·(a +b )=-1×1+(-1)×(-1)=0,所以b ⊥(a +b ).2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=________.解析:由四边形ABCD 为平行四边形,知AC →=AB →+AD →=(3,-1),故AD →·AC →=(2,1)·(3,-1)=5.答案:53.已知a =(1,3),b =(2,m ). (1)当3a -2b 与a 垂直时,求m 的值; (2)当a 与b 的夹角为120°时,求m 的值. 解:(1)由题意得3a -2b =(-1,33-2m ), 由3a -2b 与a 垂直,得-1+9-23m =0, 所以m =433.(2)由题意得|a |=2,|b |=m 2+4,a ·b =2+3m ,所以cos 120°=a ·b |a |·|b |=2+3m 2m 2+4=-12,整理得2+3m +m 2+4=0,化简得m 2+23m =0, 解得m =-23或m =0(舍去). 所以m =-2 3.[A 基础达标]1.已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6D .12解析:选D.2a -b =(4,2)-(-1,k )=(5,2-k ),由a ·(2a -b )=0,得(2,1)·(5,2-k )=0,所以10+2-k =0,解得k =12.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .0 B .1 C .-2D .2解析:选D.2a -b =(3,n ),由2a -b 与b 垂直可得(3,n )·(-1,n )=-3+n 2=0,所以n 2=3,所以|a |=2.3.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .2 5 C .8D .8 2解析:选D.易得a ·b =2×(-1)+4×2=6,所以c =(2,4)-6(-1,2)=(8,-8),所以|c |=82+(-8)2=8 2.4.(2019·河北衡水中学检测)设向量a =(3,1),b =(x ,-3),c =(1,-3),若b ∥c ,则a -b 与b 的夹角为( )A .30°B .60°C .120°D .150°解析:选D.因为b ∥c ,所以-3x =(-3)×1,所以x =3,所以b =(3,-3),a -b =(0,4).所以a -b 与b 的夹角的余弦值为b ·(a -b )|a -b ||b |=-124×23=-32,所以a -b 与b的夹角为150°.5.已知O 为坐标原点,向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P 使得AP →·BP →有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)解析:选C.设点P 的坐标为(x ,0),则AP →=(x -2,-2),BP →=(x -4,-1). AP →·BP →=(x -2)(x -4)+(-2)×(-1) =x 2-6x +10=(x -3)2+1, 所以当x =3时,AP →·BP →有最小值1. 此时点P 的坐标为(3,0).6.设a =(m +1,-3),b =(1,m -1),若(a +b )⊥(a -b ),则m =________. 解析:a +b =(m +1,-3)+(1,m -1)=(m +2,m -4), a -b =(m +1,-3)-(1,m -1)=(m ,-2-m ), 因为(a +b )⊥(a -b ),所以(a +b )·(a -b )=0, 即(m +2,m -4)·(m ,-m -2)=0, 所以m 2+2m -m 2+2m +8=0,解得m =-2. 答案:-27.(2019·陕西咸阳检测)已知向量a =(-2,1),b =(λ,12),且|λa +b |=132,则λ=________.解析:由已知易得λa +b =⎝⎛⎭⎫-λ,λ+12,则(-λ)2+⎝⎛⎭⎫λ+122=134,解得λ=1或λ=-32. 答案:1或-328.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为________.解析:由题意得AB →=(2,1),CD →=(5,5),所以AB →·CD →=15,所以向量AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322.答案:3229.已知a =(1,2),b =(-3,2). (1)求a -b 及|a -b |;(2)若k a +b 与a -b 垂直,求实数k 的值. 解:(1)a -b =(4,0),|a -b |=42+02=4.(2)k a +b =(k -3,2k +2),a -b =(4,0), 因为k a +b 与a -b 垂直,所以(k a +b )·(a -b )=4(k -3)+(2k +2)·0=0, 解得k =3.10.(2019·重庆第一中学第一次月考)已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1).(1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ.解:(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3,故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,所以a ·b =1,故cos θ=a ·b |a |·|b |=22,所以θ=π4.[B 能力提升]11.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角大小为( )A .30°B .60°C .120°D .150°解析:选C.设a 与c 的夹角为θ,依题意,得 a +b =(-1,-2),|a |= 5.设c =(x ,y ),因为(a +b )·c =52, 所以x +2y =-52.又a ·c =x +2y , 所以cos θ=a ·c |a ||c |=x +2y 5×5=-525=-12, 所以a 与c 的夹角为120°.12.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EM →·EC→的取值范围是( ) A.⎣⎡⎦⎤12,2 B.⎣⎡⎦⎤0,32 C.⎣⎡⎦⎤12,32D.[]0,1解析:选C.以A 为坐标原点建立如图所示的平面直角坐标系,设E (x ,0),0≤x ≤1.因为M ⎝⎛⎭⎫1,12,C (1,1),所以EM →=⎝⎛⎭⎫1-x ,12,EC →=(1-x ,1),所以EM →·EC →=⎝⎛⎭⎫1-x ,12·(1-x ,1) =(1-x )2+12.因为0≤x ≤1,所以12≤(1-x )2+12≤32,即EM →·EC →的取值范围是⎣⎡⎦⎤12,32. 13.已知向量a =(1,3),b =(-2,0).(1)求a -b 的坐标以及a -b 与a 之间的夹角;(2)当t ∈[-1,1]时,求|a -t b |的取值范围.解:(1)因为向量a =(1,3),b =(-2,0),所以a -b =(1,3)-(-2,0)=(3,3),所以cos 〈a -b ,a 〉=(a -b )·a |a -b |·|a |=643=32. 因为〈a -b ,a 〉∈[0,π],所以向量a -b 与a 的夹角为π6.(2)|a -t b |2=a 2-2t a ·b +t 2b 2=4t 2+4t +4=4⎝⎛⎭⎫t +122+3.易知当t ∈[-1,1]时,|a -t b |2∈[3,12],所以|a -t b |的取值范围是[3,2 3 ].14.(选做题)已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)·OA →+λOB →(λ2≠λ).(1)求OA →·OB →及OA →在OB →上的投影;(2)证明A ,B ,C 三点共线,并在AB →=BC →时,求λ的值;(3)求|OC →|的最小值.解:(1)OA →·OB →=8,设OA →与OB →的夹角为θ,则cos θ=OA →·OB →|OA →||OB →|=84×4=12, 所以OA →在OB →上的投影为|OA →|cos θ=4×12=2. (2)AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,因为AB →与BC →有公共点B ,所以A ,B ,C 三点共线.当AB →=BC →时,λ-1=1,所以λ=2.(3)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2=16λ2-16λ+16=16⎝⎛⎭⎫λ-122+12. 所以当λ=12时,|OC →|取到最小值2 3.。
目标要求1.掌握向量数量积的坐标表达式,会进行向量数量积的坐标运算.2.能运用数量积表示两个向量的夹角、计算向量的长度,会用数量积判断两个平面向量的垂直关系.热点提示向量的数量积是高考命题的热点,主要考查数量积的运算、化简、证明,向量平行、垂直的充要条件的应用以及利用向量解决平面几何问题.本节单独命题时,一般以选择、填空题的形式出现,属容易题;本节还可以与平面几何、解析几何、三角等内容交叉出现,一般以解答题形式出现,综合性较强,难度也较大,学习本节时应熟练掌握运算律,记准公式.1.平面向量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.即两个向量的数量积等于它们对应坐标的乘积的和.2.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.知识要点3.三个重要公式(1)向量模公式:设a =(x 1,y 1),则|a |=x 21+y 21.(2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)向量的夹角公式:设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.重要公式观察思考若向量a=(x,y),你可知与a共线的单位向量的坐标是什么吗?与a垂直的单位向量的坐标吗?设与a 共线的单位向量为a 0,则a 0=±1|a |a =±(x |a |,y |a |)=±(x x 2+y 2,y x 2+y 2),其中正号,负号分别表示与a 同向和反向, 易知b =(-y ,x )和a =(x ,y )垂直, ∴与a 垂直的单位向量b 0的坐标为±(-y x 2+y 2,x x 2+y 2),其中正,负号表示不同的方向.温馨提示自我测评1.已知向量a=(-5,6),b=(6,5),则a与b()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解析:已知向量a=(-5,6),b=(6,5),a·b=-30+30=0,则a与b垂直,选A.答案:A2.设向量a=(1,-3),b=(4,-2),λa+b和a垂直,那么λ=()A.2 B.1 C.-2 D.-1答案:D3.已知a=(2,3),b=(-4,7),则a在b方向上的投影为()A.13B.135 C.655 D.65答案:C4.已知向量a =(3,3),2b -a =(-1,1),设向量a 与b 的夹角为θ,且,则cos θ=________.分析:设向量b =(x ,y ),则有2b -a =(2x,2y )-(3,3)解得x =1,y =2,∴b =(1,2),则cos θ=a ·b |a ||b |=(3,3)·(1,2)32×5=31010.所求为 答案:310105.已知向量a=(1,3),b=(2,5),求a·b,|3a-b|,(a+b)·(2a-b).解:a·b=1×2+3×5=17.∵3a=3(1,3)=(3,9),b=(2,5),∴3a-b=(1,4),∴|3a-b|=12+42=17.∵a+b=(3,8),2a=(2,6),∴2a-b=(2,6)-(2,5)=(0,1),∴(a+b)·(2a-b)=3×0+8×1=8.温馨提示过标实现问题数应与(1)通向量的坐表示向量代化,注意方程、函等知的系数识联.(2)向量的理有思路:一是向量式,另一问题处两种种纯种标两补.是坐式,者互相充总结规律我们在进行向量的数量积运算时,要牢记有关的运算法则和运算性质.解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再由已知计算.三是如果涉及图形的数量积运算,只需把握图形特点,求出相关点的坐标,利用向量的三角形减法由终点坐标与起点坐标的差得到向量的坐标即可.1若向量a=(2,-1),向量b=(3,-2),求向量(3a -b)·(a-2b).=?解:由已知得a·b==8,a2==5,b2==13,所以(3a-b)·(a-2b)=-15.所求为b a b a b a a b ⋅=⋅==求求:已知例,43)2(;,//)1(1,21πθ,分两种情况:)由解:(b a //1;2,=⋅b a b a 同向,当。
互动课堂疏导引导1.向量内积的坐标运算建立正交基底{e 1,e 2},已知a =(a 1,a 2),b =(b 1,b 2),则a ·b =(a 1e 1+a 2e 2)(b 1e 1+b 2e 2)=a 1b 1e 12+ (a 1b 2+a 2b 1)·e 1·e 2+a 2b 2e 22.因为e 1·e 1=e 2·e 2=1,e 1·e 2=e 2·e 1=0,故a ·b =a 1b 1+a 2b 2.疑难疏引(1)两个向量的数量积等于它们对应的坐标的乘积的和,并且此式是在正交基底{e 1,e 2}下实现的.(2)引入坐标后,实现了向量的数量积和向量坐标间运算的转化.2.用向量的坐标表示两个向量垂直的条件,设a =(a 1,a 2),b =(b 1,b 2),如果a ⊥b ,则a 1b 1+a 2b 2=0,反之,若a 1b 1+a 2b 2=0,则a ⊥b .当a ⊥b 时,若b 1b 2≠0,则向量(a 1,a 2)与(-b 2,b 1)平行,这是因为a ⊥b ,a 1b 1+a 2b 2=0,即a 1b 1=-a 2b 2,1221b a b a =-.两向量平行的条件是相应坐标成比例,所以(a 1,a 2)与(-b 2,b 1)平行,特别地,向量k(-b 2,b 1)与向量(b 1,b 2)垂直,k 为任意实数.例如向量(3,4)与向量(-4,3)、(-8,6)、(12,-9)、…都垂直.疑难疏引设a =(a 1,a 2),b =(b 1,b 2),a 1b 1+a 2b 2=0⇒a ⊥b 且a ⊥b ⇒a 1b 1+a 2b 2=0.3.向量的长度、距离和夹角公式(1)已知a =(a 1,a 2),则|a |2=a 2=a 12+a 22,即|a |=2221a a +.语言描述为向量的长度等于它的坐标平方和的算术平方根.若A(x 1,y 1),B(x 2,y 2),则=(x 2-x 1,y 2-y 1),||=212212)()(y y x x -+-.此式可视为A 、B 两点的距离公式.(2)设向量a =(a 1,a 2),b =(b 1,b 2),故cos 〈a ,b 〉=222122212211||||b b a a b a b a b a b a +++=•.特别提示:该处夹角公式是非零向量的夹角公式.活学巧用1.设a =(4,-3),b =(2,1),若a +t b 与b 的夹角为45°,求实数t 的值.解析:利用a ·b =|a |·|b |·cosθ建立方程,解方程即可.a +tb =(4,-3)+t(2,1)=(4+2t,t-3),(a +t b )·b =(4+2t,t-3)·(2,1)=5t+5,|a +t b |=20)1(52++t , 由(a +t b )·b =|a +t b |·|b |·cos45°得5t+5=4)1(2252++t , 即t 2+2t-3=0,∴t=-3或t=1.经检验t=-3不合题意,舍去,只取t=1.2.已知点A(2,3),若把向量OA 绕原点O 按逆时针旋转90°得向量OB ,求点B 的坐标. 解析:要求点B 的坐标,可设为B(x,y),利用OA ⊥OB ,| OA |=|OB |列方程解决之.设点B 坐标为(x,y),因为⊥,| |=||,所以⎩⎨⎧=+=+.13,03222y x y x 解得⎩⎨⎧=-=2,3y x 或⎩⎨⎧-==2,3y x (舍去). 所以B 点坐标为(-3,2).3.已知a =(2,32-4),b =(1,1),求a 与b 的夹角θ.解析:向量坐标已知,可利用夹角坐标公式解决.a ·b =(2,32-4)·(1,1)=2+32-4=32-2,|a |·|b |=).13(42)32(1611)432(22222-=•-=+•-+ ∴cosθ=21)13(4232=--. 又0°≤θ≤180°,∴θ=60°.4.已知a +b +c =0,|a |=3,|b |=5,|c |=7,求〈a ,b 〉的值.解析:∵a +b +c =0,∴a +b =-c .∴|a +b |=|c |.∴(a +b )2=c 2,即a 2+2a ·b +b 2=c 2.∴a ·b =2152925492||||||2222222=--=--=--b a c b a c . ∴cos 〈a ,b 〉=215||||=•b a b a ÷(3×5)= 21. ∴〈a ,b 〉=3π.。
一、选择题
1.(2012·辽宁高考)已知向量a =(1,-1),b =(2,x ).若a ·b =1,则x =( )
A .-1
B .-12 C.12 D .1
解析:由a =(1,-1),b =(2,x )可得a ·b =2-x =1,故x =1.
答案:D
2.已知点A (-1,0)、B (1,3),向量a =(2k -1,2),若AB ⊥a ,则实数k 的值为( )
A .-2
B .-1
C .1
D .2
解析:AB =(2,3),a =(2k -1,2),由AB ⊥a 得2×(2k -1)+6=0,解得k =-1. 答案:B
3.已知向量OA =(2,2),OB =(4,1),在x 轴上有一点P ,使AP ·BP 有最小值,则点P 的坐标是( )
A .(-3,0)
B .(2,0)
C .(3,0)
D .(4,0)
解析:设P (x,0),则AP =(x -2,-2),
BP =(x -4,-1), ∴AP ·
BP =(x -2)(x -4)+2 =x 2-6x +10=(x -3)2+1,
故当x =3时,AP ·BP 最小,此时P (3,0).
答案:C
4.平行四边形ABCD 中,AC 为一条对角线,若AB =(2,4),AC =(1,3),则AD ·
BD 等于( )
A .6
B .8
C .-8
D .-6
解析:如图,AD =BC =AC -AB =(1,3)-(2,4)=(-1,-1),
BD =AD -AB =(-1,-1)-(2,4)=(-3,-5), 则AD ·
BD =(-1)×(-3)+(-1)×(-5)=8. 答案:B
二、填空题
5.已知向量a =(3,4),b =(2,-1),如果向量a +xb 与-b 垂直,则实数x 的值为________. 解析:∵向量a +xb 与-b 垂直,
∴(a +xb )·(-b )=-a·b -xb 2=-2-5x =0,
∴x =-25
. 答案:-25
6.已知A (1,2),B (3,4),|n |=2,则|AB ·n |的最大值为________.
解析:AB =(2,2),|AB |=22,|AB ·n |≤|AB ||n |=4,当且仅当AB 与n 共线且同向时取等号.
答案:4
7.向量BA =(4,-3),向量BC =(2,-4),则△ABC 的形状为________.
解析:AC =BC -BA =(2,-4)-(4,-3)=(-2,-1),而AC ·
BC =(-2,-1)·(2,-4)=0,所以AC ⊥BC ,
又|AC |≠|BC |,所以△ABC 是直角非等腰三角形.
答案:直角三角形
8.若将向量a =(2,1)围绕原点按逆时针方向旋转π4
得到向量b ,则向量b 的坐标为________.
解析:设b =(x ,y ),由已知条件得
|a |=|b |,a·b =|a ||b |cos 45°. ∴⎩⎪⎨⎪⎧
x 2+y 2=5,2x +y =5×5×22, 解得⎩⎨⎧ x =22,y =322,或⎩⎨⎧ x =322,y =-22.
∵向量a 按逆时针旋转π4后,向量对应的点在第一象限,∴x >0,y >0,∴b =⎝⎛⎭⎫22
,322. 答案:⎝⎛⎭⎫22
,322 三、解答题
9.已知在△ABC 中,A (2,4),B (-1,-2),C (4,3),BC 边上的高为AD .
(1)求证:AB ⊥AC ;
(2)求向量AD ;
(3)求证:AD 2=BD ·CD .
解:(1)∵AB =(-1,-2)-(2,4)=(-3,-6),
AC =(4,3)-(2,4)=(2,-1),
AB ·AC =-3×2+(-6)×(-1)=0,
∴AB ⊥AC .
(2) BC =(4,3)-(-1,-2)=(5,5).
设BD =λBC =(5λ,5λ) 则AD =AB +BD
=(-3,-6)+(5λ,5λ)
=(5λ-3,5λ-6),
由AD ⊥BC 得5(5λ-3)+5(5λ-6)=0,解得λ=
910, ∴AD =(32,-32
). (3)证明:AD 2=94+94=92
, |BD |=50λ2=922
, |BC |=52,|CD |=|BC |-|BD |=
22. ∴|AD |2=|BD |·|CD |,即AD 2=BD ·CD .
10.平面内有向量OA =(1,7),OB =(5,1),OP =(2,1),点M 为直线OP 上的一动点. (1)当MA ·MB 取最小值时,求OM 的坐标;
(2)在(1)的条件下,求cos ∠AMB 的值.
解:(1)设OM =(x ,y ),∵点M 在直线OP 上,
∴向量OM 与OP 共线,又OP =(2,1).
∴x ×1-y ×2=0,即x =2y .
∴OM =(2y ,y ).又MA =OA -OM ,OA =(1,7),
∴MA =(1-2y,7-y ).
同理MB =OB -OM =(5-2y,1-y ).
于是MA ·
MB =(1-2y )(5-2y )+(7-y )(1-y )=5y 2-20y +12. 可知当y =202×5
=2时,MA ·MB 有最小值-8,此时OM =(4,2).
(2)当OM=(4,2),即y=2时,
有MA=(-3,5),MB=(1,-1),|MA|=34,|MB|=2,MA·MB=(-3)×1+5×(-1)=-8.
cos∠AMB=
MA·MB
|MA||MB|
=
-8
34×2
=-
417
17.。