两个平面垂直的判定和性质(新2019)
- 格式:ppt
- 大小:303.50 KB
- 文档页数:15
高中数学第九章两个平面垂直的判定和性质(二)教学案苏教版一、素质教育目标(一)知识教学点1.两个平面垂直的性质定理.2.异面直线上两点间的距离公式.(二)能力训练点1.弄清反证法与同一法之间的关系,并会应用同一法证题,进一步培养学生的逻辑思维能力.2.掌握两个平面垂直的性质定理,理解面面垂直问题可能化为线面垂直的问题.3.异面直线上任意两点间的距离公式不仅可用于求其值,还可以证明两条异面直线的距离是异面直线上两点的距离中最小的.另外,还可解决分别在二面角的面内两点的距离问题.二、教学重点、难点、疑点及解决方法1.教学重点:掌握两个平面垂直的性质;会运用异面直线上两点间的距离公式.2.教学难点:异面直线上两点间距离公式的应用.3.教学疑点:(1)弄清反证法与同一法的联系与区别.(2)正确理解、应用异面直线上两点间的距离公式:EF=三、课时安排本课题安排2课时.本节课为第二课时,主要讲解两个平面垂直的性质及异面直线上两点间的距离公式.四、教与学的过程设计(一)复习两个平面垂直的定义,判定师:什么是两个平面互相垂直?生:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.师:如何判定两个平面互相垂直?生:第一种方法根据定义,判定两个平面所成的二面角是直二面角;第二种方法是根据判定定理,判定其中一个平面内有一条直线垂直于另一个平面.(二)两个平面垂直的性质师:今天我们接着研究两个平面垂直的性质.两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.已知:平面α⊥β,α∩β=CD,AB α且AB⊥CD于B.求证:AB⊥β.证明:在平面β内引直线BE⊥CD,则∠ABE是二面角α-CD-β的平面角.∵α⊥β,∴AB⊥BE.又∵AB⊥CD,∴AB⊥β.师:从性质定理可以得出,把面面垂直的问题转化为线面垂直的问题.例1 如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.已知:α⊥β,P∈α,P∈a,a⊥β.求证:a α.师提示:要证明a α,一般用反证法,即否定结论→推出矛盾→肯定结论.下面请同学们写出它的证明过程.其中c为α与β的交线.∵α⊥β,∴b⊥β.又∵P∈α,P∈a,a⊥β,这与“过一点P有且只有一条直线与已知平面垂直”矛盾.∴a α.师:现在我们来看课本P.44的证明,这种方法叫同一法.什么是同一法呢?(幻灯显示)一个命题,如果它的题设和结论所指的事物都是唯一的,那么原命题和它的逆命题中,只要有一个成立,另一个就一定成立,这个道理叫做同一法则.在符合同一法则的前提下,代替证明原命题而证明它的逆命题成立的一种方法叫做同一法.同一法的一般步骤是什么?(幻灯显示)1.不从已知条件入手,而另作图形使它具有求证的结论中所提的特性;2.证明所作的图形的特性,与已知条件符合;3.因为已知条件和求证的结论所指的事物都是唯一的,从而推出所作的图形与已知条件要求的是一个东西,由此断定原命题成立.证明(同一法):设α∩β=c,过点P在平面α内作直线b⊥c,根据上面的定理有b⊥β.因为经过一点只能有一条直线与平面β垂直,所以直线a应与直线b重合.即a α.师:比较反证法与同一法,我们可以知道:凡可用同一法证明的命题也可用反证法来证;反证法可适用于各种命题,同一法只适用于符合同一法则的命题.另外,例1的结论也可作为两个平面垂直的另一个性质,可直接应用.下面请同学们一齐完成例2.(三)异面直线上两点间的距离例2 已知两条异面直线a、b所成的角为θ,它们的公垂线段AA'的长度为d.在直线a、b上分别取点E、F,设,A'E=m,AF=n,求EF.解:设经过b与a平行的平面为α,经过a和AA'的平面为β,α∩β=c,则c∥a,因而b、c所成的角等于θ,且AA'⊥C.又∵AA'⊥b,∴AA'⊥α.根据两个平面垂直的判定定理,β⊥α,在平面β内作EG⊥C,则EG=AA'.并且根据两个平面垂直的性质定理,EG⊥α.连结FG,则EG⊥FG.在Rt△FEG中.EF2=EG2+FG2∵AG=m,∴在△AFG中.FG2=m2+n2-2mncosθ.又∵EG2=d2∴EF2=dw+m2+n2-2mncosθ.如果点F(或E)在点A(或A')的另一侧,则EF2=d2+m2+n2+2mncosθ.师:例2不仅求出两条异面直线上任意两点间的距离公式,还解决了下面的三个问题:(1)证明了两条异面直线公垂线的存在性.(2)证明两条异面直线的距离是异面直线上两点的距离最小的.∵AA'=EG,且AA',EG是平面α的垂线,而EF是斜线,∴AA'<EF.如在实际中,两条交叉的高压电线如果放电时,火花正是通过它们的最短距离.(3)也可以解决分别在二面角的面内两点的距离问题,请看下面练习.(四)练习在60°二面角的枝上,有两个点A、B,AC、BD分别是在这个二面角的两个面内垂直于AB的线段.已知:AB=4cm,AC=6cm,BD=8cm,利用异面直线上两点距离公式求CD.(P.45中练习3)∴AC与BD是异面直线.∵AB⊥AC交于点A,AB⊥BD交于点B,∴AB是AC、BD的公垂线,AC、BC所成角是60°.已知AB=4cm,AC=6cm,BD=8cm.师点评:根据二面角的平面角来求异面直线上两点间的距离时,应用异面直线上两点间的距离公式一定要注意cosθ前正负号的选择(当θ≤90°时取“-”号).(五)总结本节课我们学习了两个平面垂直的性质及异面直线上两点间距离的求法.正确理解、掌握异面直线上两点间的距离公式及其应用是本节课学习的关键.五、作业P.46中习题六9、10(2)、11、12.。
两个平面垂直的判定和性质一、内容提要1. 二面角(1) 两个平面平行时,可以用它们的距离来表达这两个平面的位置关系.两个平面相交时,和空间直线所成角的概念类似,要将“空间”转化为“平面”,用平面的角来反映空间两个相交平面的位置关系.(2) 为了能用一个确定的平面的角来表示一个二面角的大小,引进了二面角的平面角这一概念.二面角的平面角的顶点必须在二面角的棱上;二面角的平面角的两边必须既分别在两个半平面内,又必须和二面角的棱垂直.(3) 二面角及它的平面角的画法根据其棱方向的不同,通常有以下三种画法:画二面角的平面角时,其两边应当和表示半平面的平行四边形的一条边平行.2. 两个平面垂直的定义及判定两个平面垂直是以它们相交形成的二面角来定义的.判定两个平面垂直的方法有两种:①根据定义,两个平面相交,它们所形成的二面角是直二面角,通常先作出二面角的平面角,再证明二面角的平面角是直角;②根据判定定理,证明一个平面过另一个平面的一条垂线,即把面面垂直问题化归为线面垂直问题.这个定理可简记为"线面垂直,面面垂直3. 两个平面垂直的性质两个平面互相垂直时有下面两个性质:①在一个平面内垂直于它们交线的直线垂直于另一个平面;②经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.1.二面角的概念是平面几何中的角的概念的扩展,学习时可对照平面几何中的角去理解。
平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的2.二面角的平面角,则是用来刻划二面角大小的一个概念。
它和两条异面直线所成的角以及直线和平面所成的角一样,都化归为平面内两条相交直线所成的角来表示。
但必须注意二面角的平面角所在平面应垂直于二面角的棱,二面角的平面角的两条边分别在二面角的两个面内。
而二面角的平面角的大小是由二面角的两个面的相互位置所确定的,与二面角的平面角的顶点在棱a上的位置无关。
3.计算二面角大小的方法(1)作二面角的平面角,并将其放在一个三角形中,解三角形求出二面角的平面角大小,它就是二面角的大小。
提问回答例题练习1..二面角的概念(1)半平面:平面的一条直线把平面分为两部分,其中的每一部分都叫做一个半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,每个半平面叫做二面角的面.(3)二面角的画法和记法:面1-棱-面2 点1-棱-点2二面角βα--l二面角QlP--问题1:我们常说“把门开大些”,是指哪个角开大一些,我们应该怎么刻画二面角的大小?问题2:探究:用课本作模型,相邻两页书也构成二面角,活动:尝试“打开课本”为30°、90°、120°,观察是指哪个角的变化?(4)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.思考:∠AOB 的大小与点O在棱l上的位置有关吗?为什么?二面角的平面角必须满足:①角的顶点在棱上②角的两边分别在两个面内③角的边都要垂直于二面角的棱观察:教室相邻两个墙面与地面可构成几个二面角?分别指出构这些二面角的面、棱、平面角及其度数。
【答案】三个2. 平面与平面垂直的定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.记作:βα⊥图形表示:深刻二面角概念。
学生做好笔记,并理解记忆学生做好笔记,并力。
通过思考,引入二面角的平面角,提高学生分析问题、概括能力。
通过观察,由实例引入两平观察:如图,建筑工人砌墙时,如何使所砌的墙和水平面垂直?【答案】用铅锤来检测,如系有铅锤的细线紧贴墙面,认为墙面垂直与地面。
3.平面与平面垂直的判定定理如果一个平面过另一个平面的垂线,那么这两个平面垂直。
图形: 符号语言:βαβα⊥⇒⊂⊥a a , 简记:线面垂直,则面面垂直。
三、巩固知识、典型讲练练习:概念辨析.判断下列说法的对错:(1)如果平面α内有一条直线垂直于平面β内的一条直线,则α⊥β.( )(2)如果平面α内有一条直线垂直于平面β内的无数条直线,则α⊥β.( )(3)如果平面α内有一条直线垂直于平面β内的两条相交直线,则α⊥β.( )(4)若m ⊥α , m ⊂β,则α⊥β.( )例 1.在正方体D C B A ABCD ''''-中,求证:平面A C AC BD A ''⊥'平面例2.如图,AB 是圆O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于A ,B 的任意一点,求证:平面PAC⊥平面PBC.练习:练.已知l⊥平面α,直线m⊂平面β.有下面四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确的两个命题是()A.①②B.③④C.②④D.①③四、课堂小结1. 平面与平面垂直的判定:(1)定义(2)判定定理2.数学思想:转化思想五、布置作业习题8.6 6,7题让学生进行小结结,让学生进一步巩固本节所学内容,提高概括能力,提高学生的数学运算能力和逻辑推理能力。
两个平面垂直的判定和性质教案教学目的(1)使学生掌握两个平面垂直的判定定理、性质定理及它们的证明,并学会加以初步运用.(2)通过本节内容的引入与命题的构造、完善、论证过程,对学生进行观察、实践、猜测、联想、分析、论证等思维能力的培养.教具制作用两个矩形铁丝框架焊制成两个互相垂直的平面的模型(如图1),并在两个平面的交线CD上取点B,在点B处焊上两个用铁皮卷成的插孔BM、BN;再备两个可以插入插孔的粗铁丝段,使插入以后可以表示二面角α-CD-β的平面角.教学过程一、引入新课师:前一节课,我们学习了二面角、直二面角、两个平面垂直等概念(为了本节课“引入”的需要,特地把“α⊥β”的概念移至上节课),今天我们学习“两个平面垂直的判定和性质”.(板书课题后,随即出示小黑板,引入命题.)意取其中两个作前提,另一个作结论构造命题,能构成几个命题,并判断其真假.”[提出问题,引起思维.][学生画图形,搭模型——用课本、桌面作平面,铅笔作直线,积极思考,相互议论;教师巡视,及时给予以个别启发、指导.估计学生能构成三个不同的命题:教师可鼓励学生大胆猜想与判断.对于学生回答不完善时,教师给予及时引导,点拨.]二、证明定理(教师针对学生的回答先板书,再演示教具,印证“猜测”.)师:对于命题(1).欲证α⊥β,须判断二面角α-CD-β为直二面角,为此须作出其平面角(图2).(在教具模型上,再插入线段EM,即在β内作BE⊥CD.)这样,得到二面角α-CD-β的平面角∠ABE,从而由∠ABE=90°证明了α⊥β.[把问题交给学生,让学生在对模型进行观察、分析后提出猜想,并在议论和印证中发现了两个平面垂直的判定定理(暂且还未揭示)的内容及其证明方法,从而增强学生学习中的发现因素和探索机会,有利于培养学生的思维能力和探索精神.][接着,在学生思考探究的基础上,让学生通过模型,考察命题(2).]师:(指着模型)现在让我们来考察、探究命题(2)的真假(图3).(学生摆弄手中自搭的模型,观察思考着“由α⊥β,α内的直线a能与平面β垂直吗?”)生甲:“不能!”生乙:“不一定能!”[教师肯定了后者,a不一定垂直于β,如图3中直线a',故命题(2)不真.接着,激励学生进一步探究.]的结论成立呢?(学生在各自的桌面上用书本、铅笔构造模型,摆弄a在α内的各种位置后,进行讨论并提出猜想.)生:增加a⊥CD的限制条件后,即能判定a⊥β.即师:现在,我们给出命题(2的证明.[师生共同活动完成证明过程.再次结合教具,插入线段AN(图2),表示a⊥CD,为利用α-CD-β为直二面角的条件,从而添置辅助线,插入线段EM 图2),即在β内作EB⊥CD,一方面AB⊥OD,另一方面由∠ABE=90°,得到AB⊥BE,从而a⊥β.][这里揭示了命题(2的形成过程:在处于命题(2)的阶段是初露端倪,经过分析、对比、猜想、抽象、印证,形成了命题(2.这个过程,有利于发展学生的数学思维,如果不讲过程,不讲背景,容易使学生的思维呆板.此外,启发学生学习的主动性与创造性的关键不在于频繁的提问,而在于“创造问题的情境”,如本段教学中出现了命题(2)不真的矛盾,如何使其“真”,并再证明其真,这就创造出一种使学生能够积极思维的环境.][有了完善命题(2)的经验和乐趣,学生带着浓厚的兴趣投入完善命题(3)的实践中.]师:由摆弄模型(包括学生自搭的)可知,由α⊥β,a⊥β,显然a不一定在α内,如图4中直线a'.为了达到aα的结论,需要增加什么条件?生:a须经过α内的一点P(图4).(教师板书.)师:对于命题(3的证明,先请同学们回忆一下,证明直线在平面内常用什么方法?(估计学生会回答:“同一法”或“反证法”.)师:我们不妨用同一法试试.(教师简述“同一法”证题的三个步骤:符合结论的作图,图形符合条件的证明,“唯一性”的说明.接着启发、诱导.)师:如何就本题的条件证明“aα”的结论呢?(学生思考、议论后回答.)生:在平面α内过点P作b垂直于平面α、β的交线c,由命题(2判断b⊥β.(教师肯定并鼓励学生的严密思考,继续允许学生再发表意见,并启发学生另一种证法:师:从不同的“唯一性”为出发点,证明了命题(3.至于“反证法”的证明,同学们课外去思考.[“同一法”的三个步骤由教师扼要表述,这是教师给予学生在知识上的必要的铺垫,以减少思维障碍,使学生的议论、猜想、证明得以顺利的进行.]师:(画龙点睛地)通过构造命题,探索真伪,猜想论证,得到了三个正确的命题.其中命题(1)用来判断α⊥β,故称它为两个平面垂直的判定定理;命题(2、(3称为两个平面垂直的性质定理.现在请同学们完整而确切地表述刚才获得的三个定理.(学生表述,教师点拨,接着要求学生打开课本,阅读两个平面垂直的判定和性质定理.)[充分发挥课本作用,引导学生看书、消化、回味、思考,有利于学生基础知识的学习与巩固.]三、巩固练习师:现在请同学们思考解答课本中总复习参考题A的第2题:“如图5,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的任意点.求证:△PAC所在的平面垂直于△PBC所在的平面.”要证明平面PBC⊥平面PAC,应该找线面垂直关系.(让学生思索、议论.启发学生找出一条在平面PBC内的直线BC且与平面PAC 垂直.在学生的回答基础上,教师边复述,边写出证明过程.)师:还有其他证法吗?生甲:可以通过两个平面垂直的定义证明二面角B-PC-A的平面角是直角,从而证明它们互相垂直.因为∠ACB=90°,而它又是这二面角的平面角,所以平面PAC⊥平面PBC.(教师板书此学生的想法,然后让大家议论这证法有否问题.)生乙:这里∠ACB不是这二面角的平面角,因为PC不垂直于AC,所以这证法不对.师:对,不过这个问题是肯定可以用定义证明的,关键是A-PC-B的平面角如何作,同学们课后研究解决.[留有悬念,并把课内引向课外.](小结、作业均略.)教案说明(1)课本中“两个平面垂直的判定和性质”一节教材仍按人民教育出版社的《教学参考资料》的参考意见安排三课时,但在内容上作这样安排:第一课时即本课授课内容;第二课时以课本习题为依据进行判定定理、性质定理的应用训练;第三课时进(2)本课的结构为:“创设问题——模型实践——猜想探究——指导论证——归纳升华——应用实践.示意图如下:(3)本课教学在“三论”(即信息论、系统论与控制论)的指导下,首先输入一个贯穿全课的信息源,熔“判定”与“性质”为一题,然后在教师的主导下,师生共同进行信息加工处理.在自成系统的教学过程中,教学信息反馈及时,因而信息传输的过程得到了有效的控制、及时的矫正,促使教学系统的各子系统实现最佳的组合.笔者把这一教学方法称之为“三论”指导下的“引导探究法”教学.。