《换热器原理与设计》介绍
- 格式:doc
- 大小:19.50 KB
- 文档页数:1
翅片管换热器的原理与设计
翅片管换热器是一种高效的换热设备,其原理是通过在管子的外表面上添加一些翅片,增加了管子的表面积,从而加快了热传递速度,提高了换热效率。
翅片管换热器分为单向流和双向流两种,其设计需要考虑以下因素:
1. 翅片的形状和数量:翅片的形状和数量会直接影响到翅片管的传热性能,因此需要根据具体工况和热负荷的大小进行选择。
2. 翅片和管子的材质:翅片和管子的材质需要选择耐腐蚀、高温抗压的材质,如不锈钢、铜、铝等。
3. 管侧和壳侧流量:流量的大小会直接影响到翅片管的传热效率,需要根据具体工况和热负荷的大小进行计算和调整。
4. 翅片管的结构和布局:翅片管的结构和布局需要兼顾传热效率和压力损失,需要进行合理设计和优化。
总之,翅片管换热器的设计需要兼顾热传递性能、稳定性和可靠性,需要经过计算和实验验证后方可投入使用。
换热器基础知识简单计算板式换热器板片面积选用板式换热器就是要选择板片的面积的简单方法:Q=K×F×Δt,Q——热负荷K——传热系数F——换热面积Δt——传热对数温差传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。
最后算出的板换的面积要乘以一定的系数如1.2。
换热器的分类与结构形式换热器作为传热设备被广泛用于耗能用量大的领域。
随着节能技术的飞速发展,换热器的种类越来越多。
适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一、换热器按传热原理可分为:1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。
表面式换热器有管壳式、套管式和其他型式的换热器。
2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。
蓄热式换热器有旋转式、阀门切换式等。
3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。
4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。
二、换热器按用途分为:1、加热器加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。
2、预热器预热器预先加热流体,为工序操作提供标准的工艺参数。
3、过热器过热器用于把流体(工艺气或蒸汽)加热到过热状态。
4、蒸发器蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。
三、按换热器的结构可分为:可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。
绪论1.2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章1.Mc1℃是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W—对应单位温度变化产生的流动流体的能量存储速率。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。
5.P(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
(定义式P12)7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。
除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。
(P22 例1.1)8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。
9.实际传热量Q与最大可能传热量Qmax=Q/Qmax。
意义:以温度形式反映出热、冷流体可用热量被利用的程度。
10.根据ε的定义,它是一个无因次参数,一般小于1。
其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。
换热器设计原理
换热器设计原理即通过传导、对流和辐射三种方式实现热量的传递和交换。
换热器是一种用于加热或冷却流体的设备,常见于工业生产、暖通空调系统以及汽车发动机等领域。
传导是换热器中最基本的传热方式之一。
当两个物体的温度不相同时,它们之间会产生相互传导热量的现象。
传导通过物体内部的微观震动来传递能量,换热器中的传导主要通过盘管、管道等直接接触热源和冷源的部分实现。
对流是换热器中最常见的传热方式。
当热源与冷源之间有流体介质时,它们通过流体的运动来传递热量。
对流分为自然对流和强制对流两种形式。
自然对流是指由于温度差引起的流体自然的密度变化和热对流现象。
而强制对流是通过外部的力量,如风扇或泵等,来强迫流体运动以实现换热。
辐射是热量以电磁辐射的形式传递的方式。
当物体的温度高于绝对零度时,它会发射热辐射,这种辐射能够穿过真空传递热量。
换热器中的辐射通过热辐射表面(如金属片或陶瓷片)实现热量的传递和吸收。
基于以上原理,换热器的设计需要考虑以下几个方面:
1. 确定换热器的传热方式:根据具体的应用需求和工作条件,选择合适的传热方式(传导、对流或辐射)或它们的组合;
2. 决定换热面积:根据所需的换热量和传热系数,计算出合适的换热面积;
3. 选择换热器材料:根据工作温度、压力和介质特性等因素,
选择适合的换热器材料,如不锈钢、铜、铝等;
4. 设计换热器结构:包括换热器的形状、大小、管道布置和流体流动方式等,以实现最佳的换热效果;
5. 确保换热器的有效运行:包括管路的密封、泄露检测和定期维护等,以确保换热器的效率和安全性。
换热器设计手册1. 引言本文档旨在提供有关换热器的设计手册。
换热器是一种常见的设备,用于在热力系统中传递热量,实现能量的转移。
本手册将介绍换热器的基本原理、设计流程以及设计考虑事项。
2. 换热器的基本原理换热器是通过流体之间的热传导和对流传热来实现热量转移的设备。
换热器通常由两个流体通道组成,分别称为热源侧和热载体侧。
热源侧是热量的来源,热载体侧是热量的传递介质。
换热器的基本原理是通过接触面积的增加和流体之间的温度差来实现热量的传递。
3. 换热器设计流程3.1 确定热传导方式在进行换热器设计之前,需要确定热传导的方式。
根据不同的传热方式,可以选择不同类型的换热器,如管壳式换热器、板式换热器等。
3.2 确定流体参数在设计过程中,需要确定流体的参数,包括流量、温度等。
这些参数将对换热器的尺寸和性能产生影响。
3.3 确定换热器尺寸根据流体参数和传热需求,可以计算出换热器的尺寸。
这包括换热器的长度、直径或面积等。
3.4 确定传热系数换热器的传热系数是一个重要的设计参数,它决定了换热器的换热效率。
在设计过程中,需要考虑流体的性质、换热器的材料和结构等因素,来确定传热系数。
3.5 进行换热器设计计算在确定了上述参数之后,可以进行具体的换热器设计计算。
这包括确定换热面积、管道布置、管束数量等。
4. 换热器设计考虑事项4.1 热量传递效率在进行换热器设计时,需要考虑热量传递的效率。
热量传递效率是换热器性能的重要指标,直接影响换热器的能耗和传热效果。
4.2 材料选择在选择换热器的材料时,需要考虑流体的性质、工作条件和成本等因素。
常用的材料包括钢、铜、不锈钢等。
4.3 清洁和维护换热器在使用过程中,会积累一些污垢和沉积物,这会影响换热器的性能。
因此,在设计过程中需要考虑清洁和维护的便利性。
5. 结论通过本文档的介绍,我们了解了换热器的基本原理、设计流程以及设计考虑事项。
换热器的设计是一个复杂的过程,需要综合考虑多个因素。