初中数学苏科版九年级上册切线长定理
- 格式:ppt
- 大小:1.10 MB
- 文档页数:16
苏科版数学九年级上册《切线长定理》教学设计一. 教材分析《切线长定理》是苏科版数学九年级上册的教学内容。
本节课主要介绍了切线长定理及其应用。
切线长定理是指:圆的切线长等于半径的长度。
这是圆的性质之一,对于学生理解和掌握圆的相关知识具有重要意义。
教材通过实例和图形,引导学生探究和发现切线长的规律,进而得出切线长定理。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、勾股定理等知识。
他们对这些知识有一定的理解和应用能力,但切线长定理是一个新的概念,需要通过实例和图形来引导学生理解和掌握。
此外,学生对于探究和发现规律的兴趣较高,可以通过小组合作、讨论等方式,激发他们的学习兴趣。
三. 教学目标1.知识与技能目标:让学生理解和掌握切线长定理,能够运用切线长定理解决相关问题。
2.过程与方法目标:通过观察、操作、猜想、验证等过程,培养学生的观察能力、动手能力和推理能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探究、合作交流的良好学习习惯。
四. 教学重难点1.重点:理解和掌握切线长定理。
2.难点:如何引导学生发现和证明切线长定理。
五. 教学方法1.引导发现法:通过实例和图形,引导学生观察、操作、猜想、验证,发现切线长定理。
2.小组合作法:学生在小组内进行讨论、交流,共同完成探究任务。
3.讲解法:教师对切线长定理进行讲解,解释其含义和应用。
六. 教学准备1.教具:准备一些圆的模型和切线模型,用于展示和解释切线长定理。
2.学具:为学生准备一些圆的图纸和剪刀,让他们剪切和测量切线长。
3.课件:制作课件,展示切线长定理的实例和图形。
七. 教学过程1.导入(5分钟)通过展示一些实际的切线图形,引导学生思考:切线和半径之间有什么关系?激发学生的兴趣,引出本节课的主题。
2.呈现(10分钟)展示圆的切线图形,让学生观察和操作,尝试测量切线的长度。
引导学生发现切线长和半径长度的关系,进而猜想切线长定理。
切线长定理【学习目标】1.了解切线长定义,掌握切线长定理;2.了解圆外切四边形定义及性质;3. 利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点进阶:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点进阶:切线长定理包含两个结论:线段相等和角相等.要点二、圆外切四边形的性质1.圆外切四边形四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形.2.圆外切四边形性质圆外切四边形的两组对边之和相等.【典型例题】类型一、切线长定理例1.已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.例2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点.求证:DE是⊙O切线.举一反三:【变式】已知:如图,⊙O为ABC∆的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF∠,过点A作AD BF⊥于点D.求证:DA为⊙O的切线.OFDCBA3421OFDCBA例3.如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积()A.12B.24C.8D.6类型二、圆外切四边形例4.已知四边形ABCD中,AB∥CD,⊙O为内切圆,E为切点.(Ⅰ)如图1,求∠AOD的度数;(Ⅱ)如图1,若AO=8cm,DO=6cm,求AD、OE的长;(Ⅲ)如图2,若F是AD的中点,在(Ⅱ)中条件下,求FO的长.举一反三:【变式】在圆外切四边形ABCD中,AB:BC:CD:AD只可能是().A.2:3:4:5B.3:4:6:5C.5:4:1:3D.3:4:2:5【巩固练习】 一、选择题1. 下列说法中,不正确的是 ( )A .三角形的内心是三角形三条内角平分线的交点B .锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C .垂直于半径的直线是圆的切线D .三角形的内心到三角形的三边的距离相等2.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( ) A.21(a +b +c )r B.2(a +b +c ) C.31(a +b +c )r D.(a +b +c )r3.如图,点P 在⊙O 外,PA 、PB 分别与⊙O 相切于A 、B 两点,∠P=50°,则∠AOB 等于( )A .150°B .130°C .155°D .135°4. 如图所示,⊙O 的外切梯形ABCD 中,如果AD ∥BC ,那么∠DOC 的度数为( ) A.70° B.90° C.60° D.45°第4题图 第5题图5.如图,PA 、PB 分别是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,已知∠BAC=35°,∠P 的度数为( )A.35°B.45°C.65°D.70°6.已知如图所示,等边△ABC 的边长为2cm ,下列以A 为圆心的各圆中, 半径是3cm 的圆是( )二、填空题7.如图,⊙I 是△ABC 的内切圆,切点分别为点D 、E 、F ,若∠DEF=52o,则∠A 的度为________.第7题图 第8题图 第9题图8.如图,一圆内切于四边形ABCD ,且AB=16,CD=10,则四边形ABCD 的周长为________.9.如图,已知⊙O 是△ABC 的内切圆,∠BAC=50o,则∠BOC 为____________度.10.如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且 60=∠AEB ,则=∠P ____度.第10题图 第11题图11.如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P 的度数为 .12.已知点P是半径为1的⊙O外一点,PA切⊙O于点A,且PA=1,AB是⊙O的弦,AB=,连接PB,则PB= .三、解答题13.已知,如图,A是⊙O外一点,AB,AC分别与⊙O相切于点B,C,P是BC上任意一点,过点P 作⊙O的切线,交AB于点M,交AC于点N,设AO=d,BO=r.求证:△AMN的周长是一个定值,并求出这个定值.14. 已知:如图,PA,PB,DC分别切⊙O于A,B,E点.(1)若∠P=40°,求∠COD;(2)若PA=10cm,求△PCD的周长.15.如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.。
苏科版九年级数学说课稿:第26讲切线的性质定理一. 教材分析苏科版九年级数学教材中,第26讲主要介绍切线的性质定理。
在这一讲中,学生将学习到切线的定义、切线与导数的关系、切线方程的求法等知识点。
通过本讲的学习,学生能够深入理解切线的性质,掌握切线方程的求法,为进一步研究函数的图像和性质打下基础。
二. 学情分析九年级的学生已经学习了函数、导数等基础知识,对数学分析有一定的了解。
然而,对于切线的性质定理,学生可能还存在以下问题:1. 对切线的概念理解不深刻;2. 无法正确求解切线方程;3. 对切线与导数的关系不够明确。
因此,在教学过程中,需要针对这些问题进行讲解和辅导。
三. 说教学目标1.知识与技能:掌握切线的定义、切线与导数的关系,学会求解切线方程;2. 过程与方法:通过观察、分析、归纳,培养学生的逻辑思维能力;3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的探究精神。
四. 说教学重难点1.重点:切线的定义、切线与导数的关系,切线方程的求法;2. 难点:切线方程的求法,特别是对于复杂函数的切线方程求解。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究切线的性质;2. 利用多媒体课件,直观展示切线的图像,帮助学生加深理解;3. 结合实际例子,让学生通过动手操作,掌握切线方程的求法。
六. 说教学过程1.导入:回顾函数、导数等基础知识,引出切线的概念;2. 新课讲解:讲解切线的定义、切线与导数的关系,展示切线方程的求法;3. 例题解析:分析实际例子,让学生动手求解切线方程;4. 课堂练习:布置练习题,巩固所学知识;5. 总结与拓展:总结切线的性质定理,提出拓展问题,激发学生的探究兴趣。
七. 说板书设计1.切线的定义;2. 切线与导数的关系;3. 切线方程的求法;4. 切线方程的求解步骤。
八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 练习题完成情况:检查学生课后练习题的完成质量,评估学生对知识的掌握程度;3. 学生反馈:收集学生的学习反馈,了解教学效果。
苏科版数学九年级上册《切线长定理》说课稿一. 教材分析苏科版数学九年级上册《切线长定理》是初中的重要内容,主要研究了圆的切线与圆内接四边形的关系。
通过学习切线长定理,可以让学生更好地理解圆的性质,提高解决几何问题的能力。
本节课的内容是学生学习圆的知识的延伸和拓展,对于培养学生的逻辑思维和空间想象能力具有重要意义。
二. 学情分析九年级的学生已经掌握了圆的基本性质和切线的定义,对于解决一些基本的切线问题已经有了一定的基础。
但是,对于切线长定理的理解和应用还需要进一步的引导和培养。
此外,学生的空间想象能力和逻辑思维能力参差不齐,需要在教学过程中给予不同程度的学生不同的关注和引导。
三. 说教学目标1.知识与技能目标:通过学习切线长定理,使学生掌握切线与圆内接四边形的关系,提高解决几何问题的能力。
2.过程与方法目标:通过观察、思考、探索,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.教学重点:切线长定理的证明和应用。
2.教学难点:对于切线长定理的理解和空间想象能力的培养。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,提高学生的问题解决能力。
2.教学手段:利用多媒体课件、几何画板等辅助教学,直观展示切线长定理的应用,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个具体的几何问题,引发学生对切线长定理的思考,激发学生的学习兴趣。
2.新课导入:介绍切线长定理的定义和证明过程,引导学生理解切线与圆内接四边形的关系。
3.案例分析:通过几个典型的例题,让学生运用切线长定理解决问题,巩固所学知识。
4.小组讨论:让学生分组讨论,探索切线长定理在解决更复杂问题中的应用,培养学生的团队合作意识。
5.总结提升:对切线长定理进行总结,引导学生思考如何运用切线长定理解决实际问题。
AD OGBECFEDOCBAF教学目标1.让学生了解切线长的概念.2.让学生理解切线长定理,并能熟练运用切线长定理进行解题和证明3.让学生通过应用切线长的概念和性质,提高推理判断能力。
教学设计一.自主学习二.合作探究三.学以致用四.课后练习学情分析1、已有的知识能力学生已经掌握了等边三角形的性质,直角三角形的性质,圆周角的知识,与圆有关的性质,切线的定义,切线的性质等。
2、已有的数学能力具有初步的逻辑推理能力和基本的作图能力等。
3、已有的学习能力预习能力、小组合作能力、讲解能力、概括总结能力,评价能力等。
教学重点难点重点:理解切线长定理,并能熟练运用切线长定理进行解题和证明。
难点:熟练运用切线长定理进行解题和证明。
教学过程活动1【讲授】教学活动一.自主学习1.判断直线与圆相切有几种方法如何判断直线与圆相切2.角平分线的判定和性质是什么3.过圆上一点可以作圆的一条切线,那么过圆外一点可以作圆的几条切线4.如图,PA、PB是⊙O的两条切线,A、B为切点,直线OP交⊙O于点D、E,交AB于点C。
(1)弧AD与弧BD是否相等为什么(2)OP与AB有怎样的位置关系为什么(3)图中有几对全等三角形归纳:1.在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.2. 切线长定理:从圆外一点引圆的两条切线长相等, 这点和圆心的连线平分两条切线的夹角。
二、合作探究例1.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数; (2)当OA=3时,求AP的长.例2.如图,AB∥DC,直线AB、BC、CD分别与⊙O相切于点E、F、G,求∠BOC的度数。
例3.如图,△ABC中,∠C =90º ,它的内切圆O分别与边AB、BC、CA相切于点D、E、F,且BD=6,AD=4,求⊙O的半径r.D FI C B AEP三、学以致用1. ⊙I 为△ABC 的内切圆,与三边分别切于点D 、E 、F,若AC=4,AB=6,BC=7,求AE 的长.2.如图,∠APB=50º ,PA 、PB 、DE 都为⊙O 的切线,切点分别为A 、B 、F,且PA=5。
§直线与圆的位置关系(4)---切线长定理一、教学目标:1、知道切线长的概念,并能够正确区分切线长和切线两个不同的概念;2、经历探索切线长定理的过程,能够运用切线长定理解决简单的问题.二、重点难点:重点:切线长定理以及应用难点:切线长定理的灵活运用三.教学过程:【知识准备】如图,已知⊙O,点P为平面上一点,过点P作⊙O的切线(工具不限)(学生先独立思考后小组交流)设计意图:1.点P为平面内一点,引导学生分点P在圆内、点P在圆上和点P在圆外三类进行研究,让学生有分类意识;通过操作发现:过圆内一点画不出圆的切线,过圆上一点有且只有一条切线,过圆外一点可以引圆的两条切线.2.当点P在圆外时,学生肯定会想到借助三角板的直角画出两条切线,可引导有能力的学生借助尺规作图画出两条切线。
【新知探究】1.定义:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.问题1:切线长概念中有哪些关键词切线长与切线有何区别生思考后口答:切线是一条直线,而切线长是圆外一点与切点之间的线段的长.问题2:观察图形,可以得到什么结论(学生先猜想PA=PB,后通过全等去证明)问题3:你能用文字语言表述刚才的发现吗引导学生归纳出切线长定理:过圆外一点所画的圆的两条切线长相等.师介绍切线长定理的几何语言:∵PA、PB是⊙O的两条切线∴PA=PB问题4:若连接AB交OP于点E,图中还可以得到哪些结论(生畅所欲言,师板书,在此基础上由学生提供数据,求出相关的边和角)设计意图:1.让学生正确区分切线长和切线两个不同的概念;2.培养学生先观察猜想,后证明猜想的习惯,培养学生口头表达能力。
3.让学生学会从复杂的图形中抽象出基本图形(母子图),并借助相似、勾股定理、面积法及三角函数解决问题。
【典例剖析】例1.如图,在以O为圆心的两个同心圆中,大圆的弦AB和AC分别和小圆相切于点D和E1、AB与AC相等吗为什么?2、如果连接DE,BC,那么DE 和BC有怎样的关系3、若两圆的半径分别为3和6,则BC与与小圆的位置关系是 ,并说明理由。