500KV #1母线由运行转为检修
- 格式:doc
- 大小:179.50 KB
- 文档页数:5
500kV摘要:超高压输电线在整个电力系中发挥着非常重要的作用,它发挥着输送电能的作用,保障电网安全的正常运行,由于我国的地形环境复杂,导致了输电线路运输途中环境的恶劣性,增加了运输的难度,在这个过程中经常发生各种各样的问题,如跳闸、电网停电等,影响整个电力系统的正常运转,从而影响各项工业活动以及给居民生活造成的不便,通过分析输电线路过程中经常发生的故障,分析其解决措施,提高电力系统的运行效率。
关键词:500kv超高压;输电线路;故障;解决对策;前言:随着我国的经济快速发展,各项建设也越来越完善,基于分析当前情况下我国的输电线路存在的较多问题,及时解决在输电线路存在的问题,定期检修线路,规范检修流程,减少故障的发生,通过提出相应的解决对策,提高人员的工作效率,保障正常的检修工作,从而保证电力系统的正常运行,保障工农业活动的正常用电,居民的正常用电,促进电力系统建设的进一步完善。
1 500kv超高压输电线运行现状分析500kv的超高压输电线在整个电力系统中的最常发生的故障就是输电线路故障,由于运载高压的原因,会对周边的环境造成一定的破坏,在电力系统的运行过程中对周围的线路设备也造成了一定的影响,再加上自然环境的原因,雷电、大风、鸟类等现象造成输电线路故障。
另一方面,管理技术的落后,监测维修技术的落后也是造成故障发生的一部分因素,线路的运行故障中受这些因素的影响,发生故障。
2 500kv输电线路故障发生原因2.1 外力破坏外力破坏包括违章施工、房屋或树木障碍和盗窃、破坏设备等。
通常情况下,违章施工造成的破坏有以下三方面:①因导线和施工机械的间距不足而使杆塔遭到破坏;②因在高压线下钓鱼或高空抛物而导致短路跳闸;③因在输电线路保护区内种植树木、建造房屋或施工修路等造成的线路受损。
2.2 管理技术的陈旧随着电力市场的发展,基础的故障检修手段已经不能满足电网需求,对输电线路的管理模式也相对落后,定期检修过于形式化和表面化,往往是再事故发生后,才去现场进行检修,日常管理维护工作没有落实执行下去,输电线路维修技术的落后,很难做到明确细致的检查,造成故障的发生。
实用文档500kV变电站电气二次部分介绍及保护配置葛磊电力系统继电保护的基本知识一、电力系统继电保护的作用:1、电力系统的故障类型:电力系统故障可分为:单相接地故障 D(1)、两相接地故障 D(1.1)、两相短路故障 D(2)、三相短路故障 D(3)、线路断线故障2、电力系统故障产生的原因:外部原因:雷击,大风,地震造成的倒杆,线路覆冰造成冰闪,线路污秽造成污闪;内部原因:设备绝缘损坏,老化;系统中运行,检修人员误操作。
3、电力系统的不正常工作状态:电力系统不正常工作状态:电力系统中电气设备的正常工作遭到破坏,但未发展成故障。
如:电力设备过负荷,如:发电机,变压器线路过负荷;电力系统过电压;电力系统振荡;电力系统低频,低压。
二、继电保护的基本任务:继电保护装置的基本任务是当电力系统中的电力元件发生故障时,向运行值班人员及时发出警告信号,或者向所控制的断路器发出跳闸命令,以终止这些事件发展。
三、电力系统对继电保护的基本要求:(四性)1、选择性:电力系统故障时,使停电范围最小的切除故障的方式。
2、快速性:电力系统故障对设备人身,系统稳定的影响与故障的持续时间密切相关,故障持续时间越长,设备损坏越严重;对系统影响也越大。
因此,要求继电保护快速的切除故障。
3、灵敏性:继电保护装置在它的保护范围内(一般指末端)发生故障和不正常工作状态的反应能力。
4、可靠性:①保护范围内发生故障时,保护装置可靠动作切除故障,不拒动。
②保护范围外发生故障和正常运行时,保护可靠闭锁,不误动。
四、继电保护的几个名词解释:1、双重化配置:为了满足可靠性及运行维护的需要,500KV线路保护应按两套“独立”能瞬时切除线路全线各类故障的主保护来配置。
其中“独立”的含义:各套保护的直流电源取自不同的蓄电池;各套保护用的电流互感器、电压互感器的二次侧各自独立;各套保护分别经断路器的两个独立的跳闸圈出口;套保护拥有独立的保护通道(或复用通道);各套保护拥有独立的选相元件;2、主保护:满足系统稳定和设备安全的要求,能以最快的速度有选择性的切除电力设备及输电线路故障的保护。
试论500kV输电线路的特点1 500kV输电线路的特点1.1 输电容量大220kV输电线路的输送容量一般在500~1000MW区间内,美国500kV输电线路输送容量与之相符,500kV输电线路经济输送功率是950MW。
日本由于国土面积较小,500kV输电线路的最大输送功率值达到5000MW。
因其输送功率大,每相用单根300mm2或400mm2钢芯铝绞线,已经满足不了载流量的需求,所以要用由三根或是四根导线组成的三四分裂的导线作为每相载体。
应用多分裂导线时,分裂导线的数量越多,线路的自然功率将越大,这有利于远距离输电线路系统的稳定。
1.2 供电可靠性高输送的功率越大,供电的可靠度要求就越高,不然因其线路本体故障或外来因素而发生送电中断,就会造成严重后果,影响本区工业及农业的生产与居民的基本生活。
为了提升输电线路运行的可靠度,应该应用一些必要的手段,其中包括:(1)变电站设计方面采用结实的主结线、可靠度高的电气设备和先进的继电保护装置等;(2)在进行线路杆塔与基础的设计工作时,要考虑到强度保证能够承受来自外界的气象条件所导致的各种机械负荷,如覆冰、风力、温度变化以及可能出现一相或者两相断线所出发生的机械应力变化;(3)线路应保证有足够的绝缘水平,保证线路承受得了操作、雷电过电压及绝缘子污秽引发的电气强度的下降,所以要确认绝缘子的型号及片数、引流线和杆塔之间的最小距离;(4)施工过程中必须要保证施工质量,对于导线本身要有足够强度,还要注意导线的各个联结点及液、爆压联接时的施工质量,所用的联结金具和安装方式也要考虑进去。
1.3 线路长500kV输电线路通常是将设立在边远地区的水力及火力发电站的电力输送到负荷中心,以高电压送电满足远距离的送电需求,所以500kV的送电线路长度通常在200km以上。
如姚双输电线路,其全长342.3km。
二滩至自贡的输电线路,每回的长度为465km。
长线路使导线经过多个地区,使得整条线路所遇的气候和地形、地质条件变得复杂,这便增大了线路设计难度。
500kV变电站主要设备介绍第一部分设备的公用参数一、设备环境条件根据设备使用当地的具体环境确定,具体是:1、户外设备环境条件主要分为:海拔高度、环境温度、相对湿度、污秽等级、地震烈度、覆冰厚度。
2、户内设备环境条件主要是环境温度和相对湿度。
二、设备的额定电压1、我国的电压等级电压等级分别用“系统标称电压”表示,分别为:1000kV、750kV、500kV、330kV(西北)、220kV、145kV (东北)、110kV、60kV、35kV、10kV、6kV(电厂)、0.4kV2、设备的额定电压“设备的额定电压”分别用上述系统的“最高运行电压”表示,分别为:1100kV、800kV、550kV、363kV (西北)、252kV、167kV(东北)、126kV、69kV、40.5kV、11.5kV、6.9kV(电厂)、0.46kV三、绝缘水平绝缘水平是指:设备带电部分与不带电部分之间的绝缘能力,主要分为:雷电冲击、操作冲击和工频耐压三种绝缘水平,主要根据相应的国家和行业的标准以及安装地点的使用要求选择。
四、设备的试验要求各种设备都应该按照国家和行业的标准,通过相关的试验。
设备试验主要分为以下几种:型式试验、出厂试验、安装现场的交接试验等。
五、额定频率:50HZ第二部分 500kV变电站主要一次设备500kV变电站一般分为三个电压等级,即:500kV、220kV和35kV,下面分别介绍各级电压的一次设备。
一、500kV主变压器变压器的作用是“改变电压,将各级电压连接起来”。
500kV主变压器的主要型式和参数介绍如下:1、额定容量:750MVA、1000MVA等等2、绕组容量比:100/100/50等等3、电压变比500/220/35kV等等4、短路阻抗5、空载损耗和负载损耗6、单相变压器(A、B、C三相共三台),或三相共体变压器(A、B、C三相一台)。
多数变电站为三台分相的单相变压器,少量运输条件优越的变电站采用三相共体变压器。
500KV变电站继电保护的配置一、500KV变电站的特点:1)容量大、一般装750MVA主变1-2台,容量为220KV变电站5-8倍。
2)出线回路数多一般500KV出线4-10回220KV出线6-14回3)低压侧装大容量的无功补偿装置(2×120MAR)4)在电力系统中一般都是电力输送的枢纽变电站。
其地位重要,变电站的事故或故障将直接影响主网的安全稳定运行。
5)500KV系统容量大,一次系统时常数增大(50-200ms)。
保护必须工作在暂态过程中,需用暂态CT。
6)500KV变电站,电压高、电磁场强、电磁干扰严重,包括对一些仪器仪表工作的干扰。
二、500KV变电站主设备继电保护的要求1)500KV主变、线路、220KV线路,500KV‘220KV母线均采用双重化配置。
2)近后备原则3) 复用通道(包用复用截波通道,微波通道,光纤通道)。
三、500KV线路保护的配置1、500KV线路的特点a)长距离200-300km ,重负荷可达100万千瓦。
使短路电流接近负荷电流,甚至可能小于负荷电流例:平式初期:姚双线在双河侧做人工短路试验。
姚侧故障相电流仅1200多A。
送100万瓦千负荷电流=1300Ab)500KV线路有许多同杆并架双回线,因其输送容易大,发生区内异名相跨线故障时,不允许将两回线同时切除。
否则将影响系统的安全运行,线路末端跨线故障时,首端距离保护,会看成相间故障。
c)500KV一般采用1个半开关接线,线路停电时,开关要合环,需加短线保护。
d)线路输送功率大,稳定储备系数小,要保证系统稳定,要求保护动作速度快,整个故障切除时间小于100ms。
保护动作时间一般要≤50ms。
(全线故障)e)线路分布电容大500KV线路、相间距离为13m、线分裂距离45cm、正四角分裂、相对地距离12m。
线路空投时,未端电压高。
要加并联电抗器,并联电抗器保护需跳对侧开关,需加远方跳闸保护。
f)500KV线路一般采用单相重合闸,为限制潜供电流,中性点要加小电抗器2、配置原则:1)500KV线路保护配置原则:设置两套完整、独立的全线速动保护,其功能满足:每一套保护对全线路内部发生的各种故障(单相接地、相间短路,两相接地、三相短路、非全相再故障及转移故障)应能正确反映每套保护具有独立的选相相功能,实现分相和三相跳闸,当一套停用时,不影响另一套运行。
500kv变压器电流计算公式500kv变压器是一种高压变压器,其额定电压为500千伏。
在电力系统中,变压器扮演着重要的角色,用于将高压电能转换为低压电能,以满足不同电压等级的电力需求。
为了正确运行和维护变压器,我们需要了解如何计算其电流。
在计算500kv变压器的电流之前,我们需要了解一些基本的电力学知识。
根据欧姆定律,电流(I)等于电压(V)除以电阻(R)。
然而,在变压器中,电阻非常小,可以忽略不计。
因此,在计算500kv变压器的电流时,我们需要考虑电感和容抗。
变压器的电感是由变压器的绕组和铁芯引起的,它会导致电流滞后于电压。
而容抗则是由绕组之间的电容性质引起的,它会导致电流超前于电压。
为了准确计算500kv变压器的电流,我们需要考虑这两种影响。
500kv变压器的电流计算公式如下:I = P / (√3 * V * cosθ)其中,I代表变压器的电流,P代表变压器的功率,V代表变压器的额定电压,cosθ代表功率因数。
在这个公式中,√3是一个常数,代表三相电系统中的相量关系。
功率因数cosθ是一个衡量电流相位与电压相位之间关系的值。
对于理想的电阻性负载,功率因数为1,电流和电压保持同相位。
然而,在实际情况下,变压器的负载通常是非线性的,功率因数可能小于1。
使用500kv变压器电流计算公式,我们可以计算出变压器的电流。
这对于电力系统的设计和运行至关重要。
通过准确计算变压器的电流,我们可以确保变压器的正常运行,并合理安排电力系统的负载。
此外,电流计算还可以帮助我们判断变压器是否过载,从而避免设备损坏和安全事故的发生。
500kv变压器电流计算公式是根据欧姆定律和电力学知识推导出来的。
通过准确计算变压器的电流,我们可以确保电力系统的正常运行和安全性。
在实际应用中,我们需要考虑电感和容抗的影响,并使用功率因数来修正计算结果。
只有在正确计算和控制变压器的电流时,我们才能有效地管理电力系统,提供稳定可靠的电力供应。
500kv开关结构原理简介本文档将介绍500kv开关的结构原理,包括其基本构造、工作原理以及应用场景。
通过对500kv开关的详细解析,帮助读者更好地了解该设备的作用和重要性。
标题一:500k v开关的定义和作用500k v开关是一种用于高压电力系统中的关键设备,用于控制电力系统的电流和电压。
它具有开关和隔离两个基本功能,可实现对电力系统的电流进行分断和接通,以及实现电力系统的隔离保护。
500k v开关在电网运行中起着至关重要的作用,确保电力系统的安全稳定运行。
标题二:500k v开关的构造和组成500k v开关主要由以下几个组成部分构成:1.刀闸:用于进行分断和接通电流的元件,可通过控制机构实现自动和手动操作。
2.断路器:用于在故障时切断大电流,保护电力系统。
3.隔离开关:用于在检修或维护时将设备与电力系统隔离。
4.控制机构:用于远程和就地控制开关的操作。
标题三:500k v开关的工作原理500k v开关在电力系统中起到控制电流和电压的作用,其工作原理如下:1.分断和接通电流:当开关处于关闭状态时,刀闸与断路器相连,电流经过断路器流向刀闸,实现电流的分断。
当需要接通电流时,控制机构将刀闸与断路器分离,使电流能够通过刀闸,实现电流的接通。
2.隔离保护:当需要进行设备检修或维护时,控制机构将刀闸与断路器分离,切断设备与电力系统之间的连接,实现隔离保护。
标题四:500k v开关的应用场景500k v开关广泛应用于电力系统中,其主要应用场景包括但不限于:1.输电线路:500kv开关用于控制输电线路中的电流和电压,确保电力系统正常运行。
2.变电站:500k v开关作为变电站的核心设备,用于控制变电站的电力供应和隔离保护。
3.电力工业:500kv开关用于电力工业中的大电流控制和保护。
结论通过本文档的介绍,我们对500kv开关的结构原理有了更深入的了解。
了解500k v开关的构造和工作原理对于确保电力系统的安全稳定运行非常重要。
一、概述500kv三相输电线路是电力系统中常见的高压输电线路,其线路上存在的磁场对周围环境和人体健康可能会产生影响,因此对其磁感应强度进行准确的计算和评估具有重要意义。
本文将对500kv三相输电线路磁感应强度的计算方法进行详细介绍,以期为相关研究和实际工程提供参考。
二、理论基础1. 磁感应强度的定义磁感应强度是指单位面积内垂直通过的磁感线条数,用字母B表示,单位为特斯拉(T)。
2. 电流产生的磁场根据安培定律,通过载流导线会产生一个磁场,其磁感应强度与电流强度和导线间距、形状等因素有关。
3. 超高压输电线路的特点500kv三相输电线路属于超高压输电线路,其电流强度大、线路长度长、磁场影响范围广,需要通过精确的计算来评估其磁感应强度。
三、计算方法1. 理论计算方法根据电磁场理论和输电线路参数,可以使用比奥-萨伐尔定律等原理,结合计算机仿真技术,对输电线路磁感应强度进行理论计算。
2. 实测方法采用磁场仪器对输电线路周围的磁场进行实测,获取实际数据,并通过统计分析方法得出磁感应强度值。
3. 综合方法综合利用理论计算和实测数据,对磁感应强度进行综合评估,得出最终结论并对磁场影响进行分析。
四、影响因素1. 输电线路参数输电线路的形状、导线间距、电流强度等参数都会对磁感应强度产生影响。
2. 周围环境周围环境的介质特性、地形、建筑物等也会对磁感应强度产生一定影响。
3. 人体健康影响研究表明,超高压输电线路的磁场对人体健康可能会产生潜在的影响,因此对输电线路周围的磁感应强度进行评估具有重要的社会意义。
五、案例分析以某500kv三相输电线路为例,对其磁感应强度进行详细计算和分析,并结合周围环境和人体健康影响因素进行综合评估,得出相应结论。
六、结论500kv三相输电线路的磁感应强度是一个复杂的物理问题,其计算方法需要综合运用理论计算、实测方法和统计分析等手段。
研究和评估输电线路磁感应强度对于保障电力系统安全运行和环境健康具有重要意义,需要进一步深入探讨和研究。