湍流力学课件二
- 格式:ppt
- 大小:2.60 MB
- 文档页数:94
2.1 大气折射率在光学频率范围内,对流层(高度<17km)中的地球大气的空气折射率表示如下:n=1+77.6(1+7.52×10-3λ-2)(p/T)×10-6 (2.1)式中,p是以mbar为单位的大气气压,T是热力学温度,λ是以μm为单位的光波波长,由于地面上温度对n1(r)的贡献<1%,故(2.1)式中忽略了与水汽压相关的项,当然这一项对水上传播光路是不可忽略的。
2. 2 大气湍流描述自然界中的流体运动存在着二种不同的形式:一种是层流,看上去平顺、清晰,没有掺混现象;另一种是湍流,看上去毫无规则,显得杂乱无章。
例如,如果流体以一定的速度流过一个管子,我们可以用带颜色的染料对它进行观察,在流体速度低的时候,流线光滑面清晰,流体处于层流状态;不断增加流体速度,当流速达到一定值时,流线就不再是光滑的了,整个流体开始作不规则的随机运动,流体处于湍流状态。
自从1883 年Reynolds 做了著名的湍流实验以来,以Monin-Obukhov 提出的相似理论、Deardorff 提出的大涡模拟、美国Kansas 州观测实验等为代表,大气湍流的研究已经取得了很大的进展和丰硕的成果,并在天气、气候研究和工程实际中获得成功地应用。
湍流对大气中声、光和其它电磁波的传播具有极为重要的影响,例如湍流风速、温度和湿度的脉动都会引起声音散射和减弱,大气小尺度光折射率的起伏(称为光学湍流),会严重影响光的传播和光学成像的质量等等。
长期以来,以Tatarskii 的工作为代表,声光电传播的湍流效应大都是按照Kolmogorov 的均匀、平稳和各向同性假设处理的,而实际的湍流经常不满足这些假设,要建立更加完善的波动传播模型就必须考虑湍流的各向异性、以及间歇性的影响。
2. 3 折射率湍流模型在湍流大气中,折射率在不同地点、不同时刻都是变化的。
一方面,我们还不可能对这些变化作出预测;另一方面,即使已知这些变化,要对所有时刻、所有地点的值作出描述实际上也是不可能的。