03-均匀各向同性湍流
- 格式:ppt
- 大小:3.60 MB
- 文档页数:26
第五章 恒星内部的对流运动第一节 对流运动的一般特征由于流体内部温度变化而产生的流动,称为对流运动。
一种特殊情况是自由对流,它是由浮力产生的流动。
在重力场中,流体不同部分的温度差导致密度差,由此产生出浮力,驱动流体运动。
于是,热的流体趋向于上升,冷的流体趋向于下降。
考虑一个充满于两无限大水平平板中间的流体层,板间距离为d ,下面板的温度T 2大于上面板的温度T 1。
于是,冷的重流体位于热的轻流体之上。
这种位形是可以处于平衡状态的,即控制方程存在静止解,但是这种平衡却是不稳定的。
如果冷的重流体向下运动,而热的轻流体向上运动,就会有势能放出,给运动提供动能。
显然,出现这种运动的一个明显的准则是:12T T >在一般流体中,不稳定性受到粘性摩擦作用的对抗,同时还存在热传导作用的对抗。
只有当温度差的失稳作用大到足以克服上述这些对抗因素时,运动才会发生。
于是出现运动的判据是所谓的Rayleigh 数判据,即:crit Ra TT T d g Ra >-=123 νκδ其中g 是重力加速度,δ、ν、κ分别是流体的膨胀指数、运动粘性系数和热扩散系数。
临界值Ra crit 一般在1600~1700。
Rayleigh 数在临界值以下,流体保持静止;在临界值之上,流体开始运动。
当流体的Rayleigh 数刚好高于临界值时,流体中会形成若干热的上升区和冷的下降区,同时在顶部和底部出现水平运动以保持连续性。
上升流体接触冷的顶部时被冷却,使得它转变为冷的重流体而向下运动;而下降流体在接触热的底部时被加热,转变为热的轻流体而向上运动。
在底部的加热和在顶部的冷却提供给流体势能,而连续释放的势能和运动造成的机械能的粘性耗散相平衡,从而使得流动形成稳定的图案。
从热力学的观点看,这个过程实际就是一个热机。
流动的状态和流体的Rayleigh数密切相关。
当Rayleigh数高于临界值不太多时,运动首先以尺度可以达到流动区域特征尺度(如距离d)的长卷筒形式的上升和下降流动出现。
湍流简史精选已有 3889 次阅读2012-9-22 10:40|个人分类:学术探讨|系统分类:科研笔记|关键词:湍流简介湍流理论发展简史:N-S方程的导出:描述粘性不可压缩流体动量守恒的运动方程,简称N-S方程。
因1821年由C.-L.-M.-H.纳维(基于分子运动)和1845年由G.G.斯托克斯(基于连续介质假定)分别导出而得名。
后人在此基础上又导出适用于可压缩流体的N-S方程。
N-S方程包含两个假设:第一连续介质假定;第二是所有涉及到的场,全部是可微的假定。
N-S方程和连续方程共同构成了一个闭合的非线性方程组。
该方程组是质量守恒定律和牛顿运动定律在流体力学中的一种应用形式,由于其高度非线性,因此很难求得其解析解。
一般认为无论流体运动多么复杂,方程组都能够描述流体的运动。
湍流的发现:1839年,G.汉根在实验中首次观测到了流动由层流向紊流的转变。
层流向湍流转变的雷诺实验:1883年英国科学家雷诺(Reynolds)通过实验研究并展示了液体在流动中存在两种内部结构完全不同的流态:层流和紊流。
雷诺揭示了重要的流体流动机理,即根据流速的大小,流体有两中不同的形态,并提出了著名的层流向紊流转变的雷诺数(包括分层流动的情况)。
当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动这种流动形态称为层流或滞流。
流体流速增大到某个值后,流体质点除流动方向上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则脉动,这种流体形态称为湍流。
并在1885年提出了著名的雷诺平均方法。
湍动能串级过程:1922年Richardson发现湍动能串级过程。
大尺度涡流脉动犹如一个很大的蓄能池,它不断从外界获得能量并输出给小尺度涡能量;小尺度湍流就像一个耗能机械,从大尺度湍流涡输出来的动能在这里全部耗散掉,流体的惯性犹如一个传送机械,把大尺度脉动传给小尺度脉动。
流动的雷诺数越大,蓄能的大尺度和耗能的小尺度之间的惯性区域越大。
中国湍流研究的发展史I 中国科学家早期湍流研究的回顾黄永念北京大学力学与工程科学系,湍流与复杂系统国家重点实验室,北京,100871摘要总结了二十世纪三十年代到六十年代中国老一辈科学家(包括物理学家,力学家)周培源、王竹溪、张国藩、林家翘、谢毓章、张守廉、黄授书、胡宁、柏实义、陈善模、庄逢甘、陆祖荫、李政道、蔡树棠、是勋刚、李松年、谈镐生、包亦和等诸位先生的湍流研究工作。
介绍他们对流体力学中最为困难的湍流问题所作出的努力和贡献。
关键词湍流统计理论,能量衰变规律,均匀各向同性湍流,剪切湍流。
引言湍流一直被认为是物理学中最难而又久未解决的基础理论研究的一个课题。
从1883年Reynolds圆管湍流实验研究算起已经跨越了两个世纪,湍流问题仍未得到解决。
在跨入二十一世纪时,很多从事湍流研究工作的科学家都在思考这样的问题:二十世纪的湍流研究留给我们哪些宝贵财富?二十一世纪又应该如何面对这个老大难问题?Yaglom在2000年法国举行的一次湍流讲习班上回顾了二十世纪的湍流理论发展过程[1],指出了其中两个最重要的成就:一个是Kolmogorov的局部均匀各向同性湍流理论,另一个是von Karman的湍流平均速度的对数分布律。
同时又一次向世人介绍著名科学家Lamb在临终前对解决湍流问题的悲观看法。
由于中国与世界各国在文字和语言上的差异和长期缺乏国际间的交流,历次湍流研究工作的总结和回顾中,人们往往忽略了中国科学家的作用。
只有周培源教授在1995年流体力学年鉴上发表了“中国湍流研究50年”才打破了这种隔阂[2]。
但是这篇文章也只局限于周培源教授率领的北京大学研究组所做的系列研究工作。
实际上有很多中国科学家在上一世纪中做了非常出色的工作。
本文仅就半个世纪前的三十年代到六十年代他们的湍流研究工作做一个简单的介绍,目的是要引起大家关注中国科学家的湍流研究和对湍流研究所做的贡献。
中国科学家的湍流研究工作可以分成两个方面,一是在国内极其困难的条件下坚持开展的研究工作,这方面的工作国际上鲜为人知。
第三章,湍流模型第一节, 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。
即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有:ij ijj i t j i k x u xu u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。
根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。
第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。
第三类是大涡模拟。
前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。
大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。
实际求解中,选用什么模型要根据具体问题的特点来决定。
选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。
FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。
湍流模型种类示意图第二节,平均量输运方程包含更多 物理机理每次迭代 计算量增加提的模型选RANS-based models雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。
对于速度,有:i i i u u u '+= 3-3其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。
第三章 湍流模型第一节 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。
即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量(笛卡尔坐标系)表示,即有:ij i j j i t j i k x u x u u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 ij δ为DELT 函数,一般i=j 时为1,否则为0.模型的任务就是给出计算湍流粘性系数t μ的方法。
根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。
(模拟大空间建筑空气流动)μt=0.038 74ρvl (模拟通风空调室内的空气流动)比例系数由直接数值模拟的结果拟合而得,其中:v 为当地时均速度,l 为当地距壁面最近的距离。
第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。
第三类是大涡模拟。
前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。
大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。
实际求解中,选用什么模型要根据具体问题的特点来决定。
选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。
参见:湍流模型的选择资料。
FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。
湍流模型种类示意图大涡模拟启动需要用命令:(rpsetvar 'les-2d? #t)Direct Numerical Simulation包含更多物理机理 每次迭代计算量增加 提的模型选RANS-based models第二节 平均量输运方程输运过程的粘滞系数、扩散系数和热传导率,故称为输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。
因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。
在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。
FLUENT 中采用的湍流模拟方法包括Spalart-Allmaras模型、standard(标准)k −ε模型、RNG(重整化群)k −ε模型、Realizable(现实)k −ε模型、v2 − f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。
雷诺平均与大涡模拟的对比因为直接求解 NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。
这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。
雷诺平均 NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。
湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。
在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。
根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。
FLUENT 中使用的三种k −ε模型、Spalart-Allmaras 模型、k −ω模型及雷诺应力模型RSM)等都属于湍流模式理论。
大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。
粘流复习大纲1 涡量以及流动‘有旋’或‘无旋’的定义,能判断简单流动的有旋、无旋性 涡量w=rotu=0无旋, 反之为有旋。
2 推导N-S 方程时 所用到的Stokes 三假设的内容 ppt3,p.20a) 流体是连续的,它的应力矩阵与变形率矩阵成线性关系,与流体的平动和转动无关。
b) 流体是各向同性的,其应力与变形率的关系与坐标系的选择和位置无关。
c) 当流体静止时,变形率为零,流体中的应力为流体静压强。
在静止状态下,流体的应力状态为根据第一条假定,并受第三条假定的启发,可将应力矩阵与变形率矩阵写成如下线性关系式参照牛顿内摩擦定理,系数a 只取决于流体的物理性质,可取由于系数b 与坐标系的转动无关,因此可以推断,要保持应力与变形率成线性关系,系数b 只能由应力矩阵与变形率矩阵中的那些线性不变量构成。
即令式中, 为待定系数。
将a 、b 代入 取等式两边矩阵主对角线上的三个分量之和,可得出 在静止状态下,速度的散度为零,且有 , 由于b1和b2均为常数(与p0无关),且要求p0在静止状态的任何情况均成立。
则, , 如果令 则本构关系为上式即为广义牛顿内摩擦定理(牛顿流体的本构方程)。
3 一些无量纲参数的定义和物理意义(Re, Ec, Pr, St 等等)雷诺数:流体流动的惯性力与粘性力之比. Re=ρνι/μ埃克特数:表示在热传递中流体压缩性的影响,也就是推进功与对流热之比. p103Ec=V 0^2/C p0*(T w -T 0)=(ρ0V 0^3/L)/ρ0V 0/LC p0(T w -T 0)。
[][]{}[]I b V b b zz yy xx 321)(2+⋅∇++++=τττεμτ[][][]I b a +=ετ0p zz yy xx -===τττ[][]I p p 001 0 00 1 00 0 1 -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=τμ2=a 321321)()()(b V b b b b b b b zz yy xx zz yy xx zz yy xx +⋅∇+++=++++++=τττεεετττ321b b b 32133)(32)(b V b b V zz yy xx zz yy xx +⋅∇++++⋅∇=++τττμτττ3213)32())(31(b V b b zz yy xx +⋅∇+=++-μτττ00 ()3xxyyzzV pτττ∇⋅=++=-013(13)p b b --=31b 013==b μ322-=b 3zzyy xxp τττ++-=[][][]I V p ⎪⎭⎫ ⎝⎛⋅∇+-= μεμτ322普朗特数:表示流体温度场与速度场相似的程度(温度边界层与流动边界层的关系),反映流体物理性质对对流传热的影响. Pr=v/a=μ0C p0/k 0斯坦顿数: 反映热导率与焓的关系。