换热器及换热原理共35页
- 格式:ppt
- 大小:766.50 KB
- 文档页数:35
换热器的工作原理及分类一、概述换热器(heatexchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。
二、分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:(一)按传热原理分类1.间壁式换热器间壁式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。
间壁式换热器有管壳式、套管式和其他型式的换热器。
间壁式换热器是目前应用最为广泛的换热器。
2.蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。
蓄热式换热器有旋转式、阀门切换式等。
3.流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。
4.直接接触式换热器又被称为混合式换热器,这种换热器是两种流体直接接触,彼此混合进行换热的设备,例如,冷水塔、气体冷凝器等。
5.复式换热器兼有汽水面式间接换热及水水直接混流换热两种换热方式的设备。
同汽水面式间接换热相比,具有更高的换热效率;同汽水直接混合换热相比具有较高的稳定性及较低的机组噪音。
(二)按用途分类1.加热器加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。
2.预热器预热器预先加热流体,为工序操作提供标准的工艺参数。
3.过热器过热器用于把流体(工艺气或蒸汽)加热到过热状态。
4.蒸发器蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。
(三)按结构分类可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。
换热器工作原理...
换热器是一种用于传递热量的设备,常见于各种热交换系统中。
它通过将热量从一个物质传递到另一个物质,以实现温度调节或能量回收等目的。
换热器工作的基本原理是通过两个流体之间的热传导和对流现象,实现热量的交换。
主要包括以下几个步骤:
1. 流体流动:换热器中包含两个流体通道,分别对应着热源流体和冷却流体。
这两个流体通过各自的管道或通道流动,通常是以对流的方式进行。
2. 热源流体的加热和冷却流体的冷却:当热源流体进入换热器时,它的温度高于冷却流体。
热源流体通过接触热交换界面,将一部分热量传递给冷却流体,自身被冷却。
同时,冷却流体则吸收了热源流体释放的热量,逐渐升温。
3. 界面传导和对流:换热器中的热交换界面是实现热量传递的关键。
界面一般由金属或其他导热性能较好的材料制成,以保证热量的有效传导。
此外,在界面上,由于两个流体之间存在温度差异,会形成对流运动,促进热量的传递。
4. 热量平衡:在换热过程中,热源流体和冷却流体的温度逐渐趋于平衡。
热量的传递效率取决于流体的流动速度、温度差异、热交换界面的设计等因素。
通过以上的工作原理,换热器能够实现热量的传递,使得热源
流体温度降低,冷却流体温度升高。
这样可以在工业、建筑和汽车等领域中,实现能量的回收利用、温度的控制调节等目标。
同时,根据具体应用的不同,换热器的结构和形式也有所不同,包括管壳式换热器、板式换热器、螺旋板换热器等。
暖气换热器工作原理1.循环流动:暖气换热器通过循环泵将热水从锅炉或其他热源处抽取,然后通过管道输送到换热器内部。
换热器内部有一组密集排列的金属片或管道,使得水在其中流动,从而使热能可以顺利传递给空气。
2.辐射传热:暖气换热器内的金属片或管道被热水加热后,会向四周散发热能。
这种方式被称为辐射传热,通过辐射传热,暖气换热器可以将热能传递给周围的物体和空气。
3.对流传热:暖气换热器内的热水加热空气接触的同时,也会引起空气的对流运动。
当空气接触到热的金属片或管道时,会被加热并上升,然后向周围空间扩散。
同时,较冷的空气由于密度较大,会下沉并再次接触到金属片或管道,形成一个对流循环。
通过对流传热,暖气换热器可以将热能迅速传递给室内空气。
在这个过程中,暖气换热器起到一个传导热能的媒介的作用。
热水通过金属片或管道与室内空气进行热交换,从而使空气温度升高。
当空气吸收足够的热能后,它们会变得温暖,并被送到室内空间,起到供暖的作用。
1.温度调节:暖气换热器可以通过调整热源的温度来控制室内的供暖温度。
通过增加热源的温度,可以提高空气温度;通过降低热源的温度,可以使空气变得更凉爽。
2.热能损失:在热水从锅炉到换热器的过程中,由于管道的存在,会导致一定的热能损失。
此外,暖气换热器在传递热能时也会有一些热能的散失,进一步降低了热能的利用效率。
3.连通性:暖气换热器通常通过管道连接到一个统一的热源,如锅炉。
这种连通性使得多个暖气换热器可以同时工作,从而为整个室内空间提供供暖。
总体来说,暖气换热器通过循环泵将热水从热源传递到换热器内部,然后通过辐射和对流传热的方式将热能传递给室内空气。
这种工作原理使得暖气换热器成为一种常见的供暖设备,广泛应用于家庭和商业建筑中。
换热器的工作原理换热器是一种用于传递热量的设备,它在许多工业和家庭应用中起着至关重要的作用。
换热器的工作原理是通过热传导和对流来实现热量的传递和交换。
下面将详细介绍换热器的工作原理。
一、热传导热传导是指热量通过物质内部的分子碰撞传递的过程。
在换热器中,热量从高温区域传递到低温区域。
换热器通常由金属材料制成,如铜、铝或不锈钢,这些材料具有良好的热传导性能,能够有效地传递热量。
二、对流对流是指通过流体(如液体或气体)的流动来传递热量的过程。
在换热器中,热量通过流体的对流传递到另一侧。
换热器通常分为两个流体通道,分别为热源侧和冷却侧。
热源侧的流体通常是高温的,而冷却侧的流体通常是低温的。
热源侧的流体通过换热器时,会释放热量给冷却侧的流体,从而使两侧的温度差减小。
三、换热器的结构换热器通常由一系列平行的管道或片状结构组成。
这些管道或片状结构被称为换热面。
热源侧的流体通过换热面时,热量会通过热传导从流体传递到换热面上。
然后,冷却侧的流体通过换热面时,热量会通过对流从换热面传递给流体。
这样,热量就从热源侧传递到冷却侧,实现了热量的交换。
四、换热器的类型根据不同的应用需求,换热器可以分为多种类型。
以下是几种常见的换热器类型:1. 管壳式换热器:管壳式换热器由一个管束和一个外壳组成。
热源侧的流体通过管束,而冷却侧的流体通过外壳。
这种换热器适用于高温和高压的应用。
2. 板式换热器:板式换热器由一系列平行的金属板组成。
热源侧和冷却侧的流体分别通过板间隙,实现热量的传递。
板式换热器具有紧凑的结构和高效的换热性能。
3. 螺旋板式换热器:螺旋板式换热器由一系列螺旋形的金属板组成。
热源侧和冷却侧的流体分别通过螺旋通道,实现热量的传递。
螺旋板式换热器具有较高的换热效率和较小的压力损失。
4. 换热管束:换热管束由一系列平行排列的管道组成。
热源侧和冷却侧的流体分别通过管道,实现热量的传递。
换热管束适用于高温和高压的应用。
五、换热器的应用换热器广泛应用于各个领域,包括工业生产、能源系统、空调系统等。
换热器的原理及应用一、换热器的基本原理换热器是一种热交换设备,用于将热量从一个介质传递到另一个介质中。
其基本原理是利用不同温度的两种流体(或气体)之间的热传导,使它们在多个细小通道中进行流动,并通过这些通道的壁与介质之间进行换热。
换热器通常由两个主要部分组成:热源端和热载体端。
热源端是传递热量的一侧,热载体端是吸收热量的一侧。
换热器的基本工作原理如下:1.传热方式:换热器主要通过对流、传导和辐射的方式进行热传导。
2.热源端:热源端的流体吸收热量,并传递给换热器中的壁面。
3.热载体端:热载体端的流体通过与换热器的壁面接触,吸收热量进行传递。
4.换热器壁面:换热器壁面起到隔离两边流体的作用,并通过壁面的传导和对流换热,将热量从热源端传递到热载体端。
5.换热流体状态:换热器可以处理不同物态的流体,包括气体、液体和气液两相流体。
二、换热器的应用领域换热器是广泛应用于工业生产中的关键设备,其作用多种多样。
以下是一些典型的换热器应用领域的列举:1.供暖系统:供暖系统中的换热器将锅炉中的热水或蒸汽传递给房间内的暖气设备,用于供暖。
2.汽车冷却系统:汽车发动机冷却系统中的散热器,通过冷却剂的循环来降低发动机温度,保证发动机正常运行。
3.空调系统:空调系统中的蒸发器和冷凝器,通过制冷剂的循环工作,实现对空气的冷却或加热。
4.石油化工:在石油化工生产过程中,换热器用于原油加热、冷却和重整等工序。
5.核能领域:核电站中的换热器被用于冷却核反应堆中的燃料,并产生蒸汽驱动涡轮发电机。
6.食品加工:食品加工行业中的换热器,用于热交换、杀菌、蒸煮和冷却等工艺。
7.航空航天:飞机和火箭中的换热器,用于控制燃料温度和提供舒适的空调环境。
8.造纸业:造纸过程中,使用换热器来调节纸浆的温度,以实现最佳的造纸质量。
三、换热器的类型根据换热器的结构和工作原理,可以将其划分为多种类型。
以下是常见的几种换热器类型的介绍:1.管壳式换热器:管壳式换热器由一个外壳和许多平行或螺旋排列的管子组成。
换热器工作原理换热器是一种用于传输热能的机械设备,它通过介质之间的接触来进行热传递。
它主要用于在两个不同介质之间传递热量。
它具有体积小,换热面积大,起作用快,抗堵塞能力强,可靠性高,封装结构紧凑,维护保养简单,运行成本低等优点。
换热器是利用物料的热能而发生的不同程度的热传导作用来改变换热器的温度和状态的装置,它主要用于液体和气体的对流热交换。
换热器的工作原理可以总结为三种:对流热交换原理、涡流热交换原理和传热原理。
(1)t对流热交换原理:是指在换热器内,介质间的温差通过物体表面形成热辐射,其好处是:(1)像素变小,增加了热交换比;(2)相对于涡流热交换,对流热交换具有噪声较低的特点;(3)对温度和压力都很敏感。
(2)t涡流热交换原理:它是通过涡流热交换的原理,在换热器内,介质通过涡流的形式传递热能,这样可以有效地提高传热效率。
它的优点是:(1)小尺寸,紧凑;(2)可抗震动;(3)可调节;(4)外形美观;(5)低压差换热率高。
(3)t传热原理:是指在换热器内,介质通过器件内部介质传热,形成一个完全封闭的空间,并且在这个封闭空间中形成净热流,这样,可以进行有效、高效的传热。
它的优点在于:(1)操作简单;(2)保温性能好;(3)热交换效率高;(4)对温度变化比较灵敏。
以上是换热器的工作原理,它的优势使它应用于工业、冶金、化工、机械及其他行业。
换热器的设计和使用一般遵守一定的规范,需要考虑物料的温度、压力、流量及流体性质等因素。
此外,制造时要考虑介质、结构、规格等,以保证换热器的养护保养和使用寿命。
换热器由法兰、管壳、管程、散热片、螺旋板等组件组成,换热器的设计及制造标准规定了换热器的一些特性及设计要素,如流体的流量、温度、压力,介质的流性能及换热效果等。
考虑到使用环境、温度、流量、介质特性等,换热器的设计尺寸、材料以及结构形式等都要相应地作出相应的调整。
换热器的正确使用、维护、抽检和保养极其重要,必须按照正确的技术方法进行,如定期检查换热器内外的介质,定期检查换热器的螺旋板及其他零部件,定期清洗换热器,及时调整换热器的工作参数等。
换热器的工作原理引言:换热器是一种重要的热交换设备,广泛应用于工业生产和能源系统中。
它可以将热能从一个流体传递到另一个流体,实现热量的有效利用。
本文将详细介绍换热器的工作原理及其五个关键部份。
一、热交换原理1.1 热传导换热器通过热传导实现热量的传递。
当两个温度不同的流体通过换热器的热传导面接触时,热量会从高温流体传递到低温流体。
这种热传导过程是通过份子之间的碰撞和传递能量实现的。
1.2 对流换热对流换热是指通过流体的对流传热来实现热量的传递。
当两个流体在换热器内部流动时,它们之间会形成对流层,热量会通过对流层的传递实现从一个流体到另一个流体的传热。
1.3 辐射换热辐射换热是指通过辐射传热来实现热量的传递。
换热器内部的高温表面会辐射出热量,低温表面则会吸收这些热量。
辐射换热不需要介质,可以在真空中传热。
二、换热器的五个关键部份2.1 热交换管道热交换管道是换热器中的核心部份,用于容纳流体并实现热量的传递。
它通常由金属材料制成,具有良好的导热性和耐腐蚀性。
2.2 管束管束是将多个热交换管道固定在一起的部件,通常由支撑板和固定件组成。
管束的设计和创造对换热器的性能和效率有重要影响。
2.3 壳体壳体是换热器的外壳,用于容纳热交换管道和管束。
它通常由金属材料制成,具有足够的强度和密封性,以承受高压和高温环境。
2.4 冷却介质冷却介质是指通过换热器来吸收热量的流体。
它可以是空气、水、油等不同的介质,根据具体应用需求选择合适的冷却介质。
2.5 加热介质加热介质是指通过换热器来释放热量的流体。
它可以是蒸汽、热水、燃气等不同的介质,根据具体应用需求选择合适的加热介质。
三、换热器的工作过程3.1 冷却过程在冷却过程中,冷却介质从外部环境吸收热量,通过换热器的热交换管道和壳体,将热量传递给加热介质,使其温度升高。
3.2 加热过程在加热过程中,加热介质通过换热器的热交换管道和壳体,释放热量给冷却介质,使其温度降低。
3.3 温差调节换热器可以通过调节冷却介质和加热介质的流量和温度来实现温差的调节,以满足不同的工艺需求。
换热器的工作原理换热器是一种用于传递热量的设备,它的工作原理是利用流体之间的热交换实现热量的传递。
换热器广泛应用于工业生产、能源系统、空调系统等领域,起到了重要的热能转移作用。
换热器的工作原理可以简单描述为热量传导和对流传热的过程。
下面将详细介绍换热器的工作原理。
1. 热量传导:换热器中的热量传导是指热量通过固体壁板的传递。
换热器通常由两个流体流经相邻的金属壁板,热量从一个流体通过壁板传递给另一个流体。
这种热量传导是通过壁板的分子振动和碰撞实现的。
壁板通常是由导热性能较好的金属材料制成,如铜、铝、不锈钢等。
2. 对流传热:对流传热是指热量通过流体的传递。
换热器中的两个流体在壁板两侧形成了对流层,热量通过对流层的传递完成热交换。
对流传热受到流体的流速、流体性质以及壁板的热传导性能等因素的影响。
换热器的工作原理可以分为两种类型:直接传热和间接传热。
1. 直接传热:直接传热是指两个流体直接接触并交换热量。
例如,水和蒸汽在换热器中直接接触并交换热量。
这种方式通常适用于两个流体之间温度差较小的情况。
直接传热的优点是传热效率高,但由于两个流体直接接触,可能存在污染、腐蚀等问题。
2. 间接传热:间接传热是指两个流体通过壁板进行热量传递,彼此之间不直接接触。
例如,热水通过管道流经换热器的壁板,与空气进行热量交换。
这种方式通常适用于两个流体之间温度差较大的情况。
间接传热的优点是能够避免两个流体之间的混合和污染。
换热器的性能评价指标主要包括传热系数、压降和换热面积。
1. 传热系数:传热系数是指单位面积上的热量传递量。
传热系数越大,换热器的传热效率越高。
传热系数受到流体性质、流速、壁板材料等因素的影响。
2. 压降:压降是指流体通过换热器时的压力损失。
压降越小,流体通过换热器的阻力越小,能耗也就越低。
压降受到流速、管道长度、管道直径等因素的影响。
3. 换热面积:换热面积是指用于热量传递的有效面积。
换热面积越大,热量传递的面积也就越大,传热效率也会提高。