高中数学不等式方法
- 格式:doc
- 大小:2.59 MB
- 文档页数:13
高中数学:不等式题目的七种证明方法压轴题目一般是开放型的题目,每年都是会变化。
但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。
我就来总结一下不等式的证明方法。
01比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。
前者为作差法,后者为作商法。
但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。
02分析法和综合这两个方法我们一般会一起使用。
分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。
如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。
我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。
当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。
03反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。
这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。
反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;4)肯定原来命题的结论是正确的。
04放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。
放缩法的目的性强,必须恰到好处,。
同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,灵活性很大。
高中数学解不等式问题的技巧在高中数学中,解不等式是一个重要的内容。
不等式是数学中的一种关系式,它告诉我们一个数与另一个数之间的大小关系。
解不等式的过程需要运用一些技巧和方法,下面我将介绍一些解不等式问题的技巧,希望对高中学生和他们的父母有所帮助。
一、一元一次不等式一元一次不等式是最基础的不等式类型,其形式为ax + b > 0(或 < 0)或ax +b ≥ 0(或≤ 0),其中a和b为已知实数,x为未知数。
解这类不等式的关键在于确定x的取值范围。
例如,解不等式2x + 3 > 5。
首先,我们将不等式转化为等价的形式:2x > 2。
然后,将x的系数2移到不等号右边,并将不等号改为等号:x > 1。
最后,得到不等式的解集为x > 1。
对于不等式ax + b ≥ 0,我们需要注意当a > 0时,解集为x ≥ -b/a;当a < 0时,解集为x ≤ -b/a。
这个结论可以帮助我们更快地确定不等式的解集。
二、一元二次不等式一元二次不等式的形式为ax^2 + bx + c > 0(或 < 0)或ax^2 + bx + c ≥ 0(或≤ 0),其中a、b和c为已知实数,x为未知数。
解这类不等式的关键在于找到二次函数的图像与x轴的交点。
例如,解不等式x^2 - 4x + 3 > 0。
首先,我们可以将不等式转化为等价的形式:(x - 1)(x - 3) > 0。
然后,我们绘制出二次函数y = x^2 - 4x + 3的图像,通过观察图像与x轴的交点,可以确定不等式的解集。
在这个例子中,我们可以看到当x < 1或x > 3时,不等式成立,因此解集为x < 1或x > 3。
对于一元二次不等式,我们还可以利用判别式来确定解集的性质。
当判别式Δ = b^2 - 4ac > 0时,解集为两个不相等的实数;当Δ = b^2 - 4ac = 0时,解集为两个相等的实数;当Δ = b^2 - 4ac < 0时,解集为空集。
高中数学不等式的解题方法与技巧
高中数学不等式的解题方法与技巧有以下几点:
1. 确定不等式的范围:首先要确定不等式的变量范围,例如确
定变量为正数、自然数等,以便后续的推导和计算。
2. 利用基本不等式:基本不等式是指常见的数学不等式,例如
平均不等式、柯西-施瓦茨不等式、均方根不等式等。
通过运用这些
基本不等式,可以简化和推导复杂的不等式。
3. 分析不等式的性质:通过观察不等式的形式和特点,可以得
出不等式的一些性质。
例如,不等式是否对称、是否单调递增等,这些性质可以为解题提供线索。
4. 使用增减法:对于复杂的不等式,可以通过增减法将不等式
变换成简单的形式。
增减法是指在不等式两边同时加减相同的数,从而改变不等式的形式。
通过多次的增减操作,可以逐步简化不等式的形式。
5. 运用数学归纳法:对于涉及自然数的不等式,可以使用数学
归纳法进行证明。
数学归纳法是通过证明某个命题对于自然数n成立,然后再证明对于n+1也成立,从而得出该命题对于所有自然数成立的结论。
6. 剖析复杂不等式:对于特别复杂的不等式,可以使用分段函数、图像、积分等方法进行剖析。
这些方法可以将不等式转化为求解函数的最值或积分的问题,进而求解不等式。
总之,解决高中数学不等式需要灵活运用各种方法和技巧,通过
观察、推导和计算,找到合适的途径来简化不等式、得出结论。
掌握了这些解题方法与技巧,可以提高解决数学不等式问题的能力。
高中数学不等式题解题方法高中数学中,不等式是一个重要的考点,也是学生们普遍感到困惑的一个难点。
解不等式题需要掌握一定的方法和技巧,下面我将以具体的题目为例,详细介绍高中数学不等式题的解题方法。
一、一元一次不等式1. 题目:求解不等式2x + 3 > 5。
解析:这是一个一元一次不等式,我们可以通过移项和化简来求解。
首先,将不等式中的常数项移到一边,得到2x > 2。
然后,将不等式两边都除以2,得到x > 1。
所以,不等式的解集为{x | x > 1}。
2. 题目:求解不等式3x - 4 ≤ 7。
解析:这是一个一元一次不等式,我们可以通过移项和化简来求解。
首先,将不等式中的常数项移到一边,得到3x ≤ 11。
然后,将不等式两边都除以3,得到x ≤ 11/3。
所以,不等式的解集为{x | x ≤ 11/3}。
通过以上两个例子,我们可以总结出解一元一次不等式的方法:将不等式中的常数项移到一边,然后将不等式两边都除以系数,最后根据不等号的方向确定解集。
二、一元二次不等式1. 题目:求解不等式x^2 - 3x + 2 > 0。
解析:这是一个一元二次不等式,我们可以通过求解方程来确定不等式的解集。
首先,将不等式转化为方程x^2 - 3x + 2 = 0。
然后,求解方程得到x = 1或x = 2。
接下来,我们需要确定不等式在这两个解的两侧的取值情况。
取一个介于1和2之间的数,比如1.5,代入不等式中,得到1.5^2 - 3(1.5) + 2 = 0.25 > 0。
所以,不等式在x = 1和x = 2之间是大于0的。
综合起来,不等式的解集为{x | 1 < x < 2}。
通过以上例子,我们可以总结出解一元二次不等式的方法:先求解方程,然后确定不等式在解的两侧的取值情况,最后根据不等号的方向确定解集。
三、绝对值不等式1. 题目:求解不等式|2x - 1| > 3。
高中数学中的不等式解题方法与实例分析不等式是数学中常见的一类问题,解决不等式问题需要我们掌握一些解题方法和技巧。
本文将对高中数学中的不等式解题方法进行分析,并通过实例来进一步说明。
一、绝对值不等式的解法绝对值不等式是不等式中常见的一种形式,解决该类问题可以分以下几种情况进行讨论:1. 若|x| < a,则x的取值范围为(-a, a);例如,若|3x + 2| < 5,则-5 < 3x + 2 < 5,解得-7/3 < x < 1。
2. 若|x| > a,则x的取值范围为(-∞, -a)∪(a, +∞);例如,若|2x - 1| > 3,则2x - 1 < -3或2x - 1 > 3,解得x < -1 或 x > 2。
二、一次不等式的解法一次不等式是指不等式中最高次项为一次的情况。
解决一次不等式问题的方法如下:1. 将一次不等式化简为数轴上的区间问题,确定不等式的解集和表示方法;例如,若2x - 3 > 5,则解不等式可得x > 4。
2. 注意一次不等式中系数的正负对不等号的影响;例如,若4x + 6 < 10,则解不等式可得x < 1/2。
三、二次及以上次数不等式的解法对于二次及以上次数的不等式,我们通常会进行如下步骤来解决问题:1. 将不等式转化为二次函数的零点问题,求出二次函数的零点。
2. 根据二次函数的图像特点,确定不等式的解集和表示方法。
实例分析:例如,解不等式x^2 - 4x + 3 > 0。
首先,将不等式化简为(x-1)(x-3) > 0。
得到二次函数的两个零点为x=1和x=3。
其次,根据二次函数的图像特点,我们知道当x小于1或大于3时,二次函数的值大于零。
因此,不等式的解集为x < 1 或 x > 3。
综上所述,我们通过绝对值不等式、一次不等式和二次及以上次数不等式的解题方法及实例分析,详细介绍了高中数学中解决不等式问题的技巧与方法。
关于不等式证明的常用方法重难点归纳(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述 如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证(2)综合法是由因导果,而分析法是执果索因2 不等式证明还有一些常用的方法 换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等 换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性 放缩性是不等式证明中最重要的变形方法之一.有些不等式,从正面证如果不易说清楚,可以考虑反证法 凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法典型题例例1证明不等式n n2131211<++++Λ(n ∈N *)知识依托 本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等例2求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值知识依托 该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值例3已知a >0,b >0,且a +b =1 求证 (a +a 1)(b +b 1)425证法一 (分析综合法) 证法二 (均值代换法) 证法三 (比较法) 证法四 (综合法) 证法五 (三角代换法)巩固练习1 已知x 、y 是正变数,a 、b 是正常数,且ybx a +=1,x +y 的最小值为 _ 2 设正数a 、b 、c 、d 满足 a +d =b +c ,且|a -d |<|b -c |,则ad 与bc 的大小关系是_________3 若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________4 已知a ,b ,c 为正实数,a +b +c =1 求证(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤6 5 已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明 x ,y ,z ∈[0,32]6 证明下列不等式(1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则c b a y b a c x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz ,则z y x y x z x z y +++++≥2(zy x 111++) 7 已知i ,m 、n 是正整数,且1<i ≤m <n(1)证明 n i A i m <m i A i n (2)证明 (1+m )n >(1+n )m8 若a >0,b >0,a 3+b 3=2,求证 a +b ≤2,ab ≤1不等式知识的综合应用典型题例例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)知识依托 本题求得体积V 的关系式后,应用均值定理可求得最值例2已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1(1)证明 |c |≤1;(2)证明 当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x )知识依托 二次函数的有关性质、函数的单调性,绝对值不等式例3设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2a1 (1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图象关于直线x =x 0对称,证明 x 0<21x 巩固练习1 定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A ①③B ②④C ①④D ②③2 下列四个命题中 ①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若y x 91+=1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________4 已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围6 设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1(1)求证 f (0)=1,且当x <0时,f (x )>1;(2)求证 f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围7 已知函数f (x )=1222+++x cbx x (b <0)的值域是[1,3], (1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论; (3)若t ∈R ,求证 lg57≤F (|t -61|-|t +61|)≤513 数列与不等式的交汇题型分析及解题策略【命题趋向】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识数列的通项公式、前n 项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用. 【典例分析】题型一 求有数列参与的不等式恒成立条件下参数问题求得数列与不等式结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D ,则当x ∈D 时,有f(x)≥M 恒成立⇔f(x)min ≥M ;f(x)≤M 恒成立⇔f(x)max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 【例1】等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n >1a 1+1a 2+…+1a n 恒成立的正整数n 的取值范围.【例2】(08·全国Ⅱ)设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n ,n ∈N*.(Ⅰ)设b n =S n -3n ,求数列{b n }的通项公式;(Ⅱ)若a n+1≥a n ,n ∈N*,求a 的取值范围.【点评】 一般地,如果求条件与前nABCDS项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解题型二 数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【例3】 已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设p 、q 都是正整数,且p ≠q ,证明:S p+q <12(S 2p +S 2q ).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】 (08·安徽高考)设数列{a n }满足a 1=0,a n+1=ca n 3+1-c ,c ∈N*,其中c 为实数.(Ⅰ)证明:a n ∈[0,1]对任意n ∈N*成立的充分必要条件是c ∈[0,1];(Ⅱ)设0<c <13,证明:a n ≥1-(3c)n -1,n ∈N*;(Ⅲ)设0<c <13,证明:a 12+a 22+…+a n 2>n +1-21-3c,n ∈N*.题型三 求数列中的最大值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.【例5】 (08·四川)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为______.【例6】 等比数列{a n }的首项为a 1=2002,公比q =-12.(Ⅰ)设f(n)表示该数列的前n 项的积,求f(n)的表达式;(Ⅱ)当n取何值时,f(n)有最大值.题型四 求解探索性问题数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.【例7】 已知{a n }的前n 项和为S n ,且a n +S n =4.(Ⅰ)求证:数列{a n }是等比数列;(Ⅱ)是否存在正整数k ,使S k+1-2S k -2>2成立. 【点评】在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.【例8】 (08·湖北)已知数列{a n }和{b n }满足:a 1=λ,a n+1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b?若存在,求λ的取值范围;若不存在,说明理由.数列与不等式命题新亮点例1 把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数…,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23) …,则第50个括号内各数之和为_____.点评:恰当的分组,找到各数之间的内在联系是解决之道.此外,这种题对观察能力有较高的要求. 例2 设{}n a 是由正数构成的等比数列, 12n n n b a a ++=+,3n n n c a a +=+,则( )A. nn b c > B. n n b c < C. n n b c ≥ D. n n b c ≤点评:此题较易入手,利用作差法即可比较大小,考察数列的递推关系. 例3 若对(,1]x ∈-∞-,不等式21()2()12x x mm --<恒成立,则实数m 的取值范围( )A. (2,3)-B. (3,3)-C. (2,2)-D. (3,4)-例4四棱锥S-ABCD 的所有棱长均为1米,一只小虫从S 点出发沿四棱锥的棱爬行,若在每一顶点处选择不同的棱都是等可能的.设小虫爬行n 米后恰好回到S 点的概率为n P (1)求2P 、3P 的值; (2)求证: 131(2,)n nP P n n N ++=≥∈(3)求证: 2365>(2,)24n n P P P n n N -+++≥∈…例5 已知函数()2f x x x =+.(1)数列{}n a 满足: 10a >,()1n n a f a +'=,若11112ni ia =<+∑对任意的n N ∈恒成立,试求1a 的取值范围; (2)数列{}n b 满足: 11b =,()1n n b f b +=()n N ∈,记11n nc b =+,k S 为数列{}n c 的前k 项和, k T 为数列{}n c 的前k 项积,求证1710nk k k kT S T =<+∑. 例6 (1)证明: ()ln1(0)x x x +<> (2)数列{}n a 中. 11a =,且()11211122n n n a a n n --⎛⎫=++≥ ⎪⎝⎭; ①证明: ()724n a n ≥≥ ②()21n a e n <≥ 【专题训练】1.已知无穷数列{a n }是各项均为正数的等差数列,则有( )A .a 4a 6<a 6a 8B .a 4a 6≤a 6a 8C .a 4a 6>a 6a 8D .a 4a 6≥a 6a 82.设{a n }是由正数构成的等比数列,b n =a n+1+a n+2,c n =a n +a n+3,则( ) A .b n >c nB .b n <c nC .b n ≥c nD .b n ≤c n3.已知{a n }为等差数列,{b n }为正项等比数列,公比q≠1,若a 1=b 1,a 11=b 11,则( )A .a 6=b 6B .a 6>b 6C .a 6<b 6D .a 6>b 6或a 6<b 6 4.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ) A .9 B .8 C .7 D .6 5.已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定 6.设S n =1+2+3+…+n ,n ∈N*,则函数f(n)=S n(n +32)S n+1的最大值为( )A .120B .130C .140D .1507.已知y 是x 的函数,且lg3,lg(sinx -12),lg(1-y)顺次成等差数列,则( )A .y 有最大值1,无最小值B .y 有最小值1112,无最大值C .y 有最小值1112,最大值1D .y 有最小值-1,最大值1 8.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A.(-∞,-1]B.(-∞,-1)∪(1,+∞) C.[3,+∞)D.(-∞,-1]∪[3,+∞)9.设3b 是1-a 和1+a 的等比中项,则a +3b 的最大值为( )A .1B .2C .3D .410.设等比数列{a n }的首相为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意n ∈N*都有a n+1>a n ”的( )A .充分不必要条件B .必要不充分条件C .充分比要条件D .既不充分又不必要条件11.{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .2112.设f(x)是定义在R 上恒不为零的函数,对任意实数x 、y ∈R ,都有f(x)f(y)=f(x +y),若a 1=12,a n =f(n)(n ∈N*),则数列{a n }的前n 项和S n 的取值范围是 ( ) A .[12,2)B .[12,2]C .[12,1)D .[12,1]13.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S nn2,如果存在正整数M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是__________.14.无穷等比数列{a n }中,a 1>1,|q|<1,且除a 1外其余各项之和不大于a 1的一半,则q 的取值范围是________. 15.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b)2cd的最小值是________.A.0B.1C.2D.416.等差数列{a n }的公差d 不为零,S n 是其前n 项和,给出下列四个命题:①A .若d <0,且S 3=S 8,则{S n }中,S 5和S 6都是{S n }中的最大项;②给定n ,对于一定k ∈N*(k <n),都有a n -k +a n+k =2a n ;③若d >0,则{S n }中一定有最小的项;④存在k ∈N*,使a k -a k+1和a k -a k -1同号 其中真命题的序号是____________.17.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(Ⅰ)求{a n }的通项n a ;(Ⅱ)求{a n }前n 项和S n 的最大值.18.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2n +1. 19.设数列{a n }的首项a 1∈(0,1),a n =3-a n -12,n =2,3,4,…. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =a n 3-2a n ,证明b n <b n+1,其中n 为正整数. 20.已知数列{a n }中a 1=2,a n+1=(2-1)( a n +2),n =1,2,3,….(Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{a n }中b 1=2,b n+1=3b n +42b n +3,n =1,2,3,….证明:2<b n ≤a 4n -3,n =1,2,3,… 21.已知二次函数y =f(x)的图像经过坐标原点,其导函数为f '(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N*)均在函数y =f(x)的图像上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N*都成立的最小正整数m22.数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n =L ,,),λ是常数.(Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求λ的取值范围,使得存在正整数m ,当nm >时总有0n a <.利用导数处理与不等式有关的问题一、 利用导数证明不等式(一)、利用导数得出函数单调性来证明不等式某个区间上导数大于(或小于)0时,则该单调递增(或递减)。
不等式的解法高中数学公式
高中数学常见的不等式解法有如下几种公式:
1. 二次函数法:
对于一元二次不等式,可以将其转化为二次函数的求解问题。
首先对不等式中的二次项与常数项进行合并,得到一个一元二次函数。
然后通过求解二次函数的根或者根的位置来确定不等式的解集。
2. 直接法:
对于一些简单的不等式,可以直接通过对不等式进行变形,化简得到最终结果。
常见的直接法有加减法、乘除法等。
3. 分段讨论法:
对于一个包含多个不等式的复合不等式,可以将复合不等式拆分成若干个简单的不等式,并通过讨论每个简单不等式的解集的情况来确定复合不等式的解集。
4. 取模法:
对于一些涉及取模的不等式,可以通过取模运算的性质来进行求解。
通过去除不等式中的取模运算,将其转化为普通的不等式,进而求解得到最终结果。
5. 绝对值法:
对于一些含有绝对值的不等式,可以通过绝对值的性质来进行求解。
通过分情况讨论绝对值的取值范围,进而求解得到最终结果。
以上是高中数学中常见的不等式解法公式,通过灵活应用这些公式,可以有效地解决各种不等式问题。
高中数学不等式求解方法及应用引言:在高中数学中,不等式是一个重要的概念和工具。
它不仅在数学理论中有着广泛的应用,而且在实际问题中也有着重要的意义。
本文将介绍高中数学中常见的不等式求解方法,并通过具体的例题来分析和说明这些方法的应用。
一、一元一次不等式的求解方法一元一次不等式是高中数学中最简单的不等式之一。
常见的一元一次不等式形式为ax + b > 0或ax + b < 0。
对于这种类型的不等式,我们可以使用图像法或代数法进行求解。
1. 图像法图像法是一种直观的方法,通过绘制一元一次不等式的图像,可以直观地看出不等式的解集。
例如,对于不等式2x + 3 > 0,我们可以绘制出一元一次函数y = 2x + 3的图像,并找出图像上y > 0的部分,即为不等式的解集。
2. 代数法代数法是一种更为常用和通用的方法,通过对不等式进行代数运算,可以得到不等式的解集。
例如,对于不等式2x + 3 > 0,我们可以通过移项和分析系数的正负来得到解集。
首先,移项得到2x > -3,然后除以2得到x > -3/2,即x的取值范围为(-3/2, +∞)。
二、一元二次不等式的求解方法一元二次不等式是高中数学中常见的不等式之一。
常见的一元二次不等式形式为ax^2 + bx + c > 0或ax^2 + bx + c < 0。
对于这种类型的不等式,我们可以使用图像法或代数法进行求解。
图像法同样是一种直观的方法,通过绘制一元二次不等式的图像,可以直观地看出不等式的解集。
例如,对于不等式x^2 - 4x + 3 > 0,我们可以绘制出一元二次函数y = x^2 - 4x + 3的图像,并找出图像上y > 0的部分,即为不等式的解集。
2. 代数法代数法同样是一种常用和通用的方法,通过对不等式进行代数运算,可以得到不等式的解集。
例如,对于不等式x^2 - 4x + 3 > 0,我们可以通过求解二次方程x^2 - 4x + 3 = 0,并分析二次函数的凹凸性质来得到解集。
高中数学不等式解题技巧高中数学中,不等式是一个重要的知识点,也是考试中常见的题型之一。
解不等式题目需要一定的技巧和方法,下面将介绍一些常见的解题技巧,帮助高中学生更好地应对不等式题目。
1. 转化形式有时候,我们可以通过转化不等式的形式来简化问题。
例如,对于不等式3x-2>5,我们可以将其转化为3x>7,进一步得到x>7/3。
这样,我们就得到了不等式的解集。
2. 加减法原则对于不等式中的加减法,我们需要注意一些原则。
当不等式的两边同时加上(或减去)一个数时,不等号的方向不变。
例如,对于不等式2x+3>7,我们可以将其化简为2x>4,进一步得到x>2。
3. 乘法原则对于不等式中的乘法,我们同样需要注意一些原则。
当不等式的两边同时乘以一个正数时,不等号的方向不变。
例如,对于不等式2x<8,我们可以将其化简为x<4。
但是,当不等式的两边同时乘以一个负数时,不等号的方向需要改变。
例如,对于不等式-2x>8,我们需要将其乘以-1,同时改变不等号的方向,得到2x<-8,进一步得到x<-4。
4. 绝对值不等式绝对值不等式是高中数学中常见的题型之一。
解绝对值不等式的关键是找到绝对值的取值范围。
例如,对于不等式|2x-3|<7,我们可以将其拆分为两个不等式2x-3<7和2x-3>-7,得到x<5和x>-2。
综合起来,我们可以得到-2<x<5,即解集为(-2, 5)。
5. 二次函数不等式二次函数不等式也是高中数学中常见的题型之一。
对于二次函数不等式,我们可以通过求解二次函数的零点来确定不等式的解集。
例如,对于不等式x^2-4x+3>0,我们可以将其化简为(x-1)(x-3)>0,得到x<1或x>3。
综合起来,我们可以得到解集为(-∞, 1)∪(3, +∞)。
综上所述,解不等式题目需要一定的技巧和方法。
高中数学不等式求解技巧高中数学中的不等式求解是一个重要的内容,也是考试中常见的题型。
掌握一些求解不等式的技巧可以帮助我们更快、更准确地解题。
下面我将从不等式性质、基本不等式以及常用的不等式求解方法等方面进行介绍。
一、不等式性质1. 不等式传递性:如果 a<b,b<c,则有 a<c。
2. 不等式加减性:如果 a<b,c>0,则有 a+c < b+c,a-c < b-c。
3. 不等式乘除性:如果a<b,c>0,则有ac < bc,a/c < b/c(前提是除数c不为0)。
二、基本不等式1. 异号的两个数相乘小于零:如果a<0<b,则有ab<0。
2. 两个数的平方关系:如果a≥b≥0,则有a^2≥b^2。
3. 正数的倒数与大小关系:如果 0<a<b,则 1/b<1/a。
三、不等式求解方法1. 移项法:将不等式中的项按照正负移动到一边形成一个等式,例如 x+2<5 可移项为 x<5-2,得到 x<3。
2. 加减法:根据不等式性质,可以加减一个相同的数使得不等式变形。
例如2x-3>5 可以两边加上3,得到2x>8,再除以2,得到 x>4。
3. 乘除法:根据不等式性质,可以乘除一个大于零的数使得不等式变形,但要注意乘以一个负数要改变不等式方向。
例如-3x < 9 可以两边除以-3,但要改变不等式符号方向得到 x>-3。
4. 绝对值法:对于带有绝对值的不等式,可以根据绝对值的性质进行分段讨论。
例如|x-3|<4 可以分为两种情况:当x-3≥0 时,得到x<7;当x-3<0 时,得到x>1。
综合起来,得到 1<x<7。
四、常用的不等式1. 平均值不等式:对于正数a1,a2,...,an,有(a1+a2+...+an)/n ≥√(a1a2...an),等号成立当且仅当a1=a2=...=an。
一元二次不等式:一元一次不等式的解法:(依据、步骤、注意的问题,利用数轴表示)例1、已知关于x 的不等式在(–2,0)上恒成立,求实数a 的取值范围. 例2.关于x 的不等式对所有实数x ∈R 都成立,求a 的取值范围.例3、若关于x 的不等式02>--a ax x 的解集为),(+∞-∞,则实数a 的取值范围是______________;若关于x 的不等式32-≤--a ax x 的解集不是空集,则实数a 的取值范围是______________。
(-4,0), (][)+∞-∞-,26, 几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若(2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号)(3)如果a ,b.2a b +(当仅当a=b 时取等号)一正、二定、三相等.,3a b c a b c R +++∈(4)若、、则a=b=c 时取等号)0,2b aab a b >+≥(5)若则(当仅当a=b 时取等号)2222(6)0||;||a x a x a x a x a x a x a a x a >>⇔>⇔<-><⇔<⇔-<<时,或 (7)||||||||||||,b a b a b a R b a +≤±≤-∈则、若常用不等式(12211a b a b +≥≥≥+(根据目标不等式左右的运算结构选用); (2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);(3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题)。
如 如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)常用不等式的放缩法:①21111111(2)1(1)(1)1n n n n n n n n n n -==-≥++--1)n ==≥利用函数的单调性简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
22(3)210x a x a +-+-<)1(log 22++-=ax axy如(1)解不等式2(1)(2)0x x -+≥。
(答:{|1x x ≥或2}x =-);(2)不等式(0x -的解集是____(答:{|3x x ≥或1}x =-);(3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为∅,则不等式()()0f x g x > 的解集为______(答:(,1)[2,)-∞+∞ );(4)要使满足关于x 的不等式0922<+-a x x (解集非空)的每一个x 的值至少满足不等式08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是______.(答:81[7,)8) 分式不等式的解法:先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。
如(1)解不等式25123xx x -<---(答:(1,1)(2,3)- );(2)关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式02>-+x bax 的解集为_____(答:),2()1,(+∞--∞ ).绝对值不等式的解法:(1)分段讨论法(最后结果应取各段的并集):如21--+x x >a 在R x ∈上有解,则a 的取值范围是(()3,∞-) (2)利用绝对值的定义;a x a )0a (a x <<-⇔><, a x a x )0a (a x >-<⇔>>或(3)数形结合;如解不等式|||1|3x x +->(答:(,1)(2,)-∞-+∞ )(4)两边平方:如若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。
(答:4{}3)含参不等式的解法:求解通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。
注意:按参数讨论,最后按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. 如(1)若2log 13a<,则a 的取值范围是__________(答:1a >或203a <<); (2)解不等式2()1ax x a R ax >∈-(答:0a =时,{|x 0}x <;0a >时,1{|x x a >或0}x <;0a <时,1{|0}x x a<<或0}x <) 提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。
如关于x 的不等式0>-b ax 的解集为)1,(-∞,则不等式02>+-bax x 的解集为__________(答:(-1,2)) 含绝对值不等式的性质:a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-;2(1)4()(1)1x f x x x ++=>-+a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.如设2()13f x x x =-+,实数a 满足||1x a -<,求证:|()()|2(||1)f x f a a -<+不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) 1).恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <如(1)设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______(答:)1,+∞);(2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____(答:1a <);(3)若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____(答:(712-,312+));(4)若不等式na n n1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____(答:3[2,)2-);(5)若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.(答:12m >-) 2).能成立问题若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.如已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围____(答:1a >) 两个重要函数:|||1|3x x +-> 函数y=x+x1 练习:1、已若1x >,求4231x x ++-的最小值. 已知x <45,求函数y=4x-2+541-x 的最大值2、知,R x y +∈且191x y+=,则x y +的最小值是_____________.若21x y +=,则24x y +的最小值是______ 3、知a ,b ,c ,d 均为实数,有下列命题: <1>若ab bc ad >->00,,则c a d b ->0;<2>若ab c a db>->00,,则bc ad ->0 <3>若bc ad c a db->->00,,则ab >0其中正确命题是()4.求函数的最小值.5、求证:2221111223n ++++< 231124(1)2(1)(1)()22327x x x x x -=⋅--≤= 二元一次不等式组与简单线性规划问题1.二元一次不等式表示的平面区域:直线l : ax+by+c=0把直角坐标平面分成了三个部分: (1)直线l 上的点(x,y )的坐标满足ax+by+c=0(2)直线l 一侧的平面区域内的点(x,y )的坐标都满足ax+by+c>0 (3)直线l 另一侧的平面区域内的点(x,y )的坐标满足ax+by+c<0所以,只需在直线l 的某一侧的平面区域内,任取一特殊点(x 0 , y 0),从a 0x+b 0y+c 值的正负,即可判断不等式表示的平面区域。
2.线性规划:如果两个变量x,y 满足一组一次不等式,求这两个变量的一个线性函数的最大值或最小值,称这个线性函数为目标函数,称一次不等式组为约束条件,像这样的问题叫作二元线性规划问题。
其中,满足约束条件的解(x,y)称为可行解,由所有可行解组成的集合称为可行域,使目标函数取得最大值和最小值的可行解称为这个问题的最优解。
3.线性规划问题应用题的求解步骤:(1)先写出决策变量,找出约束条件和线性目标函数;(2)作出相应的可行域;(3)确定最优解 例题分析:例1.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 ( )A .34 B .1 C .74D .5 例2.如果点P 在平面区域⎪⎩⎪⎨⎧≥-≤-+≥+-01202022y y x y x 上,点O 在曲线1)2(22=++y x 上,那么的||PQ 最小值为()(A)23(B)154- (C)122- (D)12- 例3、已知实数,x y 满足3025000x y x y x y +-≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,则2y x -的最大值是_________.1、点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是() A. [0,5] B. [0,10] C. [5,10] D. [5,15]2.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是()A .⎥⎦⎤⎢⎣⎡6,59B .[)965⎛⎤-∞+∞ ⎥⎝⎦,, C .(][)36-∞+∞ ,, D .[36],3.设D 是不等式组⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+1,40,32102y x y x y x ,表示的平面区域,则D 中的点P (x ,y )到直线x +y =10距离的最大值是.4.已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是.例1.C; 例2. A; 例3、___0_____.1、B; 2.A; 3.24; 4. 5 ;线性规划常见题型及解法线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。