两平面垂直的判定与性质
- 格式:ppt
- 大小:907.00 KB
- 文档页数:1
空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。
两个平面垂直的判定和性质知识要点1.二面角是立体几何中一个重要概念.同时也是一个难点,求二面角的大小可以转化为求二面角的平面角的大小、平面角的确定与求法通常有直接法和公式法等,其中直接法包括定义法、垂面法和三垂线定理等.公式法是运用异面直线上任两点距离公式和面积射影公式等.对于二面角的平面角的画法,在解题时应当根据具体情况适当选用.2.异面直线上任意两点间的距离公式,不仅可用于求值,还可用于证明两条异面直线问的距离是异面直线上两点距离中最小的.在公式的推导过程中还解决了如下问题:(1)两条异面直线公垂线的存在性;(2)证明了两条异面直线间的距离是异面直线上任意两点的距离中的最小值;(3)两条异面直线总分别存在于两个互相垂直的平面内.同时应用这个公式,也可以解决分别在二面角的两平面内两点的距离间题,以及求二面角的大小问题.典型题目分析例1.正方体中,E、F、G是A1A、CD、BC的中点。
求证:平面BEF⊥平面DGC1。
分析:确定EF在平面D1DCC1和ABCD上的射影,通过射影与DC1和DG的垂直,证明EF分别与DC1和DG垂直,从而推证EF⊥平面DGC1,即可证明平面DEF⊥平面DGC1。
证明:取D1D中点H,连结EH、HF。
在正方体ABCD-A1B1C1D1中,∵E、H、F是A1A、D1D、DC中点,∴EH⊥平面D1DCC1,HF⊥DC1。
∵HF是EF在面D1DCC1上的射影,∴EF⊥DC1。
连结AF,在ΔADF和ΔDCG中AD=DC,∠ADF=∠DCG=90°,∵G是BC中点,∴DF=GC,∴ΔADF≌ΔDCG,∴∠DAF=∠GDC。
∵∠ADG+∠GDC=90°,∴∠DAF+∠ADG=90°,∴ AF⊥DG。
∵EA⊥平面ABCD,AF是EF在平面ABCD上的射影,∴ EF⊥DG。
∵ DC1∩DG=D,∴ EF⊥平面DGC1。
∵EF面BEF,∴平面BEF⊥平面DGC1。
面面垂直的性质
面面垂直性质定理如下:
性质:若两平面垂直,则在一个平面内与交线垂直的直线垂直于另一平面;若两平面垂直,则与一个平面垂直的直线平行于另一平面或在另一平面内。
其判定定理是:一个面如果过另外一个面的垂线,那么这两个面相互垂直。
即一个平面过另一平面的垂线,则这两个平面相互垂直。
定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。
面面垂直的判定定理如下:一个平面过另一平面的垂线,则这两个平面相互垂直。
垂直的性质是如下:在同一平面内,过一点有且只有一条直线与已知直线垂直。
垂直一定会出现90°。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
垂直是指一条线与另一条线相交并成直角,这两条直线互相垂直。
通常用符号“⊥”表示。
对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的问题,其难点是线面垂直的定义及其对判定定理成立的条件的理解;两平面垂直的判定定理及其运用和对二面角有关概念的理解。
两个平面垂直的判定和性质一、内容提要1. 二面角(1) 两个平面平行时,可以用它们的距离来表达这两个平面的位置关系.两个平面相交时,和空间直线所成角的概念类似,要将“空间”转化为“平面”,用平面的角来反映空间两个相交平面的位置关系.(2) 为了能用一个确定的平面的角来表示一个二面角的大小,引进了二面角的平面角这一概念.二面角的平面角的顶点必须在二面角的棱上;二面角的平面角的两边必须既分别在两个半平面内,又必须和二面角的棱垂直.(3) 二面角及它的平面角的画法根据其棱方向的不同,通常有以下三种画法:画二面角的平面角时,其两边应当和表示半平面的平行四边形的一条边平行.2. 两个平面垂直的定义及判定两个平面垂直是以它们相交形成的二面角来定义的.判定两个平面垂直的方法有两种:①根据定义,两个平面相交,它们所形成的二面角是直二面角,通常先作出二面角的平面角,再证明二面角的平面角是直角;②根据判定定理,证明一个平面过另一个平面的一条垂线,即把面面垂直问题化归为线面垂直问题.这个定理可简记为"线面垂直,面面垂直3. 两个平面垂直的性质两个平面互相垂直时有下面两个性质:①在一个平面内垂直于它们交线的直线垂直于另一个平面;②经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.1.二面角的概念是平面几何中的角的概念的扩展,学习时可对照平面几何中的角去理解。
平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的2.二面角的平面角,则是用来刻划二面角大小的一个概念。
它和两条异面直线所成的角以及直线和平面所成的角一样,都化归为平面内两条相交直线所成的角来表示。
但必须注意二面角的平面角所在平面应垂直于二面角的棱,二面角的平面角的两条边分别在二面角的两个面内。
而二面角的平面角的大小是由二面角的两个面的相互位置所确定的,与二面角的平面角的顶点在棱a上的位置无关。
3.计算二面角大小的方法(1)作二面角的平面角,并将其放在一个三角形中,解三角形求出二面角的平面角大小,它就是二面角的大小。
面面垂直的判定定理及性质定理
性质定理:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内等。
定义:
若两个平面的二面角为的直二面角(平面角就是直角的二面角),则这两个平面互相横向。
1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的.直线垂直于另一个平面。
2、如果两个平面相互横向,那么经过第一个平面内的一点并作旋转轴第二个平面的直线在第一个平面内。
3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
4、如果两个平面互相横向,那么一个平面的垂线与另一个平面平行。
(认定定理推断1的逆定理)。
面面垂直→线线垂直判定定理
平面垂直的判定定理:
一个平面过另一平面的,则这两个平面相互垂直。
面面垂直性质定理:
定理1:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
定理2:如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
定理3:如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
平面垂直的判定定理和性质如下:
平面垂直的判定定理:
一个平面过另一平面的,则这两个平面相互垂直。
推论1:如果一个平面的垂线平行于另一个平面,那么这两个平面互相垂直。
推论2:如果两个平面的垂线互相垂直,那么这两个平面互相垂直。
(可理解为垂直的平面互相垂直)
面面垂直性质定理1:
如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
定理2:如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
定理3:如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
推论:三个两两垂直的平面的交线两两垂直。
定理4:如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。
(判定定理推论1的逆定理)
推论:如果两个平面互相垂直,那么分别垂直于这两个平面的两条垂线也互相垂直。
(判定定理推论2的逆定理)。