高一数学函数的概念2
- 格式:pdf
- 大小:698.56 KB
- 文档页数:9
新高一数学第二章知识点在新高一的数学学习中,第二章是一个重要的章节,主要涉及数学的基础知识和技巧。
本文将为您详细介绍新高一数学第二章的知识点。
一、集合与运算1. 集合的概念:集合是由一些确定的对象构成的整体。
2. 集合的表示方法:列举法和描述法。
3. 集合的运算:并集、交集、差集和补集。
4. 集合的基本性质:幂集、子集、空集等。
二、函数与映射1. 函数的概念:函数是一种对应关系,每一个自变量对应唯一的函数值。
2. 函数的表示方法:用公式、图像、表格等方式表示函数。
3. 函数的性质:奇偶性、单调性、周期性等。
4. 函数之间的运算:加减乘除、复合函数等。
5. 映射的概念:将一个集合中的元素对应到另一个集合中的元素。
三、数列与数列极限1. 数列的概念:是按照一定规律排列的一系列数。
2. 数列的通项与前n项和:用递推公式表示数列的通项,用求和公式表示数列的前n项和。
3. 数列的极限:数列随着项数的增加而趋于某个确定的值,称为数列的极限。
4. 数列的收敛性与发散性:如果数列的极限存在,则数列收敛;如果数列的极限不存在,则数列发散。
四、三角函数与解三角形1. 三角函数的概念:正弦、余弦、正切等三角函数的定义和性质。
2. 三角函数的图像和周期:根据三角函数的周期和幅值可以绘制三角函数的图像。
3. 解三角形的基本原理:根据已知条件和三角函数的定义可以解出三角形的边长和角度。
五、空间几何1. 空间几何基本概念:点、直线、平面、向量等的定义和性质。
2. 空间几何的性质与定理:包括直线垂直、平行、点与直线的位置关系等。
3. 空间几何的运算:向量的加法、减法、数量积和向量积的定义和性质。
总结:新高一数学第二章主要讲解了集合与运算、函数与映射、数列与数列极限、三角函数与解三角形以及空间几何等知识点。
熟练掌握这些知识点,对于后续数学学习的深入和应用具有重要的基础作用。
希望同学们认真学习并练习,掌握好这些知识点,为日后的学习打下坚实的基础。
重点:理解函数的三要素:定义域、对应法则及值域,会求函数的定义域与函数值,在此过程中培养学生的逻辑推理、数据分析、数学运算的素养。
难点:进一步理解函数的对应关系f,体会函数相等的概念。
学生在第一课时已经学习过函数的概念,并对函数的概念有了深刻的理解。
在此基础上让学生理解函数的三要素、判断两个函数相等,求函数的定义域及值域相对好理解,但是抽象函数的定义域对学生是一个考验。
注意:1、区间是集合的另一种表示形
式,注意与不等式的区别。
如:x ≥-1与[-1,+∞)是完全不同的 2、写区间的端点时,一定注意书写准确
根据具体实例结合数形结合让学
生加深对区间的
理解,使实例成
为理解概念的一
种思维载体。
【练一练】 (1)用区间表示{x |x ≥0且x ≠2}注意区间左端点
【例1】 把下列数集用区间表示: (1){x |x ≥-1}; (2){x |x <0};
(3){x |-1<x <1}; (4){x |0<x <1或2≤x ≤4}.
;
量的值求对应的
函数值,提高学
生数学运算的核
心素养,为求函
数的值域打好基.
础。
通过函数的定义,学生自主归纳出两个函数是同一个函数的概念,培养学生数学抽象的核心素养。
通过具体的例子,使学生掌握同一函数的判断方法.
通过课堂练习,巩固本节学习的内容。
3.1.1 第2课时 函数的概念(二)基 础 练巩固新知 夯实基础1.下列函数与函数y =x 是同一函数的是( )A .y =|x |B .y =3t 3C .y =x 2D .y =v 2v 2. (多选)下列函数,值域为(0,+∞)的是( )A .y =x +1(x >-1)B .y =x 2C .y =1x (x >0)D .y =1x +13.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( )A.{-1,0,3}B.{0,1,2,3}C.{y |-1≤y ≤3}D.{y |0≤y ≤3}4.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]5.已知函数f (x )=x +1x,则f (2)+f (-2)的值是( ) A .-1 B .0 C .1 D .26.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3 7.函数y =1x -2的定义域是A ,函数y =x 2+2x -3的值域是B ,则A ∩B =__________________(用区间表示).8.求下列函数值域。
(1)f (x )=3x -1,x ∈[-5,2);(2)y =5x -14x +2; (3)f (x )=4-x +x -2.能 力 练综合应用 核心素养9.函数y =5x +4x -1的值域是( ) A .(-∞,5)B .(5,+∞)C .(-∞,5)∪(5,+∞)D .(-∞,1)∪(1,+∞)10.下列各组函数中是同一函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 211.函数f (x )=x 2+1(0<x ≤2且x ∈N *)的值域是( )A .{x |x ≥1}B .{x |x >1}C .{2,3}D .{2,5}12.下列函数中,对于定义域内的任意x ,f (x +1)=f (x )+1恒成立的为( )A .f (x )=x +1B .f (x )=-x 2C .f (x )=1xD .y =|x | 13.若f (x )=11-x 2,则f (3)=_____,f (f (-2))=_____. 14.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),则a +b 的值为__92__. 15.若函数y =ax 2+2ax +3的值域为[0,+∞),则a 的取值范围是________.16.已知函数f (x )=x 21+x 2. (1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值. (2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值.(3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019的值.【参考答案】1.B 解析 选项A 和选项C 中,函数的值域都是[0,+∞);选项D 中,函数的定义域是(-∞,0)∪(0,+∞);选项B 中函数的定义域和值域都和函数y =x 相同,对应关系也等价,因此选B.2.AC 解析 y =x +1(x >-1)的值域为(0,+∞);y =x 2的值域为[0,+∞);y =1x (x >0)的值域为(0,+∞);y =1x +1的值域为(-∞,0)∪(0,+∞),3.A 解析 由对应关系y =x 2-2x 得,0→0,1→-1,2→0,3→3,所以值域为{-1,0,3}.4.B 解析 由于x +1≥0,所以函数y =x +1的值域为[0,+∞).5. B 解析 f (2)+f (-2)=2+12-2-12=0. 6.B 解析 A 、C 、D 的定义域均不同.7. [0,2)∪(2,+∞) 解析要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =x 2+2x -3=(x +1)2-4≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2或x >2}.8.解:(1)∵x ∈[-5,2),∴-15≤3x <6,∴-16≤3x -1<5,∴函数f (x )=3x -1,x ∈[-5,2)的值域是[-16,5).(2)y =5x -14x +2=544x +2-1-1044x +2=544x +2-1444x +2=54-724x +2. ∵724x +2≠0,∴y ≠54, ∴函数y =5x -14x +2的值域为{y ∈R |y ≠54}. (3)由题意可得,x ∈[2,4],因为f 2(x )=2+24-x x -2=2+2-x -32+1,所以f 2(x )∈[2,4],故函数f (x )的值域为[2,2].9.C 解析∵y =5x +4x -1=5(x -1)+9x -1=5+9x -1,且9x -1≠0,∴y ≠5,即函数的值域为(-∞,5)∪(5,+∞). 10.B 解析对于选项A ,前者定义域为R ,后者定义域为{x |x ≠1},不是同一函数;对于选项B ,虽然变量不同,但定义域和对应关系均相同,是同一函数;对于选项C ,虽然对应关系相同,但定义域不同,不是同一函数;对于选项D ,虽然定义域相同,但对应关系不同,不是同一函数.11.D 解析:∵0<x ≤2且x ∈N *,∴x =1或x =2.∴f (1)=2,f (2)=5,故函数的值域为{2,5}.12.A 解析 对于A 选项,f (x +1)=(x +1)+1=f (x )+1,成立.对于B 选项,f (x +1)=-(x +1)2≠f (x )+1,不成立.对于C 选项,f (x +1)=1x +1,f (x )+1=1x +1,不成立.对于D 选项,f (x +1)=|x +1|,f (x )+1=|x |+1,不成立.13.-18 98 解析 f (3)=11-9=-18,f (f (-2))=f ⎝⎛⎭⎫-13=98.14. 92 解析 ∵f (x )=12x 2-x +a =12(x -1)2+a -12,∴当x ∈[1,b ]时,f (x )min =f (1)=a -12,f (x )max =f (b )=12b 2-b +a .又f (x )在[1,b ]上的值域为[1,b ],∴⎩⎨⎧ a -12=1,12b 2-b +a =b ,解得⎩⎪⎨⎪⎧ a =32,b =1舍去或b =3. ∴a +b =32+3=92. 15. [3,+∞) 解析 函数y =ax 2+2ax +3的值域为[0,+∞),则函数f (x )=ax 2+2ax +3的值域要包括0,即最小值要小于等于0.则{ a >0,Δ=4a 2-12a ≥0,解得a ≥3.所以a 的取值范围是[3,+∞).16. 解 (1)因为f (x )=x 21+x 2,所以f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1,f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,所以f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,…,f (2019)+f ⎝⎛⎭⎫12019=1. 所以f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019=2018.。
二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)(见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
高一数学一二章知识点总结第一章:函数与方程1. 函数的概念及性质函数是一种数学关系,它将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)。
函数具有唯一性、有界性、单调性等性质。
2. 函数的表示与运算函数可以用函数表达式、函数图像、函数关系式等方式进行表示。
函数之间可以进行加减乘除、复合等运算。
3. 一次函数与二次函数一次函数是指函数表达式为y = kx + b的函数,其中k和b是常数。
二次函数是指函数表达式为y = ax² + bx + c的函数,其中a、b、c是常数。
4. 指数函数与对数函数指数函数是指函数表达式为y = aˣ的函数,其中a是常数且不等于1。
对数函数是指函数表达式为y = logₐx的函数,其中a是常数且不等于1。
5. 幂函数与反比例函数幂函数是指函数表达式为y = xᵃ的函数,其中a是常数。
反比例函数是指函数表达式为y = k/x的函数,其中k是常数。
6. 一元二次方程一元二次方程是指形如ax² + bx + c = 0的方程,其中a、b、c是已知数且a不等于0。
解一元二次方程可以使用因式分解、配方法、求根公式等方法。
第二章:数列与数学归纳法1. 数列的概念与性质数列是指按照一定规律排列的一组数。
数列可以分为等差数列、等比数列、等差数列、斐波那契数列等。
数列可以有首项、公差、通项等性质。
2. 等差数列与等比数列等差数列是指数列中的相邻两项之差都是相同的数列。
等比数列是指数列中的相邻两项之比都是相同的数列。
3. 数列的通项公式与求和公式数列的通项公式是指可以通过一个整数n来表示第n项的公式。
数列的求和公式是指可以通过一个整数n来表示前n项和的公式。
4. 数学归纳法数学归纳法是一种证明数学命题的方法。
数学归纳法分为基本步骤和归纳步骤,通过证明基本步骤成立以及归纳步骤的逻辑推理,可以得出结论。
总结:第一章主要介绍了函数的概念及性质,以及一次函数、二次函数、指数函数、对数函数、幂函数和反比例函数的特点和性质。
高一数学函数知识点归纳一、函数的概念1. 函数定义:函数是从一个数集A(定义域)到另一个数集B(值域)的映射,通常表示为y=f(x)。
2. 定义域:能够输入到函数中的所有可能的x值的集合。
3. 值域:函数输出的所有可能的y值的集合。
4. 函数图像:函数在坐标系中的图形表示。
二、函数的表示法1. 公式法:用数学公式表示函数关系,如y=2x+3。
2. 表格法:用表格列出x与y的对应值。
3. 图像法:通过函数图像直观表示函数关系。
三、函数的性质1. 单调性:函数在定义域内随着x的增加,y值单调递增或递减。
2. 奇偶性:函数f(x)如果满足f(-x)=-f(x)称为奇函数;如果满足f(-x)=f(x)称为偶函数。
3. 周期性:函数如果存在一个非零常数T,使得对于所有x,都有f(x+T)=f(x),则称函数具有周期性。
4. 有界性:函数的值域在某个区间内有限,称函数在该区间内有界。
四、基本初等函数1. 线性函数:y=kx+b(k≠0),其中k为斜率,b为截距。
2. 二次函数:y=ax^2+bx+c(a≠0),顶点形式为y=a(x-h)^2+k。
3. 幂函数:y=x^n,其中n为实数。
4. 指数函数:y=a^x(a>0,a≠1)。
5. 对数函数:y=log_a(x)(a>0,a≠1)。
6. 三角函数:正弦函数y=sin(x),余弦函数y=cos(x),正切函数y=tan(x)等。
五、函数的运算1. 函数的和差:(f±g)(x)=f(x)±g(x)。
2. 函数的乘积:(f*g)(x)=f(x)g(x)。
3. 函数的商:(f/g)(x)=f(x)/g(x)(g(x)≠0)。
六、复合函数1. 复合函数定义:如果有两个函数f(x)和g(x),那么(f∘g)(x)=f(g(x))。
2. 复合函数的运算法则:(f∘g)(x)=f(g(x)),其中g(x)≠0。
七、反函数1. 反函数定义:如果函数y=f(x)在区间I上是单调的,则存在一个函数x=f^(-1)(y),使得f(f^(-1)(y))=y。