2.5有理数的加法与减法(第3课时)
- 格式:ppt
- 大小:993.50 KB
- 文档页数:14
2.1有理数的加法与减法(第3课时)教学目标1.理解有理数的减法法则.2.能利用减法法则进行有理数的减法运算.3.体会将有理数的减法运算转化为加法运算的转化思想.教学重点理解有理数减法法则,并能利用有理数减法法则进行有理数的减法运算.教学难点理解有理数减法法则的推导过程.教学准备准备一个带有刻度的普通温度计.教学过程新课导入温度计上显示的温度是3℃.(1)比1 ℃高多少摄氏度?3-1=2.(2)比-3 ℃高多少摄氏度?3-(-3)=6.新知探究一、探究学习【问题】观察下列算式,你有什么发现?3-(-3)=6;3+(+3)=6.【师生活动】先让学生观察、叙述,然后教师进行补充总结.【猜想】减去一个数,等于加这个数的相反数.【设计意图】通过与温度计有关的实际问题引入新课,并给学生独立思考、自主探究的机会.最后,教师补充并给出猜想,让学生试着独立验证猜想.【验证】(1)借助温度计写出左边算式的结果,再与右边算式的计算结果进行比较.①0-(-3)=3,0+(+3)=3;②(-1)-(-3)=2,(-1)+(+3)=2;③(-5)-(-3)=-2,(-5)+(+3)=-2.【发现】有理数的减法可以转化为加法来进行.(2)计算下面两组算式,从中又有什么新的发现?①9-8=1,9+(-8)=1;②15-7=8,15+(-7)=8.【思考】你会总结有理数的减法法则吗?【师生活动】让学生尝试验证刚才的猜想,教师适时给予一定的帮助,最后教师总结有理数减法法则,并说明注意事项.【设计意图】培养学生独立验证猜想的能力.【新知】有理数减法法则:减去一个数,等于加这个数的相反数.a-b=a+(-b).【问题】根据有理数减法法则,将相同结果的算式用线连接.【设计意图】让学生初步认识有理数减法法则.二、典例精讲【例1】计算:(1)(-3)-(-5);(2)0-7;(3)2-5;(4)7.2-(-4.8);(5)113524⎛⎫⎪⎝⎭--.【答案】(1)2;(2)-7;(3)-3;(4)12;(5)384-.【师生活动】让学生独立完成后,展示结果并进行讲解.教师总结:0减去一个数等于这个数的相反数.【设计意图】给学生独立思考,自主探究的机会,并在探究的思路上加以引导.让学生体会有理数减法法则和加法法则之间的联系.【归纳】要进行减法运算,根据减法法则,先把减法变为加法,再根据加法法则进行运算.【思考】在小学,只有当a大于或等于b时(其中a,b是0或正数),我们才能计算a-b(如2-1,1-1).现在,当a小于b时,你会做a-b(如1-2,(-1)-1)吗?一般地,在有理数范围内,较小的数减去较大的数,所得差的符号是什么?【师生活动】小数减大数,等于大数减小数的相反数.【设计意图】一方面是要得出“小数减大数所得的差是负数”,另一方面也是为了引导学生体会引入负数的好处.【例2】世界上最高的山峰是珠穆朗玛峰,其海拔是8 848.86 m,吐鲁番盆地的海拔是-155 m.两处高度相差多少?【答案】解:8 848.86-(-155)=8 848.86+155=9 003.86(m)答:两处高度相差9 003.86 m.【师生活动】学生独立完成后,全班交流.【设计意图】利用有理数减法法则解决实际问题,体现数学的应用价值.三、拓展提升【新知】作差法比较大小利用有理数的减法可以比较两个数的大小,即如果要比较a与b的大小,先求a与b的差a-b.当a-b>0时,a>b;当a-b=0时,a=b;当a-b<0时,a<b.这种比较两个数大小的方法叫做作差法.【问题】下列四组有理数大小的比较正确的是().A.1123->B.-|-1|>-|+1|C.1123<D.1123->【答案】D【设计意图】让学生用刚刚学习的作差法解决比较大小问题.课堂小结板书设计一、有理数减法法则1.法则2.实质3.方法二、作差法比较大小课后任务完成教材P32练习1~2题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。
2. 4有理数的加法与减法(第3课时)【教学目标】〖知识与技能〗掌握有理数的减法法则,熟练地进行有理数的减法运算。
〖过程与方法〗通过对有理数减法法则的探索,正确完成减法到加法到的转化,了解加与减两种运算的对立统一。
〖情感、态度与价值观〗通过减法到加法的转化,使学生领悟世间万物之间的联系。
【教学重点】有理数减法法则推导,并能运用有理数减法法则进行正确计算。
【教学难点】通过对有理数减法法则的探索,掌握数学学习中转化的思想方法。
【教学过程】一、自学质疑:1、回忆——小学中我们学过的减法意义是什么?(已知两个数的和与其中一个加数求另一个加数的运算叫做减法。
减法是加法的逆运算。
)2、现在我们学习了有理数,那么有理数减法如何进行运算?二、交流展示:〖活动一〗气象预报报告:北京某天中的最高气温与最低气温分别是5 ℃与‐3℃,你会求这一天的日温差吗?一天中的最高气温与最低气温的差叫做日温差三、互动探究:1、教学时可让学生直接观察温度计,也可制作温度计的教学课件2、小丽是这样计算的:从上往下看,从5℃到-3℃,温度下降了5+3=8(℃) 小明认为应是5-(-3)因此:5-(-3)=5+3小丽和小明的算法正确吗?5-(-3)=5+3成立吗?(也可组织学生讨论并发表自己的见解)四、精讲点拨:1、有理数减法的法则:减去一个数等于加上这个数的相反数。
5)= 8减数变为其相反数引导学生观察“两变一不变”:①减号变加号;②减数变为它的相反数,③被减数没变。
2、例题讲解:例3 计算:(1) 0-(-22) (2)8.5-(-1.5)(3) (+4)-16 (4)41)21(-- 解:(1)0-(-20)=0+(+22)=22(2)8.5-(-1.5)=8.5+1.5=10(3)(+4)-16=(+4)+(-16)=-12(4)41)21(--=43)4121()41()21(-=+-=-+-例4讲解:根据天气预报图,计算图中各城市的日温差。
知识点解读:有理数的减法知识点一:有理数减法法则1.有理数减法的意义:就是已知两个数的和与其中一个加数求另一个加数的运算.2.有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b)归纳总结:(1)进行有理数减法运算时,关键是把减法运算转化为加法运算,再按有理数的加法法则和运算律进行计算,体现了数学的转化思想.(2)把减法运算转化为加法运算要注意:将减号变为加号,同时减数变成原来的相反数.(3)数轴上A 、B 两点间的距离实际就是它们表示的数a 、b 差的绝对值即:AB=|a-b|.(4)一个数减去0比较容易,而减去一个数,一定要按法则,写成加上这个数的相反数. 例1:计算2-(-3)=_____.分析:先把减法转化为加法运算,再进行有理数的加法运算,即2-(-3)=2+3=5.变式练习:计算:-3-(-7)= .参考答案:4知识点二:有理数加减混合运算1.有理数加减混合运算的方法:(1)将减法统一成加法,并写成省略加号的形式.(2)运用加法的交换律和结合律,简化运算.(3)计算出结果.2.有理数加减混合运算的技巧:(1)把互为相反数的两个数先加.(2)几个数相加的结果是整数时可以先加.(3)同分母分数先加.(4)正数与正数、负数与负数分别先加.归纳总结:在进行有理数运算时,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,这样的式子叫做代数和. 例2:计算下列各式(1)(-7)+5-(+3)-(-4);(2)(-4)-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-32221322. 分析:对于有理数的加减混合运算,先按照有理数减法法则,先把减法化成加法,然后按照有理数的加法法则运算,在解决问题时,要先进行全面分析,找出特点,采用适当的步骤,才能计算正确、简便和迅速.根据题目特点,若能应用加法交换律或结合律的一定要尽量先用这些运算律,这样不但可以简便运算,而且还能防止出错.解:(1)原式=-7+5-3+4=(-7-3)+(5+4)=(-10)+9=-1;(2)原式=214214322322214322213224-=--=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛--=--+-.变式练习:计算下列各式:(1)9-(-4)+(-3)-(+1);(2)5-(124-)+12+(124-).参考答案:(1)9;(2) 152.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列运算正确的为( )A .2(3)9-=-B .382-=-C .4293=±D .2(1)1-=-【答案】B【解析】根据有理数的乘方、开方的定义分别对每一项进行分析,即可得出答案.【详解】解:A ,平方结果为正,错误.B,正确.C,二次开方为正,错误.D, 二次开方为正,错误.故选B.【点睛】此题考查了有理数的乘方、开方,熟练掌握运算法则是解题的关键.2.如图,A 、B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a+b 的值为( )A .3B .4C .5D .6【答案】B【解析】根据平移的性质,由对应点横坐标或纵坐标的变化情况推出a 和b,再求a+b 的值.【详解】由平移的性质可得,a=0+2=2,b=0+2=2,所以.a+b=2+2=4.故选B【点睛】本题考核知识点:用坐标表示平移.解题关键点:熟记平移中点的坐标变化规律.3.下列各数中是无理数的是( )A B C.227D.3【答案】A【解析】根据无理数的定义解答即可.,227,3是有理数,故选A.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等这样的数.4.下列分解因式正确的是()A.-a+a3=-a(1+a2) B.2a-4b+2=2(a-2b)C.a2-4=(a-2)2D.a2-2a+1=(a-1)2【答案】D【解析】根据因式分解的定义进行分析.【详解】A、-a+a3=-a(1-a2)=-a(1+a)(1-a),故本选项错误;B、2a-4b+2=2(a-2b+1),故本选项错误;C、a2-4=(a-2)(a+2),故本选项错误;D、a2-2a+1=(a-1)2,故本选项正确.故选D.【点睛】考核知识点:因式分解.5.下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩【答案】B【解析】解:A. 某校要对七年级学生的身高进行调查,调查范围小,适合普查,故A错误;B. 卖早餐的师傅想了解一锅茶鸡蛋的咸度无法进行普查,适合抽样调查,故B正确;C. 班主任了解每位学生的家庭情况,适合普查,故B错误;D. 了解九年级一班全体学生立定跳远的成绩,适合普查,故D错误;故选B.【点睛】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.如图AD∥BC,∠B=30,DB平分∠ADE,则∠DEC的度数为()A.30B.60C.90D.120【答案】B【解析】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BD E=60°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.7.某种商品的进价为80元,出售时的标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多打()A.九折B.八折C.七折D.六折【答案】C【解析】设打x 折,利用销售价减进价等于利润得到120•10x -80≥80×5%,然后解不等式求出x 的范围,从而得到x 的最小值即可.【详解】解:设打x 折,根据题意得120•10x -80≥80×5%, 解得x≥1.所以最低可打七折.故选C .【点睛】 本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.注意打x 折时,标价要乘0.1x 为销售价.8.下列计算正确的是( ).A .2233a a -=B .236a a a ⋅=C .()326a a =D .623+=a a a 【答案】C【解析】根据整式的加减与幂的运算法则逐一解答判断.【详解】A. 22232a a a -=,故错误;B. 23235a a a a +⋅==,故错误;C. ()326a a =,该选项正确;D. 62a a ,不是同类项,不能相加减,故错误.故选:C.【点睛】本题主要考查了整式的加减与幂的运算,熟练运用法则进行计算是关键.9.定义:对任意实数x ,[]x 表示不超过x 的最大整数,如[]3.143=,[]11=,[]1.22-=-.对数字65进行如下运算:①8=;②2=;③1=,这样对数字65运算3次后的值就为1,像这样对一个正整数总可以经过若干次运算后值为1,则数字255经过( )次运算后的结果为1.A .3B .4C .5D .6【答案】A【解析】先估算要被开方的数的取值在那两个整数之间,根据[a]表示不超过a 的最大整数计算,可得答案.【详解】255进行此类运算:①25515⎡⎤=⎣⎦;②153⎡⎤=⎣⎦;③31⎡⎤=⎣⎦,即对255经过了3次运算后结果为1,故选A.【点睛】本题考查估算无理数的大小,熟记1至25的平方,在初中阶段非常重要,在解决本题时可提高效率.10.在方程组2122x y m x y +=-⎧⎨+=⎩中,若未知数x ,y 满足x+y >0,则m 的取值范围在数轴上的表示应是如图所示的( )A .B .C .D .【答案】B 【解析】解:2122x y m x y +-⎧⎨+⎩=①=② , ①+②得,3(x+y )=3-m ,解得x+y=1-3m , ∵x+y>0,∴1-3m >0, 解得m <3,在数轴上表示为:.故选B .二、填空题题11.因式分解:=______. 【答案】2(x+3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x 2-9)=2(x+3)(x-3).考点:因式分解.12.分解因式:2a 3—2a=____________.【答案】2a(a-1)(a+1).【解析】322a a -=22(1)a a -=2(1)(1)a a a +-.13.数据0.0005用科学记数法表示为______.【答案】5510⨯﹣ 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0005=5510⨯﹣故答案为:5510⨯﹣.【点睛】此题考查科学记数法—表示较小的数,解题关键在于掌握其一般形式.14.如图的七边形ABCDEFG 中,AB 、ED 的延长线相交于O 点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD 的度数是________.【答案】40°【解析】∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE 内角和=(5−2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°−500°=40°,故答案为40°.15.使分式13xx--有意义,x的取值应满足__________.【答案】3x≠【解析】根据分式有意义的条件列出关于x的不等式,再根据不等式的基本性质解不等式即可得解.【详解】解:∵分式13xx--有意义∴30x-≠∴3x≠∴x的取值应满足3x≠.故答案是:3x≠【点睛】本题考查了分式有意义的条件---分母不为零以及解不等式,解决本题的关键是能够根据分式有意义的条件列出关于x的不等式.16.将方程2x+y=25写成用含x的代数式表示y的形式,则y=_____.【答案】25-2x【解析】试题分析:将方程2x+y=25移项即可得y=—2x+25.考点:二元一次方程的变形.17.计算()1327-=__________.【答案】1 3【解析】根据乘方的运算,即可得到答案.【详解】解:()131273-==;故答案为:13.【点睛】本题考查了乘方的运算,解题的关键是熟练掌握乘方的运算法则进行解题.三、解答题18.如图,一长方形模具长为2a,宽为a,中间开出两个边长为b的正方形孔.(1)求图中阴影部分面积(用含a、b的式子表示)(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.【答案】 (1) 2(a2﹣b2);(2)1.【解析】(1)影部分面积等于大长方形的面积减去中间两个正方形的面积;(2)把a=15.7,b=4.3带入(1)中的最终结果,即可求出阴影部分的面积.【详解】解:(1)2a•a﹣2b2=2(a2﹣b2);(2)当a=15.7,b=4.3时,阴影部分的面积2(a2﹣b2)=2(a+b)(a﹣b)=2(15.7+4.3)(15.7﹣4.3)=1.【点睛】本题主要考查了矩形面积的计算以及因式分解中的公式法,熟练矩形面积的计算以及因式分解的方法是解题关键.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′、)(4)求△ABC的面积.【答案】(1)A(2,-1)、B(4,3);(2)如图所示:(3)A′(1, 1)、B′(3,5)、C′(0,4);(4)5【解析】(1)根据图可直接写出答案;(2)根据平移的方向作图即可;(3)根据所画的图形写出坐标即可;(4)利用长方形的面积减去四周三角形的面积可得答案.【详解】(1)A(2,-1)、B(4,3);(2)如图所示:(3)A′(1, 1)、B′(3,5)、C′(0,4);(4)△ABC的面积:11134-13-24-13=5222⨯⨯⨯⨯⨯⨯⨯【点睛】本题考查了作图-平移变换,确定平移的方向和平移的距离,通过关键点作出平移后的图形.20.在一个不透明的盒子里装有红、黑两种颜色的球共30只,这些球除颜色外其余完全相同,为了估计红球和黑球的个数,七(1)班的数学学习小组做了摸球实验.他们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到下表中的一组统计数据:模球的次数n50 100 300 500 800 1000 2000 摸到红球的次数m14 33 95 155 241 298 602摸到红球的频率mn0.28 0.33 0.317 0.31 0.301 0.298 0.301(1)请估计:当次数n足够大时,摸到红球的频率将会接近______;(精确到0.1)(2)假如你去摸一次,则估计摸到红球的概率为______;(3)试估算盒子里红球的数量为______个,黑球的数量为______个. 【答案】 (1)0.3;(2)0.3;(3)9,21【解析】(1)由表中摸球次数逐渐增大后,摸到红球的频率逐渐靠近于0.3可得; (2)概率接近于(1)得到的频率;(3)红球个数=球的总数×得到的红球的概率,让球的总数减去红球的个数即为黑球的个数,问题得解.【详解】(1)当次数n 足够大时,摸到红球的频率将会接近0.3, (2)摸到红球的概率的估计值为0.3,(3)估算盒子里红球的数量为30×0.3=9个,黑球的个数为30-9=21个. 【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.21.在Rt ABC 中,AC BC =,90C =∠,D 为AB 边的中点,90EDF ︒∠=,EDF ∠绕D 点旋转,它的两边分别交AC 和CB (或它们的延长线)于E ,F .(1)当DE AC ⊥于E 时(如图1),可得DEF CEF S S +=△△______________ABCS.(2)当DE 与AC 不垂直时(如图2),第(1)小题得到的结论成立吗?若成立,请给予证明;若不成立,请直接给出DEF S △,CEF S △,ABCS的关系.(3)当点E 在AC 延长线上时(如图3),第(1)小题得到的结论成立吗?若成立,请给予证明;若不成立,请直接给出DEF S △,CEF S △,ABCS 的关系.【答案】(1)12;(2)成立,理由详见解析;(3)12DEF CEF ABC S S S -=△△△ 【解析】(1)当∠EDF 绕D 点旋转到DE ⊥AC 时,四边形CEDF 是正方形,边长是AC 的一半,即可得出结论;(2)成立;先证明△CDE ≌△BDF ,即可得出结论; (3)不成立;同(2)得:△DEC ≌△DBF ,得出12DEF CFE DBC CFE ABC DBFEC S S S S S S ∆∆∆∆∆==+=+五方形【详解】解:(1)当∠EDF 绕D 点旋转到DE⊥AC 时,四边形CEDF 是正方形;设△ABC 的边长AC=8C=a ,则正方形CEDF 的边长为号12a , ∴212ABCSa =,正方形CEDP 的面积221124CEDF S a a ⎛⎫== ⎪⎝⎭; ∴12ABC CEDF S S =△,故答案为:12;(2)成立.证明:连接CD ,∵AC BC =(已知) ∴A B ∠=∠(等边对等角)∵90ACB ∠=(已知),180A B ACB ︒∠+∠+∠=(三角形内角和为180度) ∴45A B ︒∠=∠=(等式性质)∵AC BC =(已知),BD AD =(中点的意义) ∴CD AB ⊥(等腰三角形的三线合一) ∴90CDB =∠(垂直的意义)∵180DCB B CDB ︒∠+∠+∠=(三角形内角和为180度) ∴45DCB =∠(等式性质) ∴DCB B ∠=∠(等量代换) ∴CD DB =(等角对等边)∵CD AB ⊥(已证)∴90CDF FDB ︒∠+∠=(垂直的意义) ∵90EDF =∠(已知) ∴CDE BDF ∠=∠(等式性质) 在CDE △与BDF 中,ECD BCD BDEDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(已证)(已证) ∴(...)CDE BDF A S A △≌△∴CDE BDF S S △≌△(全等三角形的面积相等) ∴12DEF CEF CDB ABC S S S S +==△△△△(等量代换)(3)不成立;12DEF CEF ABC S S S -=△△△;理由如下:连接CD ,如图3所示: 同(2)得:,135DEC DBF DCE DBF ︒∠=∠=≌ ∴DEF DBFEC S S ∆=五方形12CFE DBC CFE ABC S S S S ∆∆∆∆=+=+12DEF CFE ABC S S S ∆∆∆∴-=【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、图形面积的求法;证明三角形全等是解决问题的关键.22.如图,已知AB ∥DC ,AE 平分∠BAD ,CD 与AE 相交于点F ,∠CFE =∠E .试说明AD ∥BC ,并写出每一步的根据.【答案】见解析【解析】由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由AE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【详解】证明:∵AB∥DC(已知)∴∠1=∠CFE(两直线平行,同位角相等)∵AE平分∠BAD(已知)∴∠1=∠2(角平分线的定义)∴∠CFE=∠2(等量代换)∵∠CFE=∠E(已知)∴∠2=∠E(等量代换)∴AD∥BC(内错角相等,两直线平行).【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.“村村通”是国家的一个系统工程,其中包涵公路、电力、生活和饮用水、电话网、有线电视网、A B C周边修公路,公路从A村沿北偏东65 方向到B村,从B村沿北偏西25互联网等等,现计划在,,CE沿什么方向修,可以保证CE与AB平行?方向到C村,那么要想从C村修路,【答案】CE 应沿北偏东65︒方向修.【解析】根据平行线的性质定理得115ABF ∠=︒,90ECB ABC ∠=∠=︒,过点C 作MN ∥BF ,可得∠MCE=65°,进而即可得到结论.【详解】使CE 沿北偏东65︒方向,即可保证CE 与AB 平行.理由如下: 如图,由题意得,//AD BF ,18065115ABF ∴∠=︒-︒=︒, 1152590ABC ∴∠=︒-︒=︒,要使//CE AB ,则90ECB ABC ∠=∠=︒, 过点C 作MN ∥BF , ∴∠BCN=∠CBF=25°,∴∠MCE=180°-90°-25°=65°, ∴CE 应沿北偏东65︒方向修.【点睛】本题主要考查方位角,掌握平行线的性质定理是解题的关键.24.为了响应国家“节能减排,绿色出行”号召,长春市在多个地区安放共享单车,供行人使用.已知甲站点安放518辆车,乙站点安放了106辆车,为了使甲站点的车辆数是乙站点的2倍,需要从甲站点调配几辆单车到乙站点?【答案】甲调102辆车到乙站点.【解析】设从甲站点调配x 辆单车到乙站点,根据甲站点单车数量-x=2(乙站点单车数量+x )列出方程解答即可.【详解】设从甲站点调配x辆单车到乙站点,根据题意得,518-x=2×(106+x)解得,x=102答:从甲站点调配102辆单车到乙站点【点睛】考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.为迎接边境贸易博览会,组织部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?【答案】设搭配A种造型x个,则B种造型为个,依题意,得:解得:,∴∵x是整数,x可取31、32、33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)方法一:由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:33×800+17×960=42720(元)方法二:方案①需成本:31×800+19×960=43040(元);方案②需成本:32×800+18×960=42880(元);方案③需成本:33×800+17×960=42720(元);∴应选择方案③,成本最低,最低成本为42720元.【解析】解:设搭配种造型个,则种造型为个,依题意,得:解这个不等式组,得:,.是整数,可取,所以可设计三种搭配方案:①种园艺造型个,种园艺造型个;②种园艺造型个,种园艺造型个;③种园艺造型个,种园艺造型个.(2)由于种造型的成本高于种造型,所以种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:(元)七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.计算:(8x 3﹣12x 2﹣4x )÷(﹣4x )=( ) A .﹣2x 2+3x B .﹣2x 2+3x+1C .﹣2x 2+3x ﹣1D .2x 2+3x+1【答案】B【解析】用多项式的每一项分别处以﹣4x 即可. 【详解】(8x 3﹣12x 2﹣4x )÷(﹣4x ) =﹣2x 2+3x+1. 故选:B . 【点睛】本题考察了多项式除以单项式,其运算法则是:先把这个多项式的每一项分别除以单项式,再把所得的商相加.2.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得【 】A .()x+y=5010x+y =320⎧⎪⎨⎪⎩B .x+y=506x+10y=320⎧⎨⎩C .x+y=506x+y=320⎧⎨⎩D .x+y=5010x+6y=320⎧⎨⎩【答案】B 。
§2.5有理数的加法与减法(第一课时)一、教学目标目的与要求:了解加法的意义,会用有理数的加法法则进行运算。
知识与技能: 渗透数形结合和转化的数学思想,培养运用这种思想解决实际问题的能力。
情感、态度与价值观:感知数学知识来源于生活,并应用于生活;利用转化思想,渗透事物间的普遍联系。
二、教学重难点重点:能运用有理数加法法则,正确进行有理数加法运算;难点:经历探索有理数加法法则的过程,感受数学学习的方法。
三、教学过程情境创设:小明在一条东西方向的跑道上,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少米?你能把所有情况设想完整吗?自主探究(+3)+(-5)= (-3)+(+5)= (+3)+(+5)=(-3)+(-5)= (-3)+ 0 = 0 +(-5)=例题剖析例1、计算:(1)(+17)+(+4)(2)(-9)+(-4)(3)(+4)+(-6)(4)(-30)+(+110)(5)(+123)+(-123)(6)(-3.2)+0例2、下列说法中正确的有()个①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和可能等于其中一个加数④两个有理数的和可能等于零A、1 B、2 C、3 D、4例3、一个水利勘察队,第一天沿江向上游走了20千米,第二天向下游走了45千米,问此时勘察队在出发点的上游还是下游,距出发点多远?(利用有理数的加法列式解答)例4、如果a<0,b>0,且a+b<0,借助于数轴比较a、b、-a、-b的大小(用“<”连接)随堂演练 1、填空(+3)+(+4)= ; (-4)+(-6)= ;(-112)+(+114)= ; 413+(-3)= ;(-2.2)+(+125)= ; (-300)+0= 。
2、选择(1)如果两个数的和是正数,那么下面对这两个加数的判断正确的是( ) A 、这两个加数都是正数 B 、这两个加数一正一负 C 、一个加数为正,另一个加数为零 D 、必属于上面三种情况之一 (2)下列说法中,正确的是 ( ) A 、同号两数相加,其和比加数大B 、异号两数相加,其和比两个加数都小C 、两数相加,等于它们的绝对值相加D 、两个正数相加和为正数,两个负数相加和为负数 3、计算:(1)-|-3.75|+(-6.25) (2)-|-3|+(-5.4) (3)-(-4)+(-27)4、有理数a,b 之间的关系如图所示,借助于数轴和加法法则判断下列各式计算结果与0的大小:(1)a+b 0 (2)a+(-b) 0(3)(-a)+b 0 (4)(-a)+(-b) 05、列式并解答:(1)-个数与-5的差为-8,求这个数; (2)-个数与9的差为-5,求这个数.6、能力提升小明在一条东西方向的跑道上运动,从A 点出发,沿跑道先走了20米,然后又走了30米,问此时小明在距离A 点什么位置?(要求利用有理数的加法列式解答)四、本课小结五、作业布置: 完成学案六、教学反思ba§2.5有理数的加法与减法(第二课时)一、教学目标目的与要求 进一步熟悉有理数加法法则的基础上探索加法的运算律。
有理数的加减混合运算(3)教学过程一、创设问题情境(投影展示)同学们:今天老师要带大家去一个风景美丽的地方,请大家看一下屏幕。
(做出很神秘的样子)?(放映流花河情境图片后,提出问题)小明家住在流花河旁,他查阅了历年来的水文资料,看到流花河的一些水位数据:接下来我们就根据以上数据研究流花河水位变化的有关问题(引出课题“水位的变化”)二、学习新课师:今年雨季流花河一周内的水位变化情况见下表(上周末的水位达到警戒水位)师:如果把河流的警戒水位记为0点,那么图中的其他数据可以分别记为什么?(学生动脑思考后回答,教师进行点拨和积极地评价)生1:最高水位在警戒水位上方,平均水位与最低水位在警戒水位下方,当警戒水位记为0时,位于警戒水位上方与下方的水位可以用正数与负数表示高于警戒水位记为正,低于警戒水位记为负师:回答得很好,还有不同意见吗?生2:取流花河的警戒水位为0,也就是以警戒水位为基准,把其余各量分别减去警戒水位所得的差就是与警戒水位的比较量,如果差为正表示在警戒水位上方;差为负表示在警戒水位下方(设计意图:学生独立观察思考后与交流组内的同学交流然后全组内发表看法进行交流有助于培养学生独立思考、善于与人合作的习惯和语言表达能力运用数学解决简单问题的能力)师:小明记录了今年雨季流花河一周内的水位变化情况(上周末的水达到警戒水位)正号表示水位比前一天上升,负号表示水位比前一天下降(用投影仪出示在屏幕上)从表格的数据中你可以获得什么信息?(各组同学热情洋溢地交流)(设计意图:学生分组讨论,相互交流,取得一致意见,并做汇报培养学生语言表达能力,运用有理数的加减法解决实际问题,培养学生学习兴趣)学生1:这周最高水位出现在星期二,最低水位出现在星期六学生2:前面同学说的不完全对,前半句是正确的,后半句错误最低水位出现在星期一学生3:第一小组说的对因为表格中+最大,-最小学生4:错,因为水位变化是在前一天水位基础上变化的从表格中看出最高水位是星期二,最低水位是星期一(设计意图:教师对同学们的表现给予积极的鼓励和引导,培养学生思考和解决问题的能力和方法)学生5:还可以通过统计图来反映水位的变化情况(以警戒水位为0点,用多媒体展示折线统计图的变化情况)师:你从统计图中得到什么信息?生:星期二水位最高,星期一水最低师:由此我们直观感受到星期六的数据虽然是-,但星期五的水位相对要高些,在此基础上下降了米,但水位仍然比星期一高与上周末相比,本周末的水位是上升了,还是下降了?为什么?假如没有此折线统计图,本周末的水位是上升了,还是下降了?用学过的什么知识能解决此问题呢?生:()()()()()(-)(-)=答:与上周末相比,本周末的水位是上升米师:非常好,你能说一说理由吗?生:因为表格中的数据反映了水位的变化情况,各数据的正负号反映了该水位在上升或下降各数据的绝对值反映了水位的变化幅度,因此,把本周水位变化数据求和,和为正数表示本周末的水位上升了;反之,则下降了;如果是0,则水位不变师:哪一种方法优越呢?生1:我们小组认为,利用折线统计图能比较直观地解决问题生2:但绘制折线统计图不易,用计算的方法快捷、准确(设计意图:通过老师指导,学生之间的交流,讨论,思维水平及思维方法灵活多样,促进思维的提高,使学生获得“数感”)三、课堂小结师:通过这节课的学习,同学们有何收获?学到了什么?生1:我们学会了用数学去解决生活中的变化现象,对于几次连续的变化情况可以用有理数的加减法去解决生2:我们感受到折线统计图可以形象的反映事物的变化情况生3:很多实际问题可以转化为有理数的加减混合运算来解决师:很多实际问题可以转化为有理数的加减混合运算来解决为了解决某些实际问题的需要可以“人为”地规定零点(设计意图:使学生将文字语言,符号语言,代数语言互译巩固所学知识,培养学生归纳概括的能力)四、达标测试1计算⑴8﹢-3 -5⑵⑶127.25227.75(7)--+-332 小明的爸爸买了一种股票,每股8元下表纪录了在一周内股票的涨跌情况则该股票本周中最高价格为____元;五、布置作业随堂练习2习题2六、板书设计附:教学反思在本课的整个活动过程中,突出了《标准》的基本理念从情境内容、议练内容等方面都很贴近学生生活,问题串的难易适合学生认知水平等,体现了知识的基础性、普及性和实用性;从组织形式上看,有的让学生观察感受,有的让学生独立思考,有学生方面的合作交流,还有师生的问答交流,这就体现普及性、平等性、合作性,体现了教师是活动的组织者、引导者、合作者,学生是活动的主人、主体从过程的设计来看,本节课遵循了学生认知的自然规律,渐渐扫清了学生的认知障碍,扩大了学生的认知视野。
有理数的减法与减法知识点一、有理数加法1.同号两数相加,取相同的符号,并把绝对值相加。
若若2.异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
绝对值相等:若;绝对值不相等:①若②若3.一个数与0相加,仍得这个数。
例:计算(1)(+16)+(-23)(2)(-6.5)+6.5【解答】见解析【解析】(1)(+16)+(-23)=-(23-16)=-7;(2)(-6.5)+6.5=0知识点二、有理数加法运算律1.有理数相加,两个数相加,交换加数的位置,和不变;加法交换律:a+b=b+a2.有理数相加,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.加法交换律:(a+b)+c=a+(b+c)在有理数加法运算中,常利用有理数加法运算律先把正数和负数分开计算,各自求和后再相加.3.有理数加法中的一些计算技巧:(1)相反数结合法:互为相反数的两个数先相加;(2)同号结合法:符号相同的数先相加;(3)同分母结合法:分母相同的数先相加;(4)凑整法:几个数相加能够得到整数的先相加.【解答】-5知识点三、有理数减法法则减去一个数,等于加上这个数的相反数,1.较大的数-较小的数=正数,即若,则;2.较小的数-较大的数=负数,即若,则;3.相等的两个数相减等于0,即若,则;4.0减去任何数都等于这个数的相反数,任何数减去0仍等于这个数.例:计算【解答】-4【解析】知识点四、有理数加减法混合运算1.利用减法运算法则,将有理数加减混合运算转化为有理数加法运算;2.去掉括号和括号前的加号(有绝对值的要先去掉绝对值后再计算);3.利用加法法则和加法运算律进行计算.例:用简便方法计算【解答】-1【解析】原式巩固练习一.选择题1.计算5+(﹣3)正确的是( )A.2B.﹣2C.8D.﹣8 2.计算﹣1﹣1的结果是( )A.﹣2B.0C.1D.23.与﹣312相等的是( )A.﹣3―12B.3―12C.﹣3+12D.3+124.圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为( )A.﹣8℃B.﹣4℃C.4℃D.8℃5.计算|﹣3﹣(﹣2)|的结果是( )A.1B.﹣1C.5D.﹣56.下列关于有理数的加法说法错误的是( )A.同号两数相加,取相同的符号,并把绝对值相加B.异号两数相加,绝对值相等时和为0C.互为相反数的两数相加得0D.绝对值不等时,取绝对值较小的数的符号作为和的符号7.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b+c等于( )A.﹣1B.0C.1D.28.如果a﹣b>0,且a+b<0,那么一定正确的是( )A.a为正数,且|b|>|a|B.a为正数,且|b|<|a|C.b为负数,且|b|>|a|D.b为负数,且|b|<|a|二.填空题9.某地周六白天最高温度+4℃,与夜晚最低气温的温差是6℃,则夜晚最低气温是 ℃.10.在横线上填上适当的符号使式子成立:( 6)+(﹣18)=﹣12.11.已知|a|=9,|b|=3,则|a﹣b|=b﹣a,则a+b的值为 .12.小明在计算1﹣3+5﹣7+9﹣11+13﹣15+17时,不小心把一个运算符号写错了(“+”错写成“﹣”或“﹣”错写成“+”),结果算成了﹣17,则原式从左往右数,第 个运算符号写错了.13.矿井下A、B、C三处的高度分别是﹣37.4m,﹣129.8m,﹣71.3m,则矿井最高处比最低处高 米.14.点A,B,C是数轴上的三个点,且BC=2AB.已知点A表示的数是﹣1,点B表示的数是3,点C表示的数是 .15.若a的相反数等于它本身,b是到原点的距离等于2的负数,c是最大的负整数,则a﹣b+c的值为 .16.绝对值大于1而小于3.5的所有整数的和为 .三.解答题17.计算:(1)+5+(﹣8)+(﹣4)﹣(﹣10);(2)56+(―34)―|―0.25|―(―16).18.已知一列数2,0,﹣1,―12.(1)求最大的数和最小的数的差;(2)若再添上一个有理数m,使得五个有理数的和为0,求m的值.19.琪琪和佳佳计算算式“4+6﹣11﹣2”.(1)琪琪不小心把运算符号“+”错看成了“﹣”,求此时的运算结果;(2)佳佳只将数字“11”抄错了,所得结果不超过7,求佳佳所抄数字的最小值.20.若两个有理数A、B满足A+B=8,则称A、B互为“吉祥数”.如5和3就是一对“吉祥数”.回答下列问题:(1)求﹣5和2x的“吉祥数”;(2)若3x的“吉祥数”是﹣4,求x的值;(3)4|x|和9能否互为“吉祥数”?若能,请求出;若不能,请说明理由.21.一辆公共汽车从起点站开出后,途中经过6个停靠站,最后到达终点站.下表记录了这辆公共汽车全程载客变化情况,其中正数表示上车人数.停靠站起点站中间第1站中间第2站中间第3站中间第4站中间第5站中间第6站终点站上下车人数+21﹣3+8﹣4+2+4﹣7+1﹣9+6﹣7﹣12(1)中间第4站上车人数是 人,下车人数是 人;(2)中间的6个站中,第 站没有人上车,第 站没有人下车;(3)中间第2站开车时车上人数是 人,第5站停车时车上人数是 人;(4)从表中你还能知道什么信息?22.某食堂购进30袋大米,每袋以50千克为标准,超过的记为正,不足的记为负,称重记录如表.与标准重量偏差(单位:千克)﹣2﹣10123袋数5103156(1)这30袋大米的总重量比标准总重量是多还是少?相差多少?(2)大米单价是每千克5.5元,食堂购进大米总共花多少钱?23.某人用400元购买了8套儿童服装,准备以一定价格出售.他以每套55元的价格为标准,将超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2(单位:元)他卖完这八套儿童服装后是盈利还是亏损?他盈利(或亏损)了多少钱?24.我们知道,|a|的几何意义是:在数轴上数a对应的点到原点的距离,类似的,|x﹣y|的几何意义就是:数轴上数x,y对应点之间的距离.比如:2和5两点之间的距离可以用|2﹣5|表示,通过计算可以得到他们的距离是3.(1)数轴上1和﹣3两点之间的距离可以用 表示,通过计算可以得到他们的距离是 .(2)数轴上表示x和﹣3的两点A、B之间的距离可以表示为AB= ;如果AB=2,结合几何意义,那么x的值为 ;(3)代数式|x﹣1|+|x+2|表示的几何意义是 ,该代数式的最小值是 .25.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?26.阅读下面文字:对于(﹣556)+(﹣923)+1734+(﹣312)可以如下计算:原式=[(﹣5)+(―56)]+[(﹣9)+(―23)]+(17+34)+[(﹣3)+(―12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(―56)+(―23)+34+(―12)]=0+(﹣114)=﹣114上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(﹣112)+(﹣200056)+400034+(﹣199923)。
2.5 有理数的加法与减法(课时3)一、选择题1.一个数加-3.6,和为-0.36,那么这个数是( ). A .-2.24 B .-3.96 C .3.24 D .3.96 2.下列计算正确的是( ).A .(-14)-(+5)= -9B . 0-(-3)=3C .(-3)-(-3)= -6D .|5-3|= -(5-3)3.较小的数减去较大的数,所得的差一定是( ). A .零 B .正数 C .负数 D .零或负数4.下列结论正确的是( ).A .数轴上表示6的点与表示4的点两点间的距离是10B .数轴上表示-8的点与表示-2的点两点间的距离是-10C .数轴上表示-8的点与表示-2的点两点间的距离是10D .数轴上表示0的点与表示-5的点两点间的距离是-5 5.下列结论中,正确的是( ). A .有理数减法中,被减数不一定比减数大 B .减去一个数,等于加上这个数 C .零减去一个数,仍得这个数 D .两个相反数相减得0 二、填空题6.(1) (-7)-2= ; (2) (-8)-(-8)= ; (3) 0-(-5)= ; (4) (-9)-(+4)= .7.(1)温度3℃比 -8℃高 ; (2)温度-10℃比-2℃低 ; (3)海拔-10m 比-30m 高 ; (4)从海拔20 m 到-8 m ,下降了 . 三、解答题8.计算:(1)(+5)-(-3); (2) (-3)-(+2) (3)(-20)-(-12); (4)(-1.4)-2.6; (5) 32-(-31); (6)(-61)-(-31).9.(1)已知甲数是4的相反数,乙数比甲数的相反数大3,求乙数比甲数大多少?(2)月球表面的温度中午是101℃,半夜是-153℃,中午比半夜温度高多少?(3)物体位于地面上空2米处,下降3米后,又下降5米,最后物体在地面之下多米处?10.某地连续五天内每天最高气温与最低气温记录如下表,哪一天的温差(最高气温与最低气温的差)最大?哪天的温差最小?11.某一矿井的示意图如图,以地面为准,A点的高度是+4.2米,B,C两点的高度分别是-15.6米与-30.5米,A点比B点高多少米?比C点呢?参考答案一、1.C 2.B 3.C 4.C 5.A二、 6.(1)-9 (2)0 (3)5 (4)-13 7.(1)11℃ (2) 8℃ (3)20m (4)28m三、8.解:(1)8; (2)-5; (3)-8; (4)-4; (5)1; (6)61. 9.解:(1)11 . (2)254℃. (3)(+2)-(+3)-(+5)=-6,在地面下6米处.10.解:五天的温差分别为(-1)-(-7)=6,5-(-3)=8,6-(-4)=10,8-(-1)=9,11-(+2)=9,故第三天温差最大,第一天温差最小. 11.19.8米;34.7米.。