高中数学不等式解法15种典型例题
- 格式:doc
- 大小:643.50 KB
- 文档页数:5
高三数学不等式解法15个典型例题典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x x x x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
高考不等式经典例题【例1】已知a>0,a≠1,P=loga (a3-a+1),Q=loga(a2-a+1),试比较P与Q的大小.【解析】因为a3-a+1-(a2-a+1)=a2(a-1),当a>1时,a3-a+1>a2-a+1,P>Q;当0<a<1时,a3-a+1<a2-a+1,P>Q;综上所述,a>0,a≠1时,P>Q.【变式训练1】已知m=a+A.m<n11-(a>2),n=x2(x≥),则m,n之间的大小关系为()2a-2B.m>nC.m≥nD.m≤n【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递.m=a+111=a-2++2≥2+2=4,而n=x-2≤()-2=4.2a-2a-2【变式训练2】已知函数f(x)=ax2-c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围.【解析】由已知-4≤f(1)=a-c≤-1,-1≤f(2)=4a-c≤5.令f(3)=9a-c=γ(a-c)+μ(4a-c),5⎧γ=-,⎪⎧γ+4μ=9,⎪3所以⎨⇒⎨⎩-γ-μ=-1⎪μ=8⎪3⎩58故f(3)=-(a-c)+(4a-c)∈[-1,20].33题型三开放性问题c d【例3】已知三个不等式:①ab>0;②>;③bc>ad.以其中两个作条件,余下的一个作结论,则能组a b成多少个正确命题?c d bc-ad【解析】能组成3个正确命题.对不等式②作等价变形:>⇔>0.a b abbc-ad(1)由ab>0,bc>ad⇒>0,即①③⇒②;abbc-ad(2)由ab>0,>0⇒bc-ad>0⇒bc>ad,即①②⇒③;abbc-ad(3)由bc-ad>0,>0⇒ab>0,即②③⇒①.ab故可组成3个正确命题.【例2】解关于x的不等式mx2+(m-2)x-2>0 (m∈R).【解析】当m=0时,原不等式可化为-2x-2>0,即x<-1;当m≠0时,可分为两种情况:2(1)m>0时,方程mx2+(m-2)x-2=0有两个根,x1=-1,x2=.m2所以不等式的解集为{x|x<-1或x>};m(2)m<0时,原不等式可化为-mx2+(2-m)x+2<0,m+222其对应方程两根为x1=-1,x2=,x2-x1=-(-1)=.m m m2①m<-2时,m+2<0,m<0,所以x2-x1>0,x2>x1,不等式的解集为{x|-1<x<};m②m=-2时,x2=x1=-1,原不等式可化为(x+1)2<0,解集为∅;2③-2<m<0时,x2-x1<0,即x2<x1,不等式解集为{x|<x<-1}.m【变式训练2】解关于x的不等式ax-1>0.x+1【解析】原不等式等价于(ax-1)(x+1)>0.1当a=0时,不等式的解集为{x|x<-1};当a>0时,不等式的解集为{x|x>或x<-1};a1当-1<a<0时,不等式的解集为{x|<x<-1};当a=-1时,不等式的解集为∅;a1当a<-1时,不等式的解集为{x|-1<x<}.a【例3】已知ax2+bx+c>0的解集为{x|1<x<3},求不等式cx2+bx+a<0的解集.1【解析】由于ax2+bx+c>0的解集为{x|1<x<3},因此a<0,解得x<或x>1.32y+1(1)z=x+2y-4的最大值;(2)z=x2+y2-10y+25的最小值;(3)z=的取值范围.x+1【解析】作出可行域如图所示,并求出顶点的坐标A(1,3),B(3,1),C(7,9).(1)易知直线x+2y-4=z过点C时,z最大.所以x=7,y=9时,z取最大值21.(2)z=x2+(y-5)2表示可行域内任一点(x,y)到定点M(0,5)的距离的平方,过点M作直线AC的垂线,易知垂足N在线段AC上,故z的最小值是(|0-5+2|9)2=.221(3)z=2·表示可行域内任一点(x,y)与定点Q(-1,-)连线斜率的2倍.2x-(-1)7337因为kQA=,kQB=,所以z的取值范围为[,].4842【例1】(1)设x,y∈R+,且xy-(x+y)=1,则()1y-(-)2A .x +y ≥2(2+1)B .x +y ≤2(2+1) C.x +y ≤2(2+1)2D.x +y ≥(2+1)2(2)已知a ,b ∈R +,则ab ,a +b,2a 2+b 22ab,的大小顺序是.2a +bx +y x +y)2,所以()2≥1+(x +y ).22【解析】(1)选A.由已知得xy =1+(x +y ),又xy ≤(解得x +y ≥2(2+1)或x +y ≤2(1-2).因为x +y >0,所以x +y ≥2(2+1).a +b 2ab 2ab(2)由≥ab 有a +b ≥2ab ,即a +b ≥,所以ab ≥.2ab a +b a +b 又=2a 2+2ab +b 2≤42(a 2+b 2),所以4a 2+b 2a +b≥,所以22a 2+b 2a +b 2ab≥≥ab ≥.22a +b11λ【变式训练1】设a >b >c ,不等式+>恒成立,则λ的取值范围是.a -b b -c a -c 【解析】(-∞,4).因为a >b >c ,所以a -b >0,b -c >0,a -c >0.而(a -c )(1111+)=[(a -b )+(b -c )](+)≥4,所以λ<4.a -b b -c a -b b -c 51【例2】(1)已知x <,则函数y =4x -2+的最大值为;44x -5511【解析】(1)因为x <,所以5-4x >0.所以y =4x -2+=-(5-4x +)+3≤-2+3=1.44x -55-4x1当且仅当5-4x =,即x =1时,等号成立.所以x =1时,y max =1.5-4x(a +b )2【变式训练2】已知x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,求的取值范围.cd 【解析】由等差数列、等比数列的性质得a +b =x +y ,(a +b )2(x +y )2(a +b )2(a +b )2x y y y cd =xy ,所以==2++,当>0时,≥4;当<0时,≤0,cd xy y x x cd x cd (a +b )2故的取值范围是(-∞,0]∪[4,+∞).cd例已知x ,y ,>0,28+=1,求xy的最小值。
高中数学基本不等式的解法十例Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】高中数学基本不等式问题求解十例一、基本不等式的基础形式1.222a b ab +≥,其中,a b R ∈,当且仅当a b =时等号成立。
2.a b +≥[),0,a b ∈+∞,当且仅当a b =时等号成立。
3.常考不等式:22221122a b a b ab ++⎛⎫≥≥≥ ⎪⎝⎭+,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。
二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路:(1)积定和最小:若ab 是定值,那么当且仅当a b =时,()min a b +=。
其中[),0,a b ∈+∞(2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2max2a b ab +⎛⎫= ⎪⎝⎭,其中,a b R ∈。
例题1:若实数,a b 满足221a b +=,则a b +的最大值是 . 解析:很明显,和为定,根据和定积最大法则可得:1a b ==-时取等号。
变式:函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点在直线1mx ny +=上,则mn 的最大值为______。
解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1mx ny +=中可得1m n +=,明显,和为定,根据和定积最大法则可得:12m n ==时取等号。
例题2:已知函数()2122xx f x +=+,则()f x 取最小值时对应的x 的值为__________.解析:21212x x x +=⇒=-时取等号。
变式:已知2x >-,则12x x ++的最小值为 。
解析:由题意可得()120,212x x x +>+⨯=+,明显,积为定,根据和定积最大法则可得:122112x x x x +=⇒+=⇒=-+时取等号,此 例题3:若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:分式形式的不等式,可以考虑采用常数分离的方法。
ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
一. 不等式的性质:二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。
其中比较法(作差、作商)是最基本的方法。
三.重要不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”); 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 2ab a +b ≤ab ≤ a +b 2 ≤ a 2+b 22 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x 解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
一.不等式的性质:二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。
其中比较法(作差、作商)是最基本的方法。
三.重要不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”); 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 2ab a +b ≤ab ≤ a +b 2 ≤ a 2+b 22 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x 解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。
- 计算右边式子得2x>4。
- 两边同时除以2,解得x > 2。
2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。
- 即3x<9。
- 两边同时除以3,解得x<3。
3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。
- 计算得3x≤slant6。
- 两边同时除以3,解得x≤slant2。
4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。
- 即x≥slant8。
5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。
- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。
- 两边同时乘以 - 2,不等号变向,解得x < 8。
6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。
- 计算得(1)/(3)x≤slant3。
- 两边同时乘以3,解得x≤slant9。
7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。
- 移项得2x-3x>-3 - 6。
- 计算得-x>-9。
- 两边同时乘以 - 1,不等号变向,解得x < 9。
8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。
- 移项得3x-2x≤slant2+6。
- 计算得x≤slant8。
不等式的解法高中数学高中数学:不等式与不等式组的解法1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a<0时,其解集为(-∞,ba),当a=0时,b<0时,期解集为R,当a=0,b≥0时,其解集为空集。
例1:解关于x的不等式ax-2>b+2x解:原不等式化为(a-2)x>b+2①当a>2时,其解集为(b+2a-2,+∞)②当a<2时,其解集为(-∞,b+2a-2)③当a=2,b≥-2时,其解集为φ④当a=2且b<-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。
例2:解不等式ax2+4x+4>0(a>0)解:△=16-16a①当a>1时,△<0,其解集为R②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)③当a<1时,△>0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)3.不等式组的解法将不等式中每个不等式求得解集,然后求交集即可.例3:解不等式组m2+4m-5>0(1)m2+4m-12<0(2)解:由①得m<-5或m>1由②得-6,故原不等式组的解集为(-6,-5)∪(1,2)4.分式不等式的解法任何一个分式不等都可化为f(x)g(x)>0(≥0)或f(x)g(x)<0(≤0)的形式,然后讨论分子分母的符号,得两个不等式组,求得这两个不等式组的解集的并集便是原不等式的解集.例4:解不等式x2-x-6-x2-1>2解:原不等式化为:3x2-x-4-x2-1>0它等价于(I)3x2-x-4>0-x2-1>0和(II)3x2-x-4<0-x2-1<0解(I)得解集空集,解(II)得解集(-1,43).故原不等式的解集为(-1,43).5.含有绝对值不等式的解法去绝对值号的主要依据是:根据绝对值的定义或性质,先将含有绝对值的不等式中的绝对值号去掉,化为不含绝对值的不等式,然后求出其解集即可。
高中不等式练习题及答案高中不等式练习题及答案在高中数学学习中,不等式是一个重要的概念和工具。
不等式是数学中描述数值大小关系的一种方式,它可以帮助我们解决各种实际问题。
在学习不等式的过程中,练习题是必不可少的,下面我将为大家提供一些高中不等式练习题及其答案。
1. 练习题一:解不等式:2x - 5 < 3x + 2解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 3x < 2 + 5化简得:-x < 7由于系数为负数,所以不等号方向需要翻转,得到:x > -72. 练习题二:解不等式:3(x - 2) > 2(x + 3)解答:先进行分配律的运算,得到:3x - 6 > 2x + 6将变量移到一边,常数移到另一边,得到:3x - 2x > 6 + 6化简得:x > 123. 练习题三:解不等式:4x + 5 > 3 - 2x解答:将变量移到一边,常数移到另一边,得到:4x + 2x > 3 - 5化简得:6x > -2由于系数为正数,所以不等号方向不需要翻转,得到:x > -1/34. 练习题四:解不等式:2x - 3 > 5x + 1解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 5x > 1 + 3化简得:-3x > 4由于系数为负数,所以不等号方向需要翻转,得到:x < -4/35. 练习题五:解不等式:2x + 1 < 3(x - 2)解答:先进行分配律的运算,得到:2x + 1 < 3x - 6将变量移到一边,常数移到另一边,得到:2x - 3x < -6 - 1化简得:-x < -7由于系数为负数,所以不等号方向需要翻转,得到:x > 7通过以上的练习题,我们可以看到解不等式的基本步骤。
首先,将不等式中的变量移到一边,常数移到另一边;然后,化简不等式;最后,根据系数的正负确定不等号的方向。
一元二次不等式及其解法1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式.2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程21、把二次项的系数变为正的。
(如果是负,那么在不等式两边都乘以-1,把系数变为正)2、解对应的一元二次方程。
(先看能否因式分解,若不能,再看△,然后求根)3、求解一元二次不等式。
(根据一元二次方程的根及不等式的方向)一、解下列一元二次不等式:1、0652>++x x2、0652≤--x x3、10732>-x x4、05622<-+-x x5、0542<+-x x6、0442>-+-x x7、0942<-x8、(2)(3)6x x +-<二.填空题1、不等式(1)(12)0x x -->的解集是 ;2.不等式2654x x +<的解集为____________. 3、不等式2310x x -++>的解集是 ; 4、不等式2210x x -+≤的解集是 ; 5、不等式245x x -<的解集是 ;9、已知集合2{|4}M x x =<,2{|230}N x x x =--<,则集合MN = ; 10、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;11、不等式9)12(2≤-x 的解集为__________. 12、不等式0<x 2+x -2≤4的解集是___________ .13、若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是______________. 三、典型例题:1、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围.。
不等式要求层次 重难点一元二次不等式C解一元二次不等式(一) 知识内容1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式.一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例):有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解.判别式24b ac ∆=-0∆>0∆= 0∆<二次函数2y ax bx c =++(0)a >的图象x 2x 1Oyxx 1=x 2O yxO xy一元二次方程20ax bx c ++= (0)a ≠的根有两相异实根12,x x =242b b aca -±-12()x x <有两相等实根122bx x a==-没有实根一元二次不等式的解集20ax bx c ++>(0)a > {1x x x <或}2x x >{R x x ∈,且2b x a ⎫≠-⎬⎭实数集R20ax bx c ++<(0)a >{}12x xx x <<∅ ∅例题精讲高考要求板块一:解一元二次不等式解不等式(二)主要方法1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解.(三)典例分析:1.二次不等式与分式不等式求解【例1】 不等式112x x ->+的解集是 .【变式】 不等式2230x x --+≤的解集为( )A .{|31}x x x -或≥≤B .{|13}x x -≤≤C .{|31}x x -≤≤D .{|31}x x x -或≤≥【变式】 不等式252(1)x x +-≥的解集是( ) A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,2.含绝对值的不等式问题【例2】 已知n *∈N ,则不等式220.011nn -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥,D .{}|202n n n *∈N ≥,【例3】 不等式111x x +<-的解集为( ) A .{}{}|01|1x x x x <<>B .{}|01x x <<C .{}|10x x -<<D .{}|0x x <【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值范围是 _.【例4】 若不等式121x a x+-+≥对一切非零实数x 均成立,则实数a 的最大值是_________.【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值范围为 .3.含参数不等式问题【例6】 若关于x 的不等式22840x x a --->在14x <<内有解,则实数a 的取值范围是( )A .4a <-B .4a >-C .12a >-D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 .⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.【例7】 若不等式220ax x ++>的解集为R ,则a 的范围是( )A .0a >B .18a >-C .18a > D .0a <【例8】 若关于x 的不等式0ax b ->的解集是(1)-∞,,则关于x 的不等式02ax bx +>-的解集为( )A .()()12-∞-+∞,,B .(12)-,C .(12),D .()()12-∞+∞,,【例9】 01b a <<+,若关于x 的不等式22()()x b ax ->的解集中的整数恰有3个,则( )A .10a -<<B .01a <<C .13a <<D .36a <<【例10】 ⑴要使满足关于x 的不等式2290x x a -+<(解集非空)的每一个x 至少满足不等式2430x x -+<和2680x x -+<中的一个,则实数a 的取值范围是 ;⑵已知不等式20ax bx c ++>的解集是{}|x x αβ<<,其中1βα>>,则不等式()()220a ax bx c cx bx a ++++<的解集是 .4.解不等式与分类讨论【例11】 设m ∈R ,解关于x 的不等式22230m x mx +-<.【变式】 解关于x 的不等式()()3110()m x x m +-+>∈⎡⎤⎣⎦R .【点评】 解含参数的不等式,进行讨论时要注意对所含字母的分类要做到不重不漏.【例12】 求不等式22(1)40ax a x -++>的解集.【例13】 解关于x 的不等式(1)1(1)2a x a x ->≠-【变式】 解关于x 的不等式223()0x a a x a -++>.【例14】 解不等式()21410m x x +-+≤.【点评】 对于二次项系数也含有参数的一元二次不等式,首先应判定二次项系数是否为零,分别加以讨论,然后在二次项系数不为零的条件下,求出判别式0∆=的零点,分类进行讨论.5.与二次方程或可化为二次方程的解的问题结合,【例15】 关于x 的方程2210ax x +-=至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .10a -≤≤C .0a >或10a -<<D .1a -≥【例16】 已知关于x 的方程2(3)4210m x mx m +-+-=的两根异号,且负根的绝对值比正根大,那么实数m 的取值范围是( )A .30m -<<B .03m <<C .3m <-或0m >D .0m <或3m >【例17】 有如下几个命题:①如果1x ,2x 是方程20ax bx c ++=的两个实根且12x x <,那么不等式20ax bx c ++<的解集为12{|}x x x x <<;②当240b ac ∆=-<时,二次不等式20ax bx c ++>的解集为∅;③0x a x b --≤与不等式()()0x a x b --≤的解集相同; ④2231x x x -<-与223(1)x x x -<-的解集相同.其中正确命题的个数是( )A .3B .2C .1D .0【例18】 若关于x 的方程9(4)340x x a +++=有解,求实数a 的取值范围.【例19】 已知a ∈R ,若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围是 .6.恒成立问题【例20】 若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______.【变式】 2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( )A .0a ≤B .4a <-C .40a -<<D .40a -<≤【变式】 若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范围.【点评】 对于有关二次不等式20ax bx c ++>(或0<)的问题,可设函数2()f x ax bx c =++,由a 的符号确定其抛物线的开口方向,再根据图象与x 轴的交点,由判别式进行解决.【例21】 ⑴不等式210x ax ++≥对一切102x ⎛⎤∈ ⎥⎝⎦,成立,则a 的最小值为( )A .0B .2-C .52- D .3-⑵不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值范围为( ) A .(][)14-∞-+∞,,B .(][)25-∞-+∞,,C .[12],D .(][)12-∞∞,,【变式】 对任意[11]a ∈-,,函数2()(4)42f x x a x a =+-+-的值恒大于零,则x 的取值范围为_________.【例22】 若不等式lg 21lg()axa x <+在[1,2]x ∈时恒成立,试求a 的取值范围.【点评】 将参数a 从不等式lg 21lg()axa x <+中分离出来是解决问题的关键.【例23】 若(]1x ∈-∞-,,()21390x x a a ++->恒成立,求实数a 的取值范围.【例24】 设()222f x x ax =-+,当[)1x ∈-+∞,时,都有()f x a ≥恒成立,求a 的取值范围.【例25】 设对所有实数x ,不等式()()2222224112log 2log log 014a a ax x aa a ++++>+恒成立,求a 的取值范围.【例26】 已知不等式22412ax x x a +---≥对任意实数恒成立,求实数a 的取值范围.【例27】 已知关于x 的不等式20x x t ++>对x ∈R 恒成立,则t 的取值范围是 .【例28】 如果|1||9|x x a +++>对任意实数x 恒成立,则a 的取值范围是( )A .{|8}a a <B .{|8}a a >C .{|8}a a ≥D .{|8}a a ≤【例29】 在R 上定义运算⊗:)1(y x y x -=⊗.若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则( )A .11<<-aB .20<<aC .2321<<-a D .2123<<-a【例30】 设不等式2220x ax a -++≤的解集为M ,如果[1,4]M ⊆,求实数a 的取值范围.【点评】 若将本题改为:[1,4]M ⊆,求a 的取值范围,则本题等价于:当[1,4]x ∈时,2220x ax a -++≤恒成立,求a 的取值范围.可以通过讨论对应二次函数的对称轴,或者在不等式中将a 解出,通过求出对应的代数式的取值范围解决此问题. 仅用第二种方法略解如下:2222(12)20x ax a x a x -++=-++≤,故2(21)2x a x -+≥,∵[1,4]x ∈,∴2110x ->≥,从而要满足题意,只需2221x a x +-≥,对[1,4]x ∈恒成立即可.故要求2221x x +-在[1,4]x ∈时的最大值,令21[1,7]t x =-∈,则2221(1)22291194()21424t x t t t x t t t+++++===++-, 由对勾函数的单调性知:上式在1t =或7t =时取到最大值. 比较知:当1t =时,上式有最大值3,故当3a ≥时,有2220x ax a -++≤对[1,4]x ∈恒成立. 即a 的取值范围为[3,)+∞.(一)典例分析:1.利用函数单调性解不等式【例31】 解不等式:21log (6)2x x x --->.【变式】 解关于x 的不等式:23log (34)0x x x ---<.2.解不等式与函数综合问题【例32】 已知函数32()()f x x ax b a b =-++∈R ,⑴若函数()f x 图象上任意一点处的切线的斜率小于1,求证:33a -<<;⑵若[]01x ∈,,函数()y f x =图象上任意一点处的切线的斜率为k ,试讨论1k ≤的充要条件.【备注】 为了缩小讨论范围,本题可以一开始将1x =代入2321x ax -+≤中,解得12a ≤≤,再进行讨论.本题讨论过程中的充要条件的得出结合二次函数的图象会比较容易理解,配图略.【例33】 ⑴ 求函数22()123lg(1521)f x x x x x =---+-的定义域.⑵ (福建省上杭二中08-09学年单元质量检查必修5数学试题)如果关于x 的不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围是 .⑶ (福建省上杭二中08-09学年单元质量检查必修5数学试题)设()321f x ax a =-+,若存在0(1,1)x ∈-,使0()0f x =,则实数a 的取值范围是( )A .115a -<<B .1a <-或15a >C .1a <-D .15a >【例34】 已知函数2()1(1)f x x g x x =+++,若不等式(3)(392)0x x x f m f ⋅+--<对任意x ∈R 恒成立,求实数m 的取值范围.板块二:解不等式综合问题【例35】 已知不等式()11112log 1122123a a n n n +++>-+++对于一切大于1的自然数n 都成立,试求实数a 的取值范围.【例36】 已知二次函数2()f x ax x =+,如果[0,1]x ∈时|()|1f x ≤,求实数a 的取值范围.【点评】 在闭区间[0,1]上使|()|1f x ≤分离出a ,然后讨论关于1x的二次函数在[1,)+∞上的单调性.【例37】 设二次函数()()20f x ax bx c a b c a =++∈≠R ,,,满足条件: ⑴ 当x ∈R 时,()()42f x f x -=-,且()f x x ≥;⑵ 当()02x ∈,时,()212x f x +⎛⎫⎪⎝⎭≤⑶ ()f x 在R 上的最小值为0.求最大的()1m m >,使得存在t ∈R ,只要[]1x m ∈,,就有()f x t x +≤.【点评】 本题所用方法为先根据已知条件求出m 小于某个数,再验证m 是否可取到此值,若能取到,则此值为m 的最大值.【例38】 设a 为实数,函数()()22f x x x a x a =+--.⑴若()01f ≥,求a 的取值范围; ⑵求()f x 的最小值.【变式】 设函数()()()h x f x x a =∈+∞,,,直接写出....(不需给出演算步骤)不等式()1h x ≥的解集.【备注】 本题是江苏卷的文理科必做题的最后一题,江苏文理不分卷,但根据学生的不同有些学生另有选做题,包括选考内容与排列组合、空间向量等.本题⑶问相当有难度,思路分析如下:22()32()h x x ax a x a =-+>,22()13210h x x ax a ⇔-+-≥≥.对应的一元二次方程223210x ax a -+-=的判别式24(32)a ∆=-,①当0∆≤,即6622a ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭,,时,不等式的解集为()a +∞,; ②当0∆>,即6622a ⎛⎫∈- ⎪ ⎪⎝⎭,时,记小根21323a a x --=,大根22323a a x +-=, 当2a x ≥,即22a ≥时,不等式的解集为()a +∞,; 当12x a x <≤,即2222a -<≤时,不等式的解集为2[)x +∞,; 当1a x <,即22a <-时,不等式的解集为12(][)a x x +∞,,. 综上可得答案.【例39】 已知集合(){}121212|00D x x x x x x k =>>+=,,,(其中k 为正常数).⑴ 设12u x x =,求u 的取值范围;⑵ 求证:当1k ≥时不等式212121122k x x x x k ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≤对任意()12x x D ∈,恒成立;⑶ 求使不等式212121122k x x x x k ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≥对任意()12x x D ∈,恒成立的2k 的范围.【例40】 如果()f x 在某个区间I 内满足:对任意的12x x I ∈,,都有12121[()()]22x x f x f x f +⎛⎫+ ⎪⎝⎭≥,则称()f x 在I 上为下凸函数;已知函数1()ln f x a x x=-. ⑴证明:当0a >时,()f x 在(0)+∞,上为下凸函数; ⑵若()f x '为()f x 的导函数,且122x ⎡⎤∈⎢⎥⎣⎦,时,|()|1f x '<,求实数a 的取值范围.【例41】 在R 上定义运算()()1:43p q p c q b bc ⊗⊗=---+(b 、c 为实常数).记()212f x x c =-,()22f x x b =-,x ∈R .令()()()12f x f x f x =⊗.⑴如果函数()f x 在1x =处有极值43-,试确定b 、c 的值;⑴求曲线()y f x =上斜率为c 的切线与该曲线的公共点;⑵令()()g x f x '=,记函数()g x 在区间[]11-,上的最大值为M .若1b >,证明对任意的c ,都有2M >.【例42】 设()()20f x ax bx c a =++≠,若(0)1f ≤,(1)f ≤1,(1)1f -≤,试证明:对于任意11x -≤≤,有()54f x ≤.。
八种方法解决高中数学不等式问题下面用八种方法解决高中数学常见的不等式问题: 例题:224x y ,求34x y 的最大值.【解法一】柯西不等式先备知识:柯西不等式(二维下的)解:3,4,,a b c x d y ,由柯西不等式得:222223434x y x y 所以:3410x y ,当且仅当34x y ,即68,55x y 时,取得最大值10.【总结】柯西不等式常用,建议理解记忆。
【解法二】线性规划解:令34x y t ,则344t y x (将t 看作是直线的截距,转化为求直线截距的范围) ,x y 满足直线方程344t y x ,也满足方程224x y ,因此:显然,由图像得: 2.5104t t .【总结】数形结合典型做法,但是线性规划新高考不考。
建议从数形结合角度理解。
【解法三】判别式法解:令34x y t ,则344t y x ,代入方程:224x y ,得: 223444t x x , 整理,得:222534016816t x tx ………………(*) 一元二次方程(*)有解,则:2232544081616t t210010t t . 【总结】常用方法之一,解决“条件极值”问题的常用手段。
【解法四】三角换元224x y 22144x y ,不妨令:cos ,sin 22x y x x . 则:34346cos 8sin 10cos sin 10sin 1055x y x x x x x,(3tan 4 ). 【总结】三角换元、参数法建议学有余力的同学适当了解。
【解法五】对偶式先备知识: 34x y 的对偶式为43x y2223492416x y x xy y (1)2224316249x y x xy y (2)(1)+(2),得:222234432525100x y x y x y223410043100x y x y .【总结】进阶方法,学有余力可了解。
【解法六】向量法(类似柯西不等式)34x y 可以看作向量 3,4,,a b x y 的数量积:34a b x y .所以:cos ,10a b a b a b.【总结】注意观察代数式的结构特征。
不等式解法15种典型例题例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x x x x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
(2)解法一:原不等式等价于 027313222>+-+-x x x x 21213102730132027301320)273)(132(222222><<<⇔⎪⎩⎪⎨⎧<+-<+-⎪⎩⎪⎨⎧>+->+-⇔>+-+-⇔x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞⋃⋃-∞。
解法二:原不等式等价于0)2)(13()1)(12(>----x x x x0)2()13)(1)(12(>-⋅---⇔x x x x用“穿根法”∴原不等式解集为),2()1,21()31,(+∞⋂⋃-∞典型例题三例3 解不等式242+<-x x分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义⎩⎨⎧<-≥=)0()0(a a a a a二是根据绝对值的性质:a x a x a x a a x >⇔<<-⇔<.,或a x -<,因此本题有如下两种解法.解法一:原不等式⎪⎩⎪⎨⎧+<-<-⎪⎩⎪⎨⎧+<-≥-⇔240424042222x x x x x x 或 即⎩⎨⎧>-<<<-⎩⎨⎧<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<<x 故原不等式的解集为{}31<<x x . 解法二:原不等式等价于 24)2(2+<-<+-x x x即⎪⎩⎪⎨⎧+->-+<-)2(42422x x x x ∴312132<<⎩⎨⎧-<><<-x x x x 故或.典型例题四例4 解不等式04125622<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组:⎪⎩⎪⎨⎧>-+<+-041205622x x x x 或⎪⎩⎪⎨⎧<-+>+-041205622x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.解法一:原不等式等价下面两个不等式级的并集:⎪⎩⎪⎨⎧>-+<+-0412,05622x x x x 或⎪⎩⎪⎨⎧<-+>+-0412,05622x x x x ⎩⎨⎧<-+<--⇔;0)6)(2(,0)5)(1(x x x x 或⎩⎨⎧>-+>--;0)6)(2(,0)5)(1(x x x x ;⎩⎨⎧<<-<<⇔62,51x x 或⎩⎨⎧>-<><6,2,5,1x x x x 或或 ,51<<⇔x 或2-<x 或6>x .∴原不等式解集是}6512{><<-<x x x x ,或,或. 解法二:原不等式化为0)6)(2()5)(1(>-+--x x x x .画数轴,找因式根,分区间,定符号.)6)(2()5)(1(-+--x x x x 符号∴原不等式解集是}6512{><<-<x x x x ,或,或.说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解. 解法二中,“定符号”是关键.当每个因式x 的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含0的区间符号,其他各区间正负相间.在解题时要正确运用.典型例题五例5 解不等式x x x x x <-+-+222322. 分析:不等式左右两边都是含有x 的代数式,必须先把它们移到一边,使另一边为0再解.解:移项整理,将原不等式化为0)1)(3()1)(2(2>+-++-x x x x x .由012>++x x 恒成立,知原不等式等价于0)1)(3()2(>+--x x x .解之,得原不等式的解集为}321{><<-x x x 或.说明:此题易出现去分母得)23(2222x x x x x -+<-+的错误解法.避免误解的方法是移项使一边为0再解. 另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.典型例题六例6 设R m ∈,解关于x 的不等式03222<-+mx x m . 分析:进行分类讨论求解.解:当0=m 时,因03<-一定成立,故原不等式的解集为R . 当0≠m 时,原不等式化为0)1)(3(<-+mx mx ;当0>m 时,解得m x m 13<<-; 当0<m 时,解得mx m 31-<<.∴当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-m x m x 13;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<m x mx 31.说明:解不等式时,由于R m ∈,因此不能完全按一元二次不等式的解法求解.因为当0=m 时,原不等式化为03<-,此时不等式的解集为R ,所以解题时应分0=m 与0≠m 两种情况来讨论.在解出03222=-+mx x m 的两根为m x 31-=,m x 12=后,认为mm 13<-,这也是易出现的错误之处.这时也应分情况来讨论:当0>m 时,mm 13<-;当0<m 时,m m 13>-.典型例题七例7 解关于x 的不等式)0(122>->-a x a ax .分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解.解:原不等式⎪⎩⎪⎨⎧->-≥->-⇔;)1(2,01,02)1(222x a ax x a ax 或⎩⎨⎧<-≥-.01,02)2(2x a x由0>a ,得:⎪⎪⎩⎪⎪⎨⎧<+++-≤>⇔;01)1(2,1,2)1(22a x a x x a x ⎪⎩⎪⎨⎧>≥⇔.1,2)2(x a x由判别式08)1(4)1(422>=+-+=∆a a a ,故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+. 当20≤<a 时,1212≤-+≤a a a ,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x . 当2>a 时,不等式组(1)无解,(2)的解是2a x ≥. 综上可知,当20≤<a 时,原不等式的解集是[)+∞-+,21a a ;当2>a 时,原不等式的解集是⎪⎭⎫⎢⎣⎡+∞,2a .说明:本题分类讨论标准“20≤<a ,2>a ”是依据“已知0>a 及(1)中‘2a x >,1≤x ’,(2)中‘2ax ≥,1>x ’”确定的.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点.一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定.本题易误把原不等式等价于不等式)1(22x a ax ->-.纠正错误的办法是熟练掌握无理不等式基本类型的解法.典型例题八例8 解不等式331042<--x x .分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可. 解答:去掉绝对值号得3310432<--<-x x , ∴原不等式等价于不等式组⇒⎪⎩⎪⎨⎧<-->-⇒⎪⎩⎪⎨⎧<----<-06104010433104310432222x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧<<-><⇒⎩⎨⎧<+->-.321,2500)12)(3(20)52(2x x x x x x x 或 ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<<<-325021x x x 或.说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等价转化为不等式组,变成求不等式组的解.典型例题九例9 解关于x 的不等式0)(322>++-a x a a x .分析:不等式中含有字母a ,故需分类讨论.但解题思路与一般的一元二次不等式的解法完全一样:求出方程0)(322=++-a x a a x 的根,然后写出不等式的解,但由于方程的根含有字母a ,故需比较两根的大小,从而引出讨论.解:原不等式可化为0))((2>--a x a x .(1)当2a a <(即1>a 或0<a )时,不等式的解集为:{}2a x a x x ><或; (2)当2a a >(即10<<a )时,不等式的解集为:{}a x a x x ><或2; (3)当2a a =(即0=a 或1)时,不等式的解集为:{}a x R x x ≠∈且.说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根a x =1,22a x =,因此不等式的解就是x 小于小根或x 大于大根.但a 与2a 两根的大小不能确定,因此需要讨论2a a <,2a a >,2a a =三种情况.典型例题十例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x.求不等式02>++a bx cx 的解集.分析:按照一元二次不等式的一般解法,先确定系数c 的正负,然后求出方程02=++a bx cx 的两根即可解之. 解:(解法1)由题可判断出α,β是方程02=++c bx ax 的两根,∴a b -=β+α,ac=β⋅α.又02>++c bx ax 的解集是{}β<<αx x ,说明0<a . 而0>α,0>β000<⇒>⇒>αβ⇒c a c ,∴0022<++⇔>++cax c b x a bx cx .⎪⎪⎩⎪⎪⎨⎧--==--=+-=⇒⎪⎪⎩⎪⎪⎨⎧=⋅-=+),1)(1(1,11βααββααββαβαβαa c c b a c ab ∴02<++cax c b x ,即0)1)(1()11(2<β-α-+β-α-+x x ,即0)1)(1(<β-α-x x .又β<α<0,∴β>α11,∴0)1)(1(<β-α-x x 的解集为⎭⎬⎫⎩⎨⎧α<<β11x x . (解法2)由题意可判断出α,β是方程02=++c bx ax 的两根,∴ac=β⋅α.又02>++c bx ax 的解集是{}β<<αx x ,说明0<a . 而0>α,0>β000<⇒>⇒>αβ⇒c ac.对方程02=++a bx cx 两边同除以2x 得0)1()1(2=+⋅+⋅c xb x a .令xt 1=,该方程即为02=++c t b t a ,它的两根为α=1t ,β=2t ,∴α=11x ,β=21x .∴α=11x ,β=12x ,∴方程02=++a bx cx 的两根为α1,β1.∵β<α<0,∴β>α11.∴不等式02>++a bx cx 的解集是⎭⎬⎫⎩⎨⎧α<<β11x x . 说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有α,β是已知量,故所求不等式解集也用α,β表示,不等式系数a ,b ,c 的关系也用α,β表示出来;(3)注意解法2中用“变换”的方法求方程的根.典型例题十二例12 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 分析:不等式本身比较复杂,要先对不等式进行同解变形,再根据解集列出关于a 、b 式子.解:∵043)21(122>++=++x x x ,043)21(122>+-=+-x x x ,∴原不等式化为0)()2(2>-++--+b a x b a x b a .依题意⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++=-+->-+34231202b a b a b a b a b a ,∴⎪⎪⎩⎪⎪⎨⎧==2325b a . 说明:解有关一元二次方程的不等式,要注意判断二次项系数的符号,结合韦达定理来解.典型例题十三例13 不等式的解集为{}21<<-x x ,求a 与b 的值.分析:此题为一元二次不等式逆向思维题,要使解集为{}21<<-x x ,不等式022<-+bx ax 需满足条件0>a ,0>∆,022=-+bx ax 的两根为11-=x ,22=x .解法一:设022=-+bx ax 的两根为1x ,2x ,由韦达定理得:⎪⎪⎩⎪⎪⎨⎧-=⋅-=+a x x a b x x 22121 由题意:⎪⎪⎩⎪⎪⎨⎧⨯-=-+-=-21221aa b∴1=a ,1-=b ,此时满足0>a ,0)2(42>-⨯-=∆a b . 解法二:构造解集为{}21<<-x x 的一元二次不等式:0)2)(1(<-+x x ,即022<--x x ,此不等式与原不等式022<-+bx ax 应为同解不等式,故需满足:2211--=-=b a ∴1=a ,1-=b . 说明:本题考查一元二次方程、一元二次不等式解集的关系,同时还考查逆向思维的能力.对有关字母抽象问题,同学往往掌握得不好.典型例题十四例14 解关于x 的不等式01)1(2<++-x a ax .分析:本题考查一元一次不等式与一元二次不等式的解法,因为含有字母系数,所以还考查分类思想. 解:分以下情况讨论(1)当0=a 时,原不等式变为:01<+-x ,∴1>x (2)当0≠a 时,原不等式变为:0)1)(1(<--x ax ①①当0<a 时,①式变为0)1)(1(>--x a x ,∴不等式的解为1>x 或a x 1<.②当0>a 时,①式变为0)1)(1(<--x ax . ②∵a a a -=-111,∴当10<<a 时,11>a ,此时②的解为a x 11<<.当1=a 时,11=a ,此时②的解为11<<x a. 说明:解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧>=<<><≠=∈11100000a a a a a a a R a 分类应做到使所给参数a 的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要注意在讨论0<a 时,解一元二次不等式01)1(2<++-x a ax 应首选做到将二次项系数变为正数再求解.典型例题十五例15 解不等式x x x ->--81032.分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,而)()(x g x f >等价于:⎩⎨⎧<≥0)(0)(x g x f 或⎪⎩⎪⎨⎧>≥≥2)]([)(0)(0)(x g x f x g x f .解:原不等式等价于下面两个不等式组:①⎩⎨⎧≥--<-0103082x x x ②⎪⎩⎪⎨⎧->--≥--≥-222)8(103010308x x x x x x由①得⎩⎨⎧-≤≥>258x x x 或,∴8>x 由②得∴⎪⎪⎩⎪⎪⎨⎧>-≤≥≤.1374258x x x x 或81374≤<x ,所以原不等式的解集为⎭⎬⎫⎩⎨⎧>≤<881374x x x 或,即为⎭⎬⎫⎩⎨⎧>1374x x . 说明:本题也可以转化为)()(x g x f ≤型的不等式求解,注意:⎪⎩⎪⎨⎧≤≥≥⇔≤2)]([)(0)(0)()()(x g x f x g x f x g x f , 这里,设全集}52{}0103{2≥-≤=≥--=x x x x x x U 或,⎭⎬⎫⎩⎨⎧-≤--=x x x x A 81032,则所求不等式的解集为A 的补集A ,由2)8(10301030881032222-≤⇒⎪⎩⎪⎨⎧-≤--≥--≥-⇔-≤--x x x x x x x x x x 或13745≤≤x . 即⎭⎬⎫⎩⎨⎧≤≤≤=137452x x x A 或,∴原不等式的解集是⎭⎬⎫⎩⎨⎧>=1374x x A .。