材料化学 第一章 晶体学基础
- 格式:ppt
- 大小:12.46 MB
- 文档页数:246
晶体学复习1 结晶学基础1.1概述1.2 第一章:晶体和非晶质体1.2.1 概念(格子、举例)晶体:具有格子构造的固体非晶质体:不具有格子构造的物质晶体的现代定义是:晶体是内部质点在三维空间成周期性重复排列的固体;或者说,晶体是具有格子构造的固体。
相应地,内部质点在三维空间成周期性重复排列的固体,便称为结晶质晶体的分布极为广泛,不只局限于矿物的范畴。
本质:在一切晶体中,组成它们的质点(原子、离子、离子团、分子等)在空间都是按格子构造的规律来分布的。
例如,石墨、石英、玻璃。
结论:一定化学成分的矿物,大部分都具有由原子规则排列的内部结构。
1.2.2 基本性质(6个)①最小内能:②稳定性:③对称性:④异向性:⑤均一性:⑥自限性:1.2.3 晶体的对称要素组合及规律(9个要素)对称指:物体相同部分的有规律重复.晶体的对称性也是相对的,而不对称则是绝对的。
晶体宏观对称要素:①对称中心(C):假想的一个点,相应的操作是对于这个点的反伸。
其作用相当于一个照相机.结论:晶体如具有对称中心,晶体上的所有晶面,必定全都成对地呈反向平行的关系。
其对称中心必定位于几何中心。
符号为“C”标志:晶体上的所有晶面都两两平行,同形等大,方向相反。
②对称面:为一假想的面,对称操作为对此平面的反映。
方法:P 2P 3P…… 9PP与面、棱有着的关系:(1)对称面垂直并平分晶体上的晶面晶棱;(2)垂直晶面并平分它的两个晶棱的夹角;(3)包含晶棱③对称轴(L n):为一假想的直线。
对称操作为绕此直线的旋转,可使晶体上的相同部分重复出现。
使相同部分重复出现的最小旋转角,称为基转角(α),旋转一周中,相同部分重复出现的次数,称为轴次( n )。
α、 n 之间的关系为:n = 360o/ α对称定律:晶体外形上可能出现的对称轴的轴次,不是任意的,只能是1 2 3 4 6 。
高次对称轴:轴次高于2的对称轴称(3、4、6)对称轴在晶体中可能出露的位置是:(1)两个相对晶面的连线;(2)两个相对晶棱中点的连线;(3)相对的两个角顶的连线(4)一个角顶与之相对的晶面之间的连线④旋转反身轴(L i n)旋转反伸轴是一假想直线和其上一点所构成的一种复合对称要素。
第一章 结晶学基础 第二章 晶体结构与晶体中的缺陷1 名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。
晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。
配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。
同质多晶:同一化学组成在不同外界条件下(温度、压力、pH 值等),结晶成为两种以上不同结构晶体的现象。
多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。
位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。
重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。
晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。
配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论图2-1 MgO 晶体中不同晶面的氧离子排布示意图2 面排列密度的定义为:在平面上球体所占的面积分数。
(a )画出MgO (NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b )计算这三个晶面的面排列密度。
解:MgO 晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。
(a )(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。
(b )在面心立方紧密堆积的单位晶胞中,r a 220=(111)面:面排列密度= ()[]907.032/2/2/34/222==∙ππr r (110)面:面排列密度=()[]555.024/224/22==∙ππr r r(100)面:面排列密度=()785.04/22/222==⎥⎦⎤⎢⎣⎡ππr r3、已知Mg 2+半径为0.072nm ,O 2-半径为0.140nm ,计算MgO 晶体结构的堆积系数与密度。
第一章结晶学基础一、名词解释1.晶体:2.空间点阵与晶胞:3.配位数与配位多面体:4.离子极化:5.同质多晶与类质同晶:二、填空与选择1.晶体的基本性质有五种:,,,和。
2.空间点阵是由在空间作有规律的重复排列。
(A 原子B离子C几何点D 分子)3.在等大球体的最紧密堆积中有和二种排列方式,前者的堆积方式是,后者的堆积方式是。
4.如晶体按立方紧密堆积,单位晶胞中原子的个数为,八面体空隙数为,四面体空隙数为;如按六方紧密堆积,单位晶胞中原子的个数为,八面体空隙数为,四面体空隙数为;如按体心立方近似密堆积,单位晶胞中原子的个数为,八面体空隙数为,四面体空隙数为。
5.等径球体最紧密堆积的空隙有两种:四面体空隙和八面体空隙。
一个球的周围有个四面体空隙、个八面体空隙;n个等径球体做最紧密堆积时可形成个四面体空隙、个八面体空隙。
不等径球体进行堆积时,大球,小球。
6.在离子晶体中,配置于正离子周围的负离子数(即负离子配位数),决定于正、负离子半径比(r+/r-)。
若某离子化合物的r+/r-值为0.564,其负离子配位数应是。
(A3 B4 C 6 D 8)三、(1)a≠b≠c,α=β=γ=90°的晶体属什么晶系?(2) a≠b≠c,α≠β≠γ≠90°的晶体属什么晶系?(3)你能否据此确定这两种晶体的布拉菲点阵?四、(1)一晶面在x、y、z轴上的截距分别为2a、3b和6c,求出该晶面的密氏指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2和c,求出该晶面指数。
五、以NaCl晶胞为例,说明面心立方紧密堆积中的八面体和四面体空隙的位置和数量。
六、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、致密度。
七、计算立方体配位、八面体配位、四面体配位、三角形配位的临界半径比。
八、画出面心立方结构的(111)、(110)、(100)晶面的原子排布图,并计算其面间距及原子密度(原子个数/单位面积)九、有一个面心立方密堆结构的晶体,它的密度是8.94/cm3。
晶体学基础绪论刘彤固体中的晶体气态:内部微粒(原子、分子、离子)无规运动液态:内部微粒(原子、分子、离子)无规运动固态:内部微粒(原子、分子、离子)振动自然界中绝大多数固体物质都是晶体。
如:食盐、冰糖、金属、岩石等。
¾单质金属和合金在一般条件下都是晶体。
¾一些陶瓷材料是晶体。
¾高聚物在某些条件下也是晶体。
“德里紫蓝宝石”如何在千姿百态的晶体中发现其规律?熔体凝固液相结晶晶体并非局限于天然生成的固体人工单晶飞机发动机叶片飞机发动机晶体的共同规律和基本特征?水晶石英晶体具有规则的凸多面体外形。
α石英的内部结构大球代表小球代表晶体的概念NaCl的晶体结构晶体(crystal):其内部质点(原子、分子或离子)在3维空间周期性重复排列的固体。
也称具有格子构造的固体。
晶体材料:单晶,多晶¾在一个单晶体的范围内,晶格中的质点均呈有序分布。
多晶体内形成许多局限于每个小区域内的有序结构畴,但在畴与畴之质点的分布是无序的或只是部分有序的。
晶界(晶体缺陷)Be 2O 3非晶体Be 2O 3 晶体分子晶体(范德华力)晶体学的发展历史¾有文字记载以前,人们对矿物晶体瑰丽的色彩和特别的多面体外形引起了的注意,开始观察研究晶体的外形特征。
¾17世纪中叶,丹麦学者斯丹诺(steno)1669年提出面角守恒定律,这可以说是晶体学作为一门正式科学的标志,它找出了晶体复杂外形中的规律性,从而奠定了几何晶体学的基础。
¾1801年,法国结晶学家阿羽依(Haüy)基于对方解石晶体沿解理面破裂现象的观察,发现晶体学基本定律之一的整数定律。
¾1805-1809年,德国学者魏斯(Weiss)发现晶带定律以及晶体外形对称理论。
几何晶体学发展到了相当高的程度。
¾1830年,德国学者赫塞尔(Hessel)推导出描述晶体外形对称性的32种点群。
¾1837年,英国学者米勒(Miller)提出晶面在三维空间位置的表示方法---米勒指数。
第一章几何结晶学基础1-1.晶体、晶胞的定义;空间格子构造的特点;晶体的基本性质。
1-2.参网页上的模型,运用对称要素组合定律,写出四方柱、六方柱、四方四面体、斜方双锥、六八面体、三方柱、复三方三角面体、四六面体的点群符号,并写出其所属的晶系和晶族。
1-3.参阅网页上的模型,请确定单型中的六八面体、复三方偏三角面体、复六方双锥、和聚型中2、3、4号模型在晶体定向中,各晶体的晶轴分别与哪些对称轴重或晶棱方向平行1-4.请写出单型三方柱、四方柱、四方双锥、六方柱、菱面体、斜方双锥各晶面的主要晶面符号。
1-5.请写出下列聚型模型各晶面的晶面符号:1、2、3、4。
两个对称面相互成1)60°、2)90°、3)45°、4)30°,可组合成什么点群1-6.由两根相交的二次轴互成1)90°、2)60°、3)45°、4)30°,可以组合成什么点群试在面心立方格子中画出菱面体格子1-7.一晶面在X、Y、Z轴分别截得2、4、6个轴单位,请写出此晶面符号。
1-8.作图表示立方晶体的(123)、(012)、(421)晶面。
1-9.在六方晶体中标出晶面(0001)、(2110)、(1010)、(1120)、(1210)的位置。
1. 答:晶体最本质的特点是其内部的原子、离子、或原子集团在三维空间以一定周期性重复排列而成, 晶体的空间格子构造有如下特点:结点空间格子中的点,在实际晶体中它们可以代表同种质点占有的位置,因此也称为晶体结构中的等同点位置。
行列结点在一维方向上的排列. 空间格子中任意两个结点连接的方向就是一个行列方向。
面网结点在平面上的分布构成面网。
空间格子中,不在同一行列上的任意三个结点就可联成一个面网。
平行六面体空间格子中的最小单位。
它由六个两两平行且大小相等的面组成。
晶体的基本性质是指一切晶体所共有的性质,这些性质完全来源于晶体的空间格子构造。
晶体学基础与材料结构第⼀章晶体学基础及材料结构⽆论是⾦属材料还是⾮⾦属材料,通常都是晶体。
因此,作为材料科学⼯作者,⾸先要熟悉晶体的特征及其描述⽅法。
本章将扼要的介绍晶体学的基础知识,并了解材料结构。
1-1 晶体⼀、晶体与⾮晶体固态物质按其原⼦(或分⼦)的聚集状态⽽分为两⼤类:晶体与⾮晶体。
虽然我们看到⾃然界的许多晶体具有规则的外形(例如:天然⾦刚⽯、结晶盐、⽔晶等等),但是,晶体的外形不⼀定都是规则的,这与晶体的形成条件有关,如果条件不具备,其外形也就变得不规则。
所以,区分晶体还是⾮晶体,不能根据它们的外观,⽽应从其内部的原⼦排列情况来确定。
在晶体中,原⼦(或分⼦)在三维空间作有规则的周期性重复排列,⽽⾮晶体就不具有这⼀特点,这是两者的根本区别。
应⽤X射线衍射、电⼦衍射等实验⽅法不仅可以证实这个区别,还能确定各种晶体中原⼦排列的具体⽅式(即晶体结构的类型)、原⼦间距以及关于晶体的其他许多重要情况。
显然,⽓体和液体都是⾮晶体。
在液体中,原⼦亦处于紧密聚集的状态,但不存长程的周期性排列。
固态的⾮晶体实际上是⼀种过冷状态的液体,只是其物理性质不同于通常的液体⽽已。
玻璃就是⼀个典型的例⼦,故往往将⾮晶态的固体称为玻璃体。
从液态到⾮晶态固体的转变是逐渐过渡的,没有明显的凝固点(反之亦然,⽆明显的熔点)。
⽽液体转变为晶体则是突变的,有⼀定的凝固点和熔点。
⾮晶体的另⼀特点是沿任何⽅向测定其性能,所得结果都是⼀致的,不因⽅向⽽异,称为各向同性或等向性;晶体就不是这样,沿着⼀个晶体的不同⽅向所测得的性能并不相同(如导电性、导热性、热膨胀性、弹性、强度、光学数据以及外表⾯的化学性质等等),表现出或⼤或⼩的差异,称为各向异性或异向性。
晶体的异向性是因其原⼦的规则排列⽽造成的。
⾮晶体在⼀定条件下可转化为晶体。
例如:玻璃经⾼温长时间加热后能形成晶态玻璃;⽽通常呈晶体的物质,如果将它从液态快速冷却下来也可能得到⾮晶体。
⾦属因其晶体结构⽐较简单,很难阻⽌其结晶过程,故通常得不到⾮晶态固体,但近些年来采⽤了特殊的制备⽅法,已能获得⾮晶态的⾦属和合⾦。