[工学]第一章 晶体学基础-1
- 格式:ppt
- 大小:3.40 MB
- 文档页数:142
第一章晶体学基础1.晶体与非晶体⏹在晶体中---原子(或分子——在三维空间做有规则的周期性重复排列,而非晶体不具有这一特点,这是两者的根本区别。
⏹应用X射线、电子衍射等实验方法不仅可以证实这个区别而且还能确定各种晶体中原子排列的具体方式(即晶体结构的类型)、原子间距以及关于晶体的其他许多重要情况。
⏹非晶体的另一个特点是沿任何方向测定其性能的结果都是一致的,称为各向同性;晶体沿着一个晶体的不同方向所测得的性能并不相同(如导电性、导热性、热膨胀性、弹性、强度等)称为各向异性。
⏹由一个核心生长而成的晶体称为单晶体。
在单晶体中,原子都是按同一取向排列的。
⏹但是金属材料通常都是由许多不同位向的小晶体组成的,称为多晶体。
这些小晶体往往呈颗粒状,不具有规则的外形,故称为晶粒。
晶粒与晶粒之间的界面称为晶界。
多晶体材料一般不显示出各向异性,这是应为它包含大量彼此位向不同的晶粒,虽然每个晶粒有异向性,但整块金属的性能则是他们性能的平均值,故表现为各向同性,这种情况称为假等向性。
2 . 晶体结构与空间点阵原子的具体排列方式⏹ 晶胞⏹ 点阵中最具有代表性的基本单元。
要求在选取晶胞时应尽量反映出该点阵的对称性,一般选取最小平行六面体作为晶胞。
通常晶胞可用点阵常数a 、b 、C (三个棱边的边长).及晶轴之间的夹角α、β、γ这六个参数表达出来。
实际上,常采用三个点阵矢量a 、b 、c 来描述。
这3个矢量不仅确定了晶胞的形状和大小,并且完全确定了此空间点阵。
只要任选一个点阵为原点,以这3个矢量做平移就可以确定空间点阵中任何一个点阵的位置:—— 由原点指向点阵中某一点cw b v a u r w v u ++=..wv u r ..3、晶系与布拉格点阵在晶体学中,常按“晶系”对晶体进行分类,这是根据其晶胞外形既棱边长度之间的关系和晶轴夹角情况而加以归类的,故只考虑a 、b 、c 是否相等,α、β、γ是否相等和他们是否呈直角等因素,而不涉及晶胞中原子的具体排列情况。
第一章结晶学基础一、名词解释1.晶体:2.空间点阵与晶胞:3.配位数与配位多面体:4.离子极化:5.同质多晶与类质同晶:二、填空与选择1.晶体的基本性质有五种:,,,和。
2.空间点阵是由在空间作有规律的重复排列。
(A 原子B离子C几何点D 分子)3.在等大球体的最紧密堆积中有和二种排列方式,前者的堆积方式是,后者的堆积方式是。
4.如晶体按立方紧密堆积,单位晶胞中原子的个数为,八面体空隙数为,四面体空隙数为;如按六方紧密堆积,单位晶胞中原子的个数为,八面体空隙数为,四面体空隙数为;如按体心立方近似密堆积,单位晶胞中原子的个数为,八面体空隙数为,四面体空隙数为。
5.等径球体最紧密堆积的空隙有两种:四面体空隙和八面体空隙。
一个球的周围有个四面体空隙、个八面体空隙;n个等径球体做最紧密堆积时可形成个四面体空隙、个八面体空隙。
不等径球体进行堆积时,大球,小球。
6.在离子晶体中,配置于正离子周围的负离子数(即负离子配位数),决定于正、负离子半径比(r+/r-)。
若某离子化合物的r+/r-值为0.564,其负离子配位数应是。
(A3 B4 C 6 D 8)三、(1)a≠b≠c,α=β=γ=90°的晶体属什么晶系?(2) a≠b≠c,α≠β≠γ≠90°的晶体属什么晶系?(3)你能否据此确定这两种晶体的布拉菲点阵?四、(1)一晶面在x、y、z轴上的截距分别为2a、3b和6c,求出该晶面的密氏指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2和c,求出该晶面指数。
五、以NaCl晶胞为例,说明面心立方紧密堆积中的八面体和四面体空隙的位置和数量。
六、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、致密度。
七、计算立方体配位、八面体配位、四面体配位、三角形配位的临界半径比。
八、画出面心立方结构的(111)、(110)、(100)晶面的原子排布图,并计算其面间距及原子密度(原子个数/单位面积)九、有一个面心立方密堆结构的晶体,它的密度是8.94/cm3。
晶体学基础绪论刘彤固体中的晶体气态:内部微粒(原子、分子、离子)无规运动液态:内部微粒(原子、分子、离子)无规运动固态:内部微粒(原子、分子、离子)振动自然界中绝大多数固体物质都是晶体。
如:食盐、冰糖、金属、岩石等。
¾单质金属和合金在一般条件下都是晶体。
¾一些陶瓷材料是晶体。
¾高聚物在某些条件下也是晶体。
“德里紫蓝宝石”如何在千姿百态的晶体中发现其规律?熔体凝固液相结晶晶体并非局限于天然生成的固体人工单晶飞机发动机叶片飞机发动机晶体的共同规律和基本特征?水晶石英晶体具有规则的凸多面体外形。
α石英的内部结构大球代表小球代表晶体的概念NaCl的晶体结构晶体(crystal):其内部质点(原子、分子或离子)在3维空间周期性重复排列的固体。
也称具有格子构造的固体。
晶体材料:单晶,多晶¾在一个单晶体的范围内,晶格中的质点均呈有序分布。
多晶体内形成许多局限于每个小区域内的有序结构畴,但在畴与畴之质点的分布是无序的或只是部分有序的。
晶界(晶体缺陷)Be 2O 3非晶体Be 2O 3 晶体分子晶体(范德华力)晶体学的发展历史¾有文字记载以前,人们对矿物晶体瑰丽的色彩和特别的多面体外形引起了的注意,开始观察研究晶体的外形特征。
¾17世纪中叶,丹麦学者斯丹诺(steno)1669年提出面角守恒定律,这可以说是晶体学作为一门正式科学的标志,它找出了晶体复杂外形中的规律性,从而奠定了几何晶体学的基础。
¾1801年,法国结晶学家阿羽依(Haüy)基于对方解石晶体沿解理面破裂现象的观察,发现晶体学基本定律之一的整数定律。
¾1805-1809年,德国学者魏斯(Weiss)发现晶带定律以及晶体外形对称理论。
几何晶体学发展到了相当高的程度。
¾1830年,德国学者赫塞尔(Hessel)推导出描述晶体外形对称性的32种点群。
¾1837年,英国学者米勒(Miller)提出晶面在三维空间位置的表示方法---米勒指数。