吉林省东北师范大学附属中学2016届高三数学第一轮复习两角和与差的正弦、余弦及正切公式应用学案理
- 格式:doc
- 大小:166.50 KB
- 文档页数:4
授课主题:两角和与差的正弦、余弦与正切公式教学目标1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换.教学内容1.两角和与差的正弦、余弦、正切公式(1)C(α∓β):cos(α∓β)=cosαcosβ±sinαsinβ.(2)S(α±β):sin(α±β)=sinαcosβ±cosαsinβ.(3)T(α±β):tan(α±β)=tanα±tanβ1∓tanαtanβ⎝⎛⎭⎫α,β,α±β≠π2+kπ,k∈Z.2.二倍角的正弦、余弦、正切公式(1)S2α:sin2α=2sinαcosα.(2)C2α:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)T2α:tan2α=2tanα1-tan2α⎝⎛⎭⎫α≠±π4+kπ,且α≠kπ+π2,k∈Z.3.公式的常用变形(1)tanα±tanβ=tan(α±β)(1∓tanαtanβ).(2)cos2α=1+cos2α2,sin2α=1-cos2α2.(3)1±sin2α=(sinα±cosα)2,sinα±cosα=2sin⎝⎛⎭⎫α±π4.(4)a sinα+b cosα=a2+b2sin(α+φ),其中cosφ=aa2+b2,sinφ=ba2+b2,tanφ=ba(a≠0).特别提醒:(1)角:转化三角函数式中往往出现较多的差异角,注意观察角与角之间的和、差、倍、互补、互余等关系,运用角的变换,化多角为单角或减少未知角的数目,连接条件角与待求角,使问题顺利获解.对角变换时:①可以通过诱导公式、两角和与差的三角公式等;②注意倍角的相对性;③注意拆角、拼角技巧,例如,2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,β=α+β2-α-β2=(α+2β)-(α+β),α-β=(α-γ)+(γ-β),15°=45°-30°,π4+α=π2-⎝⎛⎭⎫π4-α等.(2)将三角变换与代数变换密切结合:三角变换主要是灵活应用相应的三角公式,对于代数变换主要有因式分解、通分、提取公因式、利用相应的代数公式等,例如,sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x cos 2x =1-12sin 22x .题型一 求值问题例1、已知cos ⎝⎛⎭⎫π4+x =35,若17π12<x <7π4,求sin2x +2sin 2x 1-tan x的值. 方法点拨:本题采用“函数转化法”. 解 由17π12<x <7π4,得5π3<x +π4<2π.又cos ⎝⎛⎭⎫π4+x =35,所以sin ⎝⎛⎭⎫π4+x =-45,所以cos x =cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+x -π4=cos ⎝⎛⎭⎫π4+x cos π4+sin ⎝⎛⎭⎫π4+x sin π4=35×22-45×22=-210, 从而sin x =-7210,tan x =7.则sin2x +2sin 2x 1-tan x =2sin x cos x +2sin 2x 1-tan x =2⎝⎛⎭⎫-7210·⎝⎛⎭⎫-210+2⎝⎛⎭⎫-721021-7=-2875.方法技巧三角恒等变换的变“角”与变“名”问题的解题思路1.角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化.2.名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.【冲关针对训练】已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( ) A.3π4 B.π4或3π4C.π4 D .2k π+π4(k ∈Z )答案 C 解析 由sin α=55,cos β=31010,且α,β为锐角,可知cos α=255,sin β=1010,故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.故选C.题型二 三角恒等变换的综合应用 角度1 研究三角函数的性质例2、(2017·临沂一模)已知函数f (x )=4sin ⎝⎛⎭⎫x -π3cos x + 3. (1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 在⎣⎡⎦⎤0,π2上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值. 方法点拨:本题采用转化法、数形结合思想. 解 函数f (x )=4sin ⎝⎛⎭⎫x -π3cos x +3, 化简可得f (x )=2sin x cos x -23cos 2x +3=sin2x -23⎝⎛⎭⎫12+12cos2x +3=sin2x -3cos2x =2sin ⎝⎛⎭⎫2x -π3. (1)函数的最小正周期T =2π2=π,由2k π-π2≤2x -π3≤2k π+π2时单调递增,解得k π-π12≤x ≤k π+5π12(k ∈Z ),∴函数的单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z . (2)函数g (x )=f (x )-m 在⎣⎡⎦⎤0,π2上有两个不同的零点x 1,x 2,转化为函数f (x )与函数y =m 有两个交点. 令u =2x -π3,∵x ∈⎣⎡⎦⎤0,π2,∴u ∈⎣⎡⎦⎤-π3,2π3 可得f (x )=2sin u 的图象(如图).由图可知:m 在[3,2),函数f (x )与函数y =m 有两个交点,其横坐标分别为x 1,x 2. 故得实数m 的取值范围是m ∈[3,2), 由题意可知x 1,x 2是关于对称轴是对称的: 那么函数在⎣⎡⎦⎤0,π2的对称轴为x =5π12, ∴x 1+x 2=5π12×2=5π6.解得cosα+sinα=(cosα-sinα)2+4sinαcosα=125+4825=75,即有sinα=35,cosα=45,则t=sin2α=925.(2)若t=1,且a·b=1,即有4cosαsinα+sin2α=1,即有4cosαsinα=1-sin2α=cos2α,由α为锐角,可得cosα∈(0,1),即有tanα=sinαcosα=14,则tan2α=2tanα1-tan2α=121-116=815,tan⎝⎛⎭⎫2α+π4=tan2α+11-tan2α=1+8151-815=237.方法技巧三角恒等变换与向量的综合问题是高考中经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算进行化简.【冲关针对训练】(2017·南通模拟)已知向量m=⎝⎛⎭⎫sinx2,1,n=⎝⎛⎭⎫1,3cosx2,函数f(x)=m·n.(1)求函数f(x)的最小正周期;(2)若f⎝⎛⎭⎫α-2π3=23,求f⎝⎛⎭⎫2α+π3的值.解(1)f(x)=sinx2+3cosx2=2sin⎝⎛⎭⎫x2+π3,∴f(x)的最小正周期T=2π12=4π.(2)∵f⎝⎛⎭⎫α-2π3=2sinα2=23,∴sinα2=13,∴cosα=1-2sin2α2=79,∴f⎝⎛⎭⎫2α+π3=2sin⎝⎛⎭⎫α+π2=2cosα=149.1.(2016·全国卷Ⅱ)若cos⎝⎛⎭⎫π4-α=35,则sin2α=()A.725 B.15C.-15D.-725答案 D解析cos⎝⎛⎭⎫π4-α=22(cosα+sinα)=35⇒cosα+sinα=325⇒1+sin2α=1825,∴sin2α=-725.故选D. 2.(2014·全国卷Ⅰ)设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tanα=1+sinβcosβ,则()A .3α-β=π2B .3α+β=π2C .2α-β=π2D .2α+β=π2答案 C解析 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+sin βcos α,所以sin(α-β)=cos α,又cos α=sin ⎝⎛⎭⎫π2-α,所以sin(α-β)=sin ⎝⎛⎭⎫π2-α,又因为α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,所以-π2<α-β<π2,0<π2-α<π2,因此α-β=π2-α,所以2α-β=π2,故选C.3.(2014·全国卷Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________.答案 1解析 f (x )=sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-sin φcos(x +φ)=sin(x +φ-φ)=sin x , ∴f (x )的最大值为1.4.(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 答案 1解析 f (x )=1-cos 2x +3cos x -34=-⎝⎛⎭⎫cos x -322+1.∵x ∈⎣⎡⎦⎤0,π2,∴cos x ∈[0,1],∴当cos x =32时,f (x )取得最大值,最大值为1.一、选择题1.计算sin43°cos13°+sin47°cos103°的结果等于( )A.12B.33C.22D.32 答案 A解析 原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=12.故选A.2.sin47°-sin17°cos30°cos17°=( )A .-32 B .-12 C.12 D.32答案 C解析 sin47°=sin(30°+17°)=sin30°cos17°+cos30°·sin17°,15.(2017·合肥质检)已知a =(sin x ,3cos x ),b =(cos x ,-cos x ),函数f (x )=a ·b +32. (1)求函数y =f (x )图象的对称轴方程;(2)若方程f (x )=13在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=a ·b +32=(sin x ,3cos x )·(cos x ,-cos x )+32=sin x ·cos x -3cos 2x +32=12sin2x -32cos2x =sin ⎝⎛⎭⎫2x -π3. 令2x -π3=k π+π2(k ∈Z ),得x =5π12+k π2(k ∈Z ),即函数y =f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z ).(2)由条件知sin ⎝⎛⎭⎫2x 1-π3=sin ⎝⎛⎭⎫2x 2-π3=13>0,设x 1<x 2,则0<x 1<5π12<x 2<2π3,易知(x 1,f (x 1))与(x 2,f (x 2))关于直线x =5π12对称,则x 1+x 2=5π6, ∴cos(x 1-x 2)=cos ⎣⎡⎦⎤x 1-⎝⎛⎭⎫5π6-x 1=cos ⎝⎛⎭⎫2x 1-5π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫2x 1-π3-π2=sin ⎝⎛⎭⎫2x 1-π3=13. 16.(2017·黄冈质检)已知函数f (x )=2cos 2x -sin ⎝⎛⎭⎫2x -7π6. (1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2.求实数a 的取值范围.解 (1)f (x )=2cos 2x -sin ⎝⎛⎭⎫2x -7π6=(1+cos2x )-⎝⎛⎭⎫sin2x cos 7π6-cos2x sin 7π6=1+32sin2x +12cos2x =1+sin ⎝⎛⎭⎫2x +π6. ∴函数f (x )的最大值为2.当且仅当sin ⎝⎛⎭⎫2x +π6=1,即2x +π6=2k π+π2(k ∈Z ),即x =k π+π6,k ∈Z 时取到. ∴函数f (x )的最大值为2时x 的取值集合为x ⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝⎛⎭⎫2A +π6+1=32,化简得sin ⎝⎛⎭⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝⎛⎭⎫π6,13π6, ∴2A +π6=5π6,∴A =π3.在△ABC 中,根据余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎫b +c 22=1,即a 2≥1.∴当且仅当b =c =1时,取等号.解 (1)∵f (x )=sin ⎝⎛⎭⎫5π6-2x -2sin ⎝⎛⎭⎫x -π4cos ⎝⎛⎭⎫x +3π4=12cos2x +32sin2x +(sin x -cos x )(sin x +cos x ) =12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin ⎝⎛⎭⎫2x -π6. ∴函数f (x )的最小正周期T =2π2=π. 由2k π-π2≤2x -π6≤2k π+π2得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). (2)F (x )=-4λf (x )-cos ⎝⎛⎭⎫4x -π3=-4λsin ⎝⎛⎭⎫2x -π6-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫2x -π6=2sin 2⎝⎛⎭⎫2x -π6-4λsin ⎝⎛⎭⎫2x -π6-1 =2⎣⎡⎦⎤sin ⎝⎛⎭⎫2x -π6-λ2-1-2λ2. ∵x ∈⎣⎡⎦⎤π12,π3,∴0≤2x -π6≤π2, ∴0≤sin ⎝⎛⎭⎫2x -π6≤1. ①当λ<0时,当且仅当sin ⎝⎛⎭⎫2x -π6=0时,F (x )取得最小值,最小值为-1,这与已知不相符; ②当0≤λ≤1时,当且仅当sin ⎝⎛⎭⎫2x -π6=λ时,F (x )取得最小值,最小值为-1-2λ2,由已知得-1-2λ2=-32,解得λ=-12(舍)或λ=12;③当λ>1时,当且仅当sin ⎝⎛⎭⎫2x -π6=1时,F (x )取得最小值,最小值为1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ>1矛盾.综上所述,λ=12.1. 已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos α-π4等于( )A .-255B .-3510C .-31010 D.255答案 A解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos α-π4=2sin αsin α+cos α22sin α+cos α=22sin α=-255.2. 定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12B.π6C.π4D.π3 答案 D解析 依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin 2α-β=1314,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=437×1314-17×3314=32,故β=π3,选D.3. 设x ∈⎝⎛⎭⎫0,π2,则函数y =2sin 2x +1sin 2x的最小值为________. 答案3解析 方法一 因为y =2sin 2x +1sin 2x =2-cos 2xsin 2x ,所以令k =2-cos 2x sin 2x.又x ∈⎝⎛⎭⎫0,π2, 所以k 就是单位圆x 2+y 2=1的左半圆上的动点P (-sin 2x ,cos 2x )与定点Q (0,2)所成直线的斜率.又k min =tan 60°=3,所以函数y =2sin 2x +1sin 2x的最小值为 3.方法二 y =2sin 2x +1sin 2x =3sin 2x +cos 2x 2sin x cos x =3tan 2x +12tan x =32tan x +12tan x .∵x ∈(0,π2),∴tan x >0.∴32tan x +12tan x≥232tan x ·12tan x = 3.(当tan x =33,即x =π6时取等号)即函数的最小值为 3. 4. 已知tan(π+α)=-13,tan(α+β)=sin 2π2-α+4cos 2α10cos 2α-sin 2α.(1)求tan(α+β)的值;(2)求tan β的值.解 (1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=sin 2π2-α+4cos 2α10cos 2α-sin 2α=sin 2α+4cos 2α10cos 2α-sin 2α=2sin αcos α+4cos 2α10cos 2α-2sin αcos α=2cos αsin α+2cos α2cos α5cos α-sin α=sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25--13=516. (2)tan β=tan[(α+β)-α]=tan α+β-tan α1+tan α+βtan α=516+131-516×13=3143.5. 已知函数f (x )=2cos ⎝⎛⎭⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π=1617,求cos(α+β)的值. 解 (1)由T =2πω=10π得ω=15.(2)由⎩⎨⎧f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π=1617得⎩⎨⎧2cos ⎣⎡⎦⎤15⎝⎛⎭⎫5α+53π+π6=-65,2cos ⎣⎡⎦⎤15⎝⎛⎭⎫5β-56π+π6=1617,整理得⎩⎨⎧sin α=35,cos β=817.∵α,β∈⎣⎡⎦⎤0,π2, ∴cos α=1-sin 2α=45,sin β=1-cos 2β=1517.∴cos(α+β)=cos αcos β -sin αsin β=45×817-35×1517=-1385.。
第3讲简单的三角恒等变换最新考纲考向预测1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 命题趋势三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角函数公式、二倍角公式进行三角函数的化简与求值,重在考查化简、求值,公式的正用、逆用以及变式运用,可单独考查,也可与三角函数的图象与性质、向量等知识综合考查,加强转化与化归思想的应用意识.选择题、填空题、解答题均有可能出现,中低档难度.核心素养逻辑推理、数学运算1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin__αcos____β±cos__αsin____β;cos(α∓β)=cos__αcos____β±sin__αsin____β;tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎪⎫α±β,α,β均不为kπ+π2,k∈Z.2.二倍角的正弦、余弦、正切公式sin 2α=2sin__αcos____α;cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;tan 2α=2tan α1-tan2α⎝⎛⎭⎪⎫α,2α均不为kπ+π2,k∈Z.3.三角函数公式的关系常用结论四个必备结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)tan α±tan β=tan(α±β)(1∓tan αtan β), 1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.(4)辅助角公式a sin x +b cos x =a2+b2sin (x +φ),其中tan φ=ba . 常见误区(1)明确二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.(2)解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题. (3)运用公式时要注意公式成立的条件,要注意和、差、倍角的相对性,要注意升幂、降幂的灵活运用,要注意“1”的各种变形.(4)在三角求值时,往往要估计角的范围后再求值.特别是在(0,π)内,正弦值对应的角不唯一.1.判断正误(正确的打“√”,错误的打“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意角.( ) (2)两角和与差的正切公式中的角α,β是任意角.( )(3)cos 80°cos 20°-sin 80°sin 20°=cos(80°-20°)=cos 60°=12.( )(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(5)存在实数α,使tan 2α=2tan α.( ) 答案:(1)√ (2)× (3)× (4)× (5)√ 2.(多选)下面各式中,正确的是( ) A .sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+32cos π4B .cos 5π12=sin π4sin π3-cos π4cos π3C .cos ⎝ ⎛⎭⎪⎫-π12=cos π4cos π3+sin π4sin π3D .cos π12=cos π3-cos π4解析:选ABC.因为sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+cos π4·sin π3=sin π4cos π3+32cos π4,所以A 正确; 因为cos 5π12=-cos 7π12=-cos ⎝ ⎛⎭⎪⎫π3+π4=sin π4sin π3-cos π4cos π3,所以B 正确;因为cos ⎝ ⎛⎭⎪⎫-π12=cos ⎝ ⎛⎭⎪⎫π4-π3=cos π4cos π3+sin π4·sin π3,所以C 正确;因为cos π12=cos ⎝ ⎛⎭⎪⎫π3-π4≠cos π3-cos π4,所以D 不正确.故选ABC.3.(2020·高考全国卷Ⅲ)已知2tan θ-tan ⎝ ⎛⎭⎪⎫θ+π4=7,则tan θ=( )A .-2B .-1C .1D .2 解析:选D.由已知得2tan θ-tan θ+11-tan θ=7,得tan θ=2.4.(2020·高考全国卷Ⅱ)若sin x =-23,则cos 2x =____________.解析:因为sin x =-23,所以由二倍角公式,得cos 2x =1-2sin 2x =1-2×⎝ ⎛⎭⎪⎫-232=19.答案:195.(易错题)若cos α=-45,α是第三象限的角,则sin ⎝ ⎛⎭⎪⎫α+π4=________.解析:因为α是第三象限角,所以sin α=-1-cos2α=-35,所以sin ⎝ ⎛⎭⎪⎫α+π4=-35×22+⎝ ⎛⎭⎪⎫-45×22=-7210.答案:-7210第1课时 两角和与差的正弦、余弦和正切公式和差公式的直接应用[题组练透]1.(2020·高考全国卷Ⅰ)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α=( ) A.53 B.23 C.13 D.59解析:选A.因为3cos 2α-8cos α=5,所以3(2cos 2α-1)-8cos α=5,所以6cos 2α-8cos α-8=0,所以3cos 2α-4cos α-4=0,解得cos α=2(舍去)或cos α=-23,因为α∈(0,π),所以sin α=1-cos2α=53.故选A.2.已知sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( )A .-211 B.211 C.112 D .-112解析:选A.因为sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-1-sin2α=-45,所以tan α=sin αcos α=-34. 因为tan(π-β)=12=-tan β, 所以tan β=-12,则tan(α-β)=tan α-tan β1+tan αtan β=-211.3.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝⎛⎭⎪⎫π4+α的值;(2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值. 解:(1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-1-sin2α=-255,故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝⎛⎭⎪⎫-255+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45,cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35,所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310.三角函数公式的应用策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反.”(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用.三角函数公式的逆用与变形应用(1)(多选)下列各式中,值为32的是( ) A.1+cos 120°2B .cos 2π12-sin 2π12C .cos 42°sin 78°+sin 42°cos 78° D.tan 15°1-tan215°(2)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B.22 C.12 D .-12 【解析】 (1)因为1+cos 120°2=cos260°=cos 60°=12;cos 2π12-sin 2π12=cosπ6=32;cos 42°sin 78°+sin 42°cos 78°=sin(78°+42°)=sin 120°=32; tan 15°1-tan215°=12tan 30°=36.所以值为32的是BC.故选BC.(2)由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan Atan B =-1,即tan(A +B )=-1,又(A +B )∈(0,π), 所以A +B =3π4,则C =π4,cos C =22. 【答案】 (1)BC (2)B(1)三角函数公式活用技巧①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(2)三角函数公式逆用和变形使用应注意的问题①公式逆用时一定要注意公式成立的条件和角之间的关系;②注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”以便构造适合公式的形式.1.(2020·高考全国卷Ⅲ)已知sin θ+sin ⎝⎛⎭⎪⎫θ+π3=1,则sin ⎝⎛⎭⎪⎫θ+π6=( )A.12B.33C.23D.22解析:选B.因为sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=32sin θ+32cos θ=3sin ⎝ ⎛⎭⎪⎫θ+π6=1,所以sin ⎝ ⎛⎭⎪⎫θ+π6=33,故选B.2.(2020·山东菏泽一中月考)sin 2⎝⎛⎭⎪⎫α-π6+sin 2⎝⎛⎭⎪⎫α+π6-sin 2α=( )A .-12B .-32 C.12 D.32解析:选 C.原式=1-cos ⎝ ⎛⎭⎪⎫2α-π32+1-cos ⎝ ⎛⎭⎪⎫2α+π32-sin 2α=1-12·[cos ⎝ ⎛⎭⎪⎫2α-π3+cos ⎝ ⎛⎭⎪⎫2α+π3]-sin 2α=1-cos 2αcos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.三角公式的灵活应用 角度一 三角函数公式中变“角”(1)(多选)若tan ⎝ ⎛⎭⎪⎫α+π3=23,则( )A .tan α=313 B .tan α=37 C .tan 2α=2337 D .tan 2α=7323(2)(2020·百校联盟1月联考)已知α,β都是锐角,cos(α+β)=513,sin(α-β)=35,则cos 2α=________.【解析】 (1)tan α=tan ⎝ ⎛⎭⎪⎫α+π3-π3=tan ⎝ ⎛⎭⎪⎫α+π3-tan π31+tan ⎝ ⎛⎭⎪⎫α+π3tan π3=23-31+23×3=37,tan 2α=2371-349=7323.故选BD. (2)因为α,β都是锐角,所以0<α+β<π,-π2<α-β<π2, 又因为cos(α+β)=513,sin(α-β)=35, 所以sin(α+β)=1213,cos(α-β)=45,则cos 2α=cos[(α+β)+(α-β)]=cos(α+β)cos(α-β)-sin(α+β)sin(α-β)=513×45-1213×35=-1665.【答案】 (1)BD (2)-1665(1)三角公式求值中变角的解题思路①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等. 角度二 三角函数公式中变“名”求值:1+cos 20°2sin 20°-sin 10°⎝ ⎛⎭⎪⎫1tan 5°-tan 5°. 【解】 原式=2cos210°2×2sin 10°cos 10°-sin 10°⎝ ⎛⎭⎪⎫cos 5°sin 5°-sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos25°-sin25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.1.求4sin 20°+tan 20°的值为________. 解析:原式=4sin 20°+sin 20°cos 20°=2sin 40°+sin 20°cos 20°=2sin (60°-20°)+sin 20°cos 20°=3cos 20°-sin 20°+sin 20°cos 20°=3.答案:32.已知sin α=-45,α∈⎣⎢⎡⎦⎥⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=________.解析:因为sin α=-45,α∈⎣⎢⎡⎦⎥⎤3π2,2π,所以cos α=35. 又因为sin (α+β)cos β=2,所以sin(α+β)=2cos[(α+β)-α]. 展开并整理,得65cos(α+β)=135sin(α+β),所以tan(α+β)=613. 答案:613[A 级 基础练]1.()2020·成都诊断性检测(一)若sin θ=5cos(2π-θ),则tan 2θ=( ) A .-53 B.53 C .-52 D.52解析:选C.因为sin θ=5cos(2π-θ)=5cos θ,所以tan θ=5,所以tan 2θ=2tan θ1-tan2θ=251-(5)2=-52.2.(多选)下列四个命题中是真命题的是( ) A .∃x ∈R ,sin 2x 2+cos 2x 2=12B .∃x ,y ∈R ,sin(x -y )=sin x -sin yC .∀x ∈[0,π],1-cos 2x2=sin x D .sin x =cos y ⇒x +y =π2解析:选BC.因为sin 2x 2+cos 2x 2=1≠12,所以A 为假命题;当x =y =0时,sin(x -y )=sin x -sin y ,所以B 为真命题;因为1-cos 2x2= 1-(1-2sin2x )2=|sin x |=sin x ,x ∈[0,π],所以C 为真命题;当x =π2,y =2π时,sin x =cos y ,但x +y ≠π2,所以D 为假命题.故选BC.3.cos 15°+sin 15°cos 15°-sin 15°的值为( )A .33B .3C .-33D .-3解析:选B.原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)=3. 4.(2020·陕西榆林模拟)已知cos θsin θ=3cos(2π+θ),|θ|<π2,则sin 2θ=( ) A.829 B.223 C.429D.229解析:选C.因为cos θsin θ=3cos(2π+θ),所以cos θsin θ=3cos θ. 又|θ|<π2,故sin θ=13,cos θ=223,所以sin 2θ=2sin θcos θ=2×13×223=429, 故选C.5.若α,β都是锐角,且cos α=55,sin(α+β)=35,则cos β=( ) A.2525B.255C.2525或255D.55或525解析:选A.因为α,β都是锐角,且cos α=55<12, 所以π3<α<π2,sin α=1-cos2α=255,又sin(α+β)=35<32,所以2π3<α+β<π,所以cos(α+β)=-1-sin2(α+β)=-45.cos β=cos(α+β-α)=cos(α+β)cos α+sin(α+β)sin α=2525,故选A.6.已知sin ⎝⎛⎭⎪⎫π2+α=12,α∈⎝⎛⎭⎪⎫-π2,0,则cos ⎝⎛⎭⎪⎫α-π3的值为________.解析:由已知得cos α=12,又α∈⎝ ⎛⎭⎪⎫-π2,0,所以sin α=-32,所以cos ⎝ ⎛⎭⎪⎫α-π3=12cos α+32sin α=-12.答案:-127.(2020·洛阳统考)已知sin α+cos α=52,则cos 4α=________.解析:由sin α+cos α=52,得sin 2α+cos 2α+2sin αcos α=1+sin 2α=54,所以sin 2α=14,从而cos 4α=1-2sin 22α=1-2×⎝ ⎛⎭⎪⎫142=78.答案:788.(2020·甘肃、青海、宁夏联考改编)若tan(α+2β)=2,tan β=-3,则tan(α+β)=________,tan α=________.解析:因为tan(α+2β)=2,tan β=-3, 所以tan(α+β)=tan(α+2β-β)=tan (α+2β)-tan β1+tan (α+2β)tan β=2-(-3)1+2×(-3)=-1.tan α=tan(α+β-β)=tan (α+β)-tanβ1+tan (α+β)tan β=-1-(-3)1+(-1)×(-3)=12.答案:-1 129.已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=12,求tan 2α和sin ⎝ ⎛⎭⎪⎫α-π4的值.解:因为tan α=12,所以tan 2α=2tan α1-tan2α=2×121-14=43.且sin αcos α=12,即cos α=2sin α. 又sin 2α+cos 2α=1,所以5sin 2α=1. 又α∈⎝ ⎛⎭⎪⎫0,π2,所以sin α=55,cos α=255.所以sin⎝ ⎛⎭⎪⎫α-π4=sin αcos π4-cos αsin π4 =55×22-255×22=-1010.10.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值; (2)求cos β的值.解:(1)因为α,β∈⎝ ⎛⎭⎪⎫0,π2,所以-π2<α-β<π2. 又因为tan(α-β)=-13<0, 所以-π2<α-β<0,即sin(α-β)=-13cos(α-β), 又sin 2 (α-β)+cos 2(α-β)=1,解得cos(α-β)=31010,sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010,因为α为锐角,且sin α=35,所以cos α=45.所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin α·sin(α-β)=45×31010+35×⎝ ⎛⎭⎪⎫-1010=91050. [B 级 综合练]11.(2020·河南百校联盟联考)已知α为第二象限角,且tan α+tan π12=2tan αtan π12-2,则sin ⎝⎛⎭⎪⎫α+5π6=( )A .-1010 B .1010 C .-31010D .31010 解析:选 C.tan α+tan π12=2tan αtan π12-2⇒tan α+tan π121-tan αtan π12=-2⇒tan⎝⎛⎭⎪⎫α+π12=-2,因为α为第二象限角,所以sin ⎝ ⎛⎭⎪⎫α+π12=255,cos ⎝ ⎛⎭⎪⎫α+π12=-55,则sin ⎝ ⎛⎭⎪⎫α+5π6=-sin ⎝ ⎛⎭⎪⎫α-π6=-sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π12-π4=cos ⎝ ⎛⎭⎪⎫α+π12sin π4-sin ⎝ ⎛⎭⎪⎫α+π12·cos π4=-31010.12.已知cos ⎝⎛⎭⎪⎫π4+θcos ⎝⎛⎭⎪⎫π4-θ=14,则sin 4θ+cos 4θ的值为________.解析:因为cos ⎝ ⎛⎭⎪⎫π4+θcos ⎝ ⎛⎭⎪⎫π4-θ=⎝⎛⎭⎪⎫22cos θ-22sin θ⎝ ⎛⎭⎪⎫22cos θ+22sin θ=12(cos 2θ-sin 2θ)=12cos 2θ=14. 所以cos 2θ=12.故sin 4θ+cos 4θ=⎝⎛⎭⎪⎫1-cos 2θ22+⎝ ⎛⎭⎪⎫1+cos 2θ22=116+916=58. 答案:5813.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P⎝ ⎛⎭⎪⎫-35,-45.(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.解:(1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45,所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35, 由sin(α+β)=513,得cos(α+β)=±1213. 由β=(α+β)-α得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π12,x ∈R .(1)求f ⎝⎛⎭⎪⎫-π4的值;(2)若cos θ=45,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫2θ-π3的值.解:(1)f ⎝ ⎛⎭⎪⎫-π4=sin ⎝ ⎛⎭⎪⎫-π4+π12=sin ⎝ ⎛⎭⎪⎫-π6=-12.(2)f ⎝ ⎛⎭⎪⎫2θ-π3=sin ⎝ ⎛⎭⎪⎫2θ-π3+π12 =sin ⎝ ⎛⎭⎪⎫2θ-π4=22(sin 2θ-cos 2θ).因为cos θ=45,θ∈⎝ ⎛⎭⎪⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425, cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝ ⎛⎭⎪⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝ ⎛⎭⎪⎫2425-725=17250.[C 级 创新练]15.(2020·湖南岳阳一中月考)黄金三角形就是一个等腰三角形,其顶角为36°,底角为72°,底与腰的长度比值约为0.618,这一数值也可以表示为m =2cos 72°.若n =cos36°cos72°cos144°,则mn =( )A .-1 B.18 C .-18 D .1解析:选C.因为m =2cos 72°,n =cos 36°cos 72°cos 144°,所以mn =2cos 72°cos 36°cos 72°cos 144°=2sin 18°·cos 36°cos 72°cos 144°=sin 36°cos 36°cos 72°cos 144°cos 18°=sin 72°cos 72°cos 144°2cos 18°=sin 144°cos 144°4cos 18°=sin 288°8cos 18°=sin (18°+270°)8cos 18°=-cos 18°8cos 18°=-18,即mn =-18.故选C.16.设α,β∈[0,π],且满足sinαcosβ-cosαsinβ=1,则sin(2α-β)+sin(α-2β)的取值范围为________.解析:由sin αcos β-cos αsin β=1,得sin(α-β)=1, 又α,β∈[0,π],所以α-β=π2,所以⎩⎨⎧0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π, 所以sin(2α-β)+sin(α-2β) =sin ⎝ ⎛⎭⎪⎫2α-α+π2+sin(α-2α+π)=cos α+sin α=2sin ⎝⎛⎭⎪⎫α+π4.因为π2≤α≤π,所以3π4≤α+π4≤5π4,所以-1≤2sin ⎝⎛⎭⎪⎫α+π4≤1,即取值范围为[-1,1].答案:[-1,1]。
第23课两角和与差的正弦、余弦和正切公式[最新考纲]1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin_αcos_β±cos_αsin_β; (2)cos(α±β)=cos_αcos_β∓sin_αsin_β; (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.有关公式的变形和逆用 (1)公式T (α±β)的变形:①tan α+tan β=tan(α+β)(1-tan_αtan_β); ②tan α-tan β=tan(α-β)(1+tan_αtan_β). 3.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a .1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立.( )(4)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( ) [答案] (1)√ (2)× (3)× (4)×2.(教材改编)sin 20°cos 10°-cos 160°sin 10°=________.12 [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12.]3.(2017·苏州模拟)若α∈(0,π),cos α=-45,则tan ⎝ ⎛⎭⎪⎫α+π4=________.17[∵α∈(0,π),cos α=-45,∴sin α=1-cos 2α=35,∴tan α=-34.∴tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=-34+11+34=17.] 4.若sin α+3cos α=1,且α∈⎝ ⎛⎭⎪⎫0,π2,则α=________.π2 [∵sin α+3cos α=2sin ⎝ ⎛⎭⎪⎫α+π3=1,∴sin ⎝ ⎛⎭⎪⎫α+π3=12,又α∈⎝ ⎛⎭⎪⎫0,π2, ∴α+π3=5π6,∴α=π2.]5.若tan α=13,tan(α+β )=12,则tan β=________.17 [tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.](2014·江苏高考)已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值.[解] (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-255.故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝⎛⎭⎪⎫-255+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45,cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35,所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310. [规律方法] 1.使用两角和与差的三角函数公式,首先要记住公式的结构特征.2.使用公式求值,应先求出相关角的函数值,再代入公式求值. [变式训练1] (1)若α∈⎝ ⎛⎭⎪⎫π2,π,tan ⎝ ⎛⎭⎪⎫α+π4=17,则sin α=________.(2)已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3的值是________. (1)35 (2)-1 [(1)∵tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=17, ∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈⎝ ⎛⎭⎪⎫π2,π,∴sin α=35.(2)cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝ ⎛⎭⎪⎫32cos x +12sin x=3cos ⎝ ⎛⎭⎪⎫x -π6=-1.]β=________.【导学号:62172128】(2)sin 50°(1+3tan 10°)=________.(1)π3 (2)1 [(1)∵tan(α+β)=tan α+tan β1-tan αtan β=3-3tan αtan β1-tan αtan β= 3.又α,β∈⎝ ⎛⎭⎪⎫0,π2,∴α+β∈(0,π),∴α+β=π3.(2)sin 50°(1+3tan 10°) =sin 50°⎝ ⎛⎭⎪⎫1+3·sin 10°cos 10° =sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.][规律方法] 1.逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.2.tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.[变式训练2](1)sin(65°-x)cos(x-20°)+cos(65°-x)·cos(110°-x)的值为________.(2)在斜三角形ABC中,sin A=-2cos B·cos C,且tan B·tan C=1-2,则角A的值为________.(1)22(2)π4[(1)原式=sin(65°-x)·cos(x-20°)+cos(65°-x)cos[90°-(x-20°)]=sin(65°-x)cos(x-20°)+cos(65°-x)·sin(x-20°)=sin[(65°-x)+(x-20°)]=sin 45°=2 2.(2)由题意知:sin A=-2cos B·cos C=sin(B+C)=sin B·cos C+cos B·sin C,在等式两边同除以cos B·cos C得tan B+tan C=-2,又tan(B+C)=tan B+tan C1-tan B tan C=-1=-tan A,所以A=π4.](1)设αcos β=________.【导学号:62172129】(2)若0<α<π2,-π2<β<0,cos⎝⎛⎭⎪⎫π4+α=13,cos⎝⎛⎭⎪⎫π4-β2=33,则cos⎝⎛⎭⎪⎫α+β2等于________.(1)2525 (2)539 [(1)依题意得 sin α=1-cos 2 α=255,cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π, cos α>cos(α+β). 因为45>55>-45, 所以cos(α+β)=-45. 于是cos β=cos [](α+β)-α =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525. (2)∵0<α<π2,∴π4<π4+α<34π, 所以由cos ⎝ ⎛⎭⎪⎫π4+α=13,得sin ⎝ ⎛⎭⎪⎫π4+α=223,又-π2<β<0,∴π4<π4-β2<π2,且cos ⎝ ⎛⎭⎪⎫π4-β2=33,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63,故cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2=539.][规律方法] 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎪⎫α+β2-⎝⎛⎭⎪⎫α2+β等.[变式训练3]定义运算⎪⎪⎪⎪⎪⎪a bc d=ad-bc.若cos α=17,⎪⎪⎪⎪⎪⎪sin αsin βcos αcos β=3314,0<β<α<π2,则β等于________.π3[依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin2(α-β)=13 14,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=437×1314-17×3314=32.故β=π3.][思想与方法]1.三角恒等变换的变“角”与变“名”问题的解题思路(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.2.三角恒等变换的变“形”问题的求解思路根据三角恒等式子的“结构特征”进行变“形”,使得变换后的式子更接近已知的三角函数式,常用技巧有:(1)常值代换:1=sin2α+cos2α=cos 2α+2sin2α=tan π4,32=sin π3=cosπ6,12=sinπ6=cosπ3等.(2)逆用、变用公式:sin αsin β+cos(α+β)=cos αcos β,cos αsin β+sin(α-β)=sin αcos β,tan α+tan β=tan(α+β)(1-tan αtan β)等.(3)通分、约分:如:1+3tan α=2cos⎝⎛⎭⎪⎫α-π3cos α.(4)分解、组合:如:(sin α+cos α)2+(sin α-cos α)2=2.(5)平方、开方:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,1+cos 2α=2cos2α,1-cos 2α=2sin2α等.[易错与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.课时分层训练(二十三)A组基础达标(建议用时:30分钟)一、填空题1.设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为________. -3 [由题意可知⎩⎪⎨⎪⎧tan α+tan β=3,tan αtan β=2,∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.]2.(2017·盐城模拟)tan 70°+tan 50°-3tan 70°tan 50°的值等于________. -3 [∵tan 120°=tan(50°+70°)=tan 50°+tan 70°1-tan 50°tan 70°=-3,∴tan 50°+tan70°=-3+3tan 50°tan 70°,即tan 70°+tan 50°-3tan 70°tan 50°=- 3.]3.在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,若角α终边经过点P (2,4),则tan ⎝ ⎛⎭⎪⎫π4+α=________. 【导学号:62172130】-3 [由题意可知tan α=42=2. ∴tan ⎝ ⎛⎭⎪⎫π4+α=1+tan α1-tan α=1+21-2=-3.] 4.若sin(α-β)sin β-cos(α-β)cos β=45,且α是第二象限角,则tan ⎝ ⎛⎭⎪⎫π4+α等于________.17[∵sin(α-β)sin β-cos(α-β)cos β=45, ∴cos α=-45.又α是第二象限角,∴sin α=35,则tan α=-34. ∴tan ⎝ ⎛⎭⎪⎫π4+α=tan π4+tan α1-tan π4tan α=1-341+34=17.]5.已知sin α+sin β=3(cos β-cos α),α,β∈⎝ ⎛⎭⎪⎫0,π2,则sin 3α+sin 3β=________.0 [由已知得:sin α+3cos α=3cos β-sin β, 即cos ⎝ ⎛⎭⎪⎫α-π6=cos ⎝ ⎛⎭⎪⎫β+π6,又α-π6∈⎝ ⎛⎭⎪⎫-π6,π3,β+π6∈⎝ ⎛⎭⎪⎫π6,2π3. 故α-π6=β+π6,即α=β+π3.∴sin 3α+sin 3β=sin(3β+π)+sin 3β=0.]6.若cos ⎝ ⎛⎭⎪⎫α+π6-sin α=335,则cos ⎝ ⎛⎭⎪⎫α+π3=________.35 [cos ⎝ ⎛⎭⎪⎫α+π6-sin α=335,32cos α-32sin α=335,12cos α-32sin α=cos ⎝ ⎛⎭⎪⎫α+π3=35.] 7.若sin ()α+β=12,sin(α-β)=13,则tan αtan β的值为________.【导学号:62172131】5 [由sin(α+β)=12,sin(α-β)=13得 ⎩⎪⎨⎪⎧sin αcos β+cos αsin β=12, ①sin αcos β-cos αsin β=13, ②∴⎩⎪⎨⎪⎧sin αcos β=512,cos αsin β=112.∴tan αtan β=sin αcos βcos αsin β=5.]8.(2017·苏锡常镇调研二)若tan α=12,tan(α-β)=-13,则tan(β-2α)=________.-17[∵tan α=12,tan(α-β)=-13, ∴tan(β-2α)=-tan(2α-β)=-tan [α+(α-β)]=-tan α+tan (α-β)1-tan αtan (α-β)=-12-131+16=-17.] 9.若sin 2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π2,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是________. 【导学号:62172132】7π4 [∵sin 2α=55,α∈⎣⎢⎡⎦⎥⎤π4,π2, ∴cos 2α=-255且α∈⎣⎢⎡⎦⎥⎤π4,π2,又∵sin(β-α)=1010,β∈⎣⎢⎡⎦⎥⎤π,3π2. ∴cos(β-α)=-31010.因此sin(α+β)=sin [(β-α)+2α]=sin(β-α)cos 2α+cos(β-α)sin 2α=1010×⎝⎛⎭⎪⎫-255+⎝ ⎛⎭⎪⎫-31010×55=-22,cos(α+β)=cos [(β-α)+2α]=cos(β-α)·cos2α-sin(β-α)sin 2α=⎝ ⎛⎭⎪⎫-31010×⎝ ⎛⎭⎪⎫-255-1010×55=22,又α+β∈⎣⎢⎡⎦⎥⎤5π4,2π,所以α+β=7π4.]10.(2017·如皋市高三调研一)若sin β=3sin(2α-β),则tan(α-β)+12tan α=________.0 [由sin β=3sin(2α-β)得-sin [(α-β)-α]=3sin [α+(α-β)],∴cos(α-β)sin α-sin(α-β)cos α=3[sin αcos(α-β)+cos αsin(α-β)], ∴-4cos αsin(α-β)=2sin αcos(α-β), ∴tan(α-β)=-12tan α.∴tan(α-β)+12tan α=-12tan α+12tan α=0.] 二、解答题11.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.[解] (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32.(2)因为π2<α<π,π2<β<π,所以-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310.12.(2017·启东中学高三第一次月考)在△ABC 中,三个内角分别为A ,B ,C ,已知sin ⎝ ⎛⎭⎪⎫A +π6=2cos A .(1)求角A 的值;(2)若B ∈⎝ ⎛⎭⎪⎫0,π3,且cos(A -B )=45,求sin B .[解] 由sin ⎝ ⎛⎭⎪⎫A +π6=2cos A ,得32sin A +12cos A =2cos A ,即sin A =3cosA .因为A ∈(0,π),且cos A ≠0,所以tan A =3,所以A =π3.(2)因为B ∈⎝ ⎛⎭⎪⎫0,π3,所以A -B =π3-B ∈⎝ ⎛⎭⎪⎫0,π3.因为sin 2(A -B )+cos 2(A -B )=1,所以sin(A -B )=35,所以sin B =sin(A -(A-B ))=sin A cos(A -B )-cos A sin(A -B )=43-310.B 组 能力提升 (建议用时:15分钟)1.已知0<θ<π,tan ⎝ ⎛⎭⎪⎫θ+π4=17,那么sin θ+cos θ=________.-15 [由tan ⎝ ⎛⎭⎪⎫θ+π4=tan θ+11-tan θ=17,解得tan θ=-34,即sin θcos θ=-34,∴cos θ=-43sin θ,∴sin 2θ+cos 2θ=sin 2θ+169sin 2θ=259sin 2θ=1.∵0<θ<π,∴sin θ=35,∴cos θ=-45,∴sin θ+cos θ=-15.] 2.若tan α=2tan π5,则cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=________. 3 [∵cos ⎝ ⎛⎭⎪⎫α-3π10=cos ⎝ ⎛⎭⎪⎫α+π5-π2=sin ⎝ ⎛⎭⎪⎫α+π5, ∴原式=sin ⎝ ⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=tan α+tan π5tan α-tan π5.又∵tan α=2tan π5,∴原式=2tan π5+tan π52tan π5-tan π5=3.] 3.已知函数f (x )=A cos ⎝ ⎛⎭⎪⎫x 4+π6,x ∈R ,且f ⎝ ⎛⎭⎪⎫π3= 2.(1)求A 的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫4α+4π3=-3017,f ⎝ ⎛⎭⎪⎫4β-2π3=85,求cos(α+β)的值.[解] (1)因为f ⎝ ⎛⎭⎪⎫π3=A cos ⎝ ⎛⎭⎪⎫π12+π6=A cos π4=22A =2,所以A =2.(2)由f ⎝ ⎛⎭⎪⎫4α+4π3=2cos ⎝ ⎛⎭⎪⎫α+π3+π6=2cos ⎝ ⎛⎭⎪⎫α+π2=-2sin α=-3017,得sin α=1517,又α∈⎣⎢⎡⎦⎥⎤0,π2,所以cos α=817.由f ⎝ ⎛⎭⎪⎫4β-2π3=2cos ⎝ ⎛⎭⎪⎫β-π6+π6=2cos β=85,得cos β=45, 又β∈⎣⎢⎡⎦⎥⎤0,π2,所以sin β=35,所以cos(α+β)=cos αcos β-sin αsin β=817×45-1517×35=-1385.4.(2017·泰州中学高三摸底考试)已知0<α<π2<β<π,且sin(α+β)=513,tan α2=12.(1)求cos α的值; (2)证明:sin β>513.[解] (1)将tan α2=12代入tan α=2tan α21-tan 2α2,得tan α=43,∴⎩⎨⎧sinαcos α=43,sin 2α+cos 2α=1,又α∈⎝ ⎛⎭⎪⎫0,π2,解得cos α=35.(2)证明:由题意易得π2<α+β<3π2,又sin(α+β)=513, ∴cos(α+β)=-1213, 由(1)可得sin α=45,∴sin β=sin [(α+β)-α]=513×35-⎝ ⎛⎭⎪⎫-1213×45=6365>513.。
两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式(1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β))②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β))③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β))④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β))⑤tan(α-β)=(T (α-β))tan α-tan β1+tan αtan β⑥tan(α+β)=(T (α+β))tan α+tan β1-tan αtan β(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β).②tan α-tan β=tan(α-β)(1+tan αtan β).2.二倍角公式(1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,③tan 2α=.2tan α1-tan 2α(2)公式变形①cos 2α=,sin 2α=;1+cos 2α21-cos 2α2②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=sin .2)4(πα±3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√)(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√)(3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意tan α+tan β1-tan αtan β角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×)(6)存在角α,使得sin 2α=2sin α成立.(√)(7)若α+β=,则(1+tan α)(1+tan β)=2.(√)π4(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×)(9)存在实数α,使tan 2α=2tan α.(√)(10)y =的x 无意义.(×)1-2cos 2x考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:-sin 10°;1+cos 20°2sin 20°)5tan 5tan 1(00-解:原式=-sin 10°2cos 210°2×2sin 10°cos 10°)5cos 5sin 5sin 5cos (0000-=-sin 10°·=-sin 10°·cos 10°2sin 10°cos 25°-sin 25°sin 5°cos 5°cos 10°2sin 10°cos 10°12sin 10°=-2cos 10°=cos 10°2sin 10°cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°===.cos 10°-2(12cos 10°-32sin 10°)2sin 10°3sin 10°2sin 10°32(2)化简:sin 2α·sin 2β+cos 2α·cos 2β-cos 2α·cos 2β.12解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-·(2cos 2α-1)·(2cos 2β-1)12=sin 2α·sin 2β+cos 2α·cos 2β-·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)12=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12=sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12=sin 2β+cos 2β-=1-=.121212法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-cos 2α·cos12122β=cos 2β-sin 2α·cos 2β-cos 2α·cos 2β12=cos 2β-cos 2β·)2cos 21(sin 2αα+=-cos 2β·1+cos 2β2[sin 2α+12(1-2sin 2α)]=-cos 2β=.1+cos 2β21212法三:(从“幂”入手,利用降幂公式先降次)原式=·+·-cos 2α·cos 2β1-cos 2α21-cos 2β21+cos 2α21+cos 2β212=(1+cos 2α·cos 2β-cos 2α-cos 2β)+(1+cos 2α·cos 2β+cos 2α+cos 2β)-·cos 2α·cos 2β141412=.12[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+tan 10°).3解:sin 50°(1+tan 10°)=sin 50°(1+tan 60°·tan 10°)3=sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·====1.cos (60°-10°)cos 60°cos 10°2sin 50°cos 50°cos 10°sin 100°cos 10°cos 10°cos 10°2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan +tan +tan tan 的值为A 2C 23A 2C2________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =,=,tan =,2π3A +C 2π3A +C23所以tan +tan +tan tanA 2C 23A 2C2=tan +tan tan22(C A +2tan 2tan 1(CA -3A 2C 2=+tan tan =.3)2tan 2tan1(CA -3A 2C 23考点二 三角函数式的给值求值命题点1.已知某角的三角函数值求其它的三角函数值2.已知某角的三角函数值,求三角函数的值3.已知三角函数式的值,求三角函数值[例2] (1)(2016·高考全国丙卷)若tan θ=-,则cos 2θ=( )13A .- B .-C. D.45151545解析:法一:cos 2θ=cos 2θ-sin 2θ=cos2θ-sin 2θcos 2θ+sin 2θ==.故选D.1-tan 2θ1+tan 2θ45法二:由tan θ=-,可得sin θ=±,因而cos 2θ=1-2sin 2θ=.1311045答案:D(2)已知tan =,且-<α<0,则等于( ))4(πα+12π2)4cos(2sin sin 22πααα-+A .-B .-C .-D.255351031010255解析:由tan ==,得tan α=-.)4(πα+tan α+11-tan α1213又-<α<0,所以sin α=-.π21010故==2sin α=-.)4cos(2sin sin 22πααα-+2sin α(sin α+cos α)22(sin α+cos α)2255答案:A(3)已知α∈,且2sin 2α-sin α·cos α-3cos 2α=0,则=________.)2,0(π12cos 2sin )4sin(+++ααπα解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0,由于α∈,sin α+cos α≠0,)2,0(π则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=,213∴==.12cos 2sin )4sin(+++ααπα22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)268答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan 的值.)6(θπ+解:tan ===.)6(θπ+tan π6+tan θ1-tan π6tan θ33-131+33×1353-6132.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值.解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ===-.2tan 2θ-tan θ-3tan 2θ+12×(-13)2+13-3(-13)2+11153.已知cos +sin =,则cos =________.)2(απ-)32(απ-23532(πα+解析:由cos +sin =,得)2(απ-)32(απ-235sin α+sin cos α-cos πsin α=∴sin α+cos α=,2π3232353232235即sin =,∴sin =,3)6(πα+2356(πα+25因此cos =1-2sin 2=1-2×=.)32(πα+6(πα+2)52(1725答案:1725考点三 已知三角函数式的值求角命题点1.利用弦函数值求角2.利用切函数值求角[例3] (1)已知cos α=,cos(α-β)=,0<β<α<,则β=________.171314π2解析:∵cos α=,0<α<.∴sin α=.17π2437又cos(α-β)=,且0<β<α<.∴0<α-β<,则sin(α-β)=.1314π2π23314则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×==,由于0<β<,所以β=.1713144373314497×1412π2π3答案:π3(2)已知α,β∈(0,π),且tan(α-β)=,tan β=-,则2α-β的值为________.1217解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β==>0,∴0<α<.又∵tan 2α===>0,12-171+12×1713π22tan α1-tan 2α2)31(1312-⨯34∴0<2α<,∴tan(2α-β)===1.π2tan 2α-tan β1+tan 2αtan β34+171-34×17∵tan β=-<0,∴<β<π,-π<2α-β<0,∴2α-β=-π.17π234答案:-π34[方法引航] 1.解决给值求角问题应遵循的原则(1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是,选正、余弦皆可;②)2,0(π若角的范围是(0,π),选余弦较好;③若角的范围是,选正弦较好.)2,2(ππ-2.解给值求角问题的一般步骤(1)求角的某一个三角函数值.(2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=,cos β=-,则α+β的值为( )5531010A. B.C. D.或3π45π47π45π47π4解析:选C.∵α,β为钝角,sin α=,cos β=-,5531010∴cos α=,sin β=,∴cos(α+β)=cos αcos β-sin αsin β=>0.-255101022又α+β∈(π,2π),∴α+β∈,∴α+β=.)2,23(ππ7π42.已知tan α=-,cos β=,α∈,β∈,求tan(α+β)的值,并求出α+β的值.1355),2(ππ)2,0(π解:由cos β=,β∈,得sin β=,tan β=2.55)2,0(π255∴tan(α+β)===1.tan α+tan β1-tan αtan β-13+21+23∵α∈,β∈,∴<α+β<,∴α+β=.),2(ππ)2,0(ππ23π25π4[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin 13°cos 17°;(2)sin 215°+cos 215°-sin 15°cos 15°;(3)sin 218°+cos 212°-sin 18°cos 12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°;(5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.[解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-sin 30°=1-=.121434(Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=.34证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+cos 2α+sin αcos α+sin 2α-sin α·cos α-sin 2α=sin 2α+34321432123434cos 2α=.34法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=.34证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=+-sin α(cos 30°cos α+sin 1-cos 2α21+cos (60°-2α)230°sin α)=-cos 2α++(cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin 2α=-cos 2α1212121232121212++cos 2α+sin 2α-sin 2α-(1-cos 2α)=1-cos 2α-+cos 2α=.121434341414141434[高考真题体验]1.(2016·高考全国甲卷)若cos =,则sin 2α=( ))4(απ-35A. B. C .-D .-7251515725解析:选D.因为cos =cos cos α+sin sin α=(sin α+cos α)=,所以sin α+cos α=)4(απ-π4π42235,所以1+sin 2α=,所以sin 2α=-,故选D.32518257252.(2016·高考全国丙卷)若tan α=,则cos 2α+2sin 2α=( )34A.B.C .1D.642548251625解析:选A.法一:由tan α==,cos 2α+sin 2α=1,得Error!或Error!,则sin 2α=2sin αcossin αcos α34α=,则cos 2α+2sin 2α=+=.2425162548256425法二:cos 2α+2sin 2α====.cos 2α+4sin αcos αcos 2α+sin 2α1+4tan α1+tan 2α1+31+91664253.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( )A .- B.C .- D.32321212解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=.124.(2014·高考课标全国卷Ⅰ)设α∈,β∈,且tan α=,则( ))2,0(π)2,0(π1+sin βcos βA .3α-β= B .2α-β=C .3α+β= D .2α+β=π2π2π2π2解析:选B.由条件得=,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin sin αcos α1+sin βcos β,因为-<α-β<,0<-α<,所以α-β=-α,所以2α-β=,故选B.)2(απ-π2π2π2π2π2π25.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α==2sin αcos α-cos 2αsin 2α+cos 2α2tan α-1tan 2α+1==-1.-4-14+1答案:-16.(2016·高考四川卷)cos 2-sin 2=________.π8π8解析:由二倍角公式,得cos 2-sin 2=cos =.π8π8)82(π⨯22答案:22课时规范训练A 组 基础演练1.tan 15°+=( )1tan 15°A .2 B .2+C .4D.3433解析:选C.法一:tan 15°+=+1tan 15°sin 15°cos 15°cos 15°sin 15°===4.1cos 15°sin 15°2sin 30°法二:tan 15°+=+1tan 15°1-cos 30°sin 30°1sin 30°1+cos 30°=+==4.1-cos 30°sin 30°1+cos 30°sin 30°2sin 30°2.的值是( )2cos 10°-sin 20°sin 70°A. B.C.D.123232解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°==.3cos 20°cos 20°33.已知θ∈(0,π),且sin =,则tan 2θ=( ))4(πθ-210A. B. C .-D.4334247247解析:选C.由sin =,得(sin θ-cos θ)=,所以sin θ-cos θ=.)4(πθ-2102221015解方程组Error!,得Error!或Error!.因为θ∈(0,π),所以sin θ>0,所以Error!不合题意,舍去,所以tan θ=,所以tan 2θ==432tan θ1-tan 2θ=-,故选C.2×431-(43)22474.若θ∈,sin 2θ=,则sin θ等于( )]2,4[ππ378A. B. C.D.35457434解析:选D.由sin 2θ=和sin 2θ+cos 2θ=1得387(sin θ+cos θ)2=+1=,3782)473(+又θ∈,∴sin θ+cos θ=.]2,4[ππ3+74同理,sin θ-cos θ=,∴sin θ=.3-74345.已知sin 2(α+γ)=n sin 2β,则的值为( )tan (α+β+γ)tan (α-β+γ)A.B.C.D.n -1n +1nn +1nn -1n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以=tan (α+β+γ)tan (α-β+γ),故选D.n +1n -16.若sin =,则cos 2θ=________.)2(θπ+35解析:∵sin =cos θ=,∴cos 2θ=2cos 2θ-1=2×-1=-.)2(θπ+352)53(725答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈,则tan 2α的值是________.),2(ππ解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈,sin α≠0,∴cos α=-.又∵α∈,∴α=π,),2(ππ12),2(ππ23∴tan 2α=tan π=tan =tan =.43)3(ππ+π33答案:39.化简:(0<θ<π).(1+sin θ+cos θ)(sin θ2-cosθ2)2+2cos θ解:由θ∈(0,π),得0<<,∴cos >0,θ2π2θ2∴==2cos .2+2cos θ4cos 2θ2θ2又(1+sin θ+cos θ)=)2cos 2(sinθθ-2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+=2cos θ2)2cos 2(sin 22θθ-=-2cos cos θ.故原式==-cos θ.θ2-2cos θ2cos θ2cosθ210.已知α∈,且sin +cos =.),2(ππα2α262(1)求cos α的值;(2)若sin(α-β)=-,β∈,求cos β的值.35),2(ππ解:(1)因为sin +cos =,两边同时平方,得sin α=.α2α26212又<α<π,所以cos α=-.π232(2)因为<α<π,<β<π,所以-π<-β<-,故-<α-β<.π2π2π2π2π2又sin(α-β)=-,得cos(α-β)=.3545cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-×+×=-.324512)53(-43+310B 组 能力突破1.已知sin α+cos α=,则1-2sin 2=( )22)4(απ-A. B.C .-D .-12321232解析:选C.由sin α+cos α=,得1+2sin αcos α=,∴sin 2α=-.221212因此1-2sin 2=cos2=sin 2α=-.)4(απ-)4(απ-122.已知f (x )=2tan x -,则f 的值为( )2sin 2x2-1sin x 2cos x 2)12(πA .4B.C .4D .83833解析:选D.∵f (x )=2=2×=,)sin cos cos sin (2sin cos (tan xxx x x x x +⨯=+1cos x ·sin x 4sin 2x∴f ==8.)12(π4sin π63.已知sin α=,sin(α-β)=-,α,β均为锐角,则角β等于( )551010A. B. C. D.5π12π3π4π6解析:选C.∵α、β均为锐角,∴-<α-β<.π2π2又sin(α-β)=-,∴cos(α-β)=.101031010又sin α=,∴cos α=,55255∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=×-×=.5531010255)1010(-22∴β=.π44.若tan α=lg(10a ),tan β=lg ,且α+β=,则实数a 的值为________.1a π4解析:tan α+tan β=lg(10a )+lg =lg 10=1,1a∵α+β=,所以tan =tan(α+β)==,π4π4tan α+tan β1-tan αtan β11-tan αtan β∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg =0.1a 所以10a =1或=1,即a =或1.1a 110答案:或11105.已知tan(π+α)=-,tan(α+β)=.13ααααπ2sin cos 10cos 4)2(2sin 22-+-(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-,∴tan α=-.∵tan(α+β)=1313ααααπ2sin cos 10cos 4)2(2sin 22-+-===sin 2α+4cos 2α10cos 2α-sin 2α2sin αcos α+4cos 2α10cos 2α-2sin αcos α2cos α(sin α+2cos α)2cos α(5cos α-sin α)====.sin α+2cos α5cos α-sin αtan α+25-tan α-13+25-(-13)516(2)tan β=tan[(α+β)-α]===.tan (α+β)-tan α1+tan (α+β)tan α516+131-516×133143。
§4.3 两角和与差的正弦、余弦和正切公式 考试要求 1.会推导两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.掌握两角和与差的正弦、余弦、正切公式,并会简单应用. 知识梳理1.两角和与差的余弦、正弦、正切公式(1)公式C (α-β):cos(α-β)= ;(2)公式C (α+β):cos(α+β)= ;(3)公式S (α-β):sin(α-β)= ;(4)公式S (α+β):sin(α+β)= ;(5)公式T (α-β):tan(α-β)= ;(6)公式T (α+β):tan(α+β)= .2.辅助角公式a sin α+b cos α= ,其中sin φ=b a 2+b 2,cos φ=a a 2+b 2. 知识拓展两角和与差的公式的常用变形:(1)sin αsin β+cos(α+β)=cos αcos β.(2)cos αsin β+sin(α-β)=sin αcos β.(3)tan α±tan β=tan(α±β)(1∓tan αtan β).tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)存在α,β,使等式sin(α+β)=sin α+sin β.( )(2)两角和与差的正切公式中的角α,β是任意角.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( )教材改编题1.sin 20°cos 10°-cos 160°sin 10°等于( )A .-32 B.32 C .-12 D.12 2.若将sin x -3cos x 写成2sin(x -φ)的形式,其中0≤φ<π,则φ= .3.已知α∈⎝⎛⎭⎫π2,π,且sin α=45,则tan ⎝⎛⎭⎫α+π4的值为 .题型一 两角和与差的三角函数公式例1 (1)计算:cos 55°+sin 25°cos 60°cos 25°等于( ) A .-32 B.32 C .-12 D.12(2)(2023·青岛模拟)已知tan α=1+m ,tan β=m ,且α+β=π4,则实数m 的值为( ) A .-1 B .1 C .0或-3 D .0或1听课记录:______________________________________________________________ ________________________________________________________________________思维升华 两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.跟踪训练1 (1)(2023·茂名模拟)已知0<α<π2,sin ⎝⎛⎭⎫π4-α=26,则sin α1+tan α的值为( ) A.41451 B.21413 C.41751 D.21713(2)(2022·新高考全国Ⅱ)若sin(α+β)+cos(α+β)=22cos ⎝⎛⎭⎫α+π4sin β,则( ) A .tan(α-β)=1B .tan(α+β)=1C .tan(α-β)=-1D .tan(α+β)=-1题型二 两角和与差的公式逆用与辅助角公式 例2 (1)在△ABC 中,C =120°,tan A +tan B =233,则tan A tan B 的值为( ) A.14 B.13 C.12 D.53(2)(2022·浙江)若3sin α-sin β=10,α+β=π2,则sin α= ,cos 2β= .听课记录:______________________________________________________________ ________________________________________________________________________思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力.跟踪训练2 (1)(2022·咸阳模拟)已知sin ⎝⎛⎭⎫x -π6=33,则sin x +sin ⎝⎛⎭⎫x -π3等于( ) A .1 B .-1 C.233D.3 (2)满足等式(1+tan α)(1+tan β)=2的数组(α,β)有无穷多个,试写出一个这样的数组________.题型三 角的变换问题例3 (1)(2020·全国Ⅲ)已知sin θ+sin ⎝⎛⎭⎫θ+π3=1,则sin ⎝⎛⎭⎫θ+π6等于( ) A.12 B.33 C.23 D.22(2)已知α,β为锐角,sin α=31010,cos(α+β)=-55.则sin(2α+β)的值为 . 听课记录:______________________________________________________________ ________________________________________________________________________思维升华 常用的拆角、配角技巧:2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=α+β2-α-β2=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;π4+α=π2-⎝⎛⎭⎫π4-α等. 跟踪训练3 (1)(2023·青岛质检)已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=2425,则cos ⎝⎛⎭⎫α+π4=________. (2)若tan(α+2β)=2,tan β=-3,则tan(α+β)= ,tan α= .。
图二abc CBA图一cabA BC正弦定理与余弦定理(1)一、知识梳理:【必修五第2页——第10页】1、直角三角形各元素之间的关系:如图1,在RtABC中,C= ,BC=a,AC=b,Ab=c。
(1)、三边之间的关系:+=;(勾股定理)(2)、锐角之间的关系:A+B=(3)、边角之间的关系:(锐角三角函数的定义):sinA=cosB= sinB=cosA= ,tanA2、斜三角形各元素之间的关系:如图2,ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。
(1)、三角形内角之间的关系:A+B+C= ;sin(A+B)=sinC,cos(A+B)=-cosC;tan(A+B)=-tanCsin; cos;(2)、三边之间的关系:两边之和大于第三边,两边之差小于第三边;(3)、正弦定理:在一个三角形中,各边和它所对角的正弦值的比相等;即=2R (2R为外接圆的直径)正弦定理变形:a=2R ;;;;;a:b:c=(4)、余弦定理:=-2bccosA; =-2accosB;-2abcosC;余弦定理变形:cosA= ; cosB=; cosC=3、三角形的面积公式:(1)、=a=b=c(,,分别表示a,b,c三边上的高)(2)、=absinC=bcsinA=casinB(3)、=2=(4)、= ;(5)、=rs(r为内切圆半径,)4、解三角形:由三角形的六个元素(即三个内角和三条边)中的三个元素(其中至少有一个是边)求其它未知元素的问题叫做解三角形,这里所说的元素还可以包括三角形的高、中线、角平分线、内切圆半径、外接圆半径、面积等等,解三角形问题一般可以分为下面两个情形:若给出是直角三角形,则称为解直角三角形;若给出的三角形为斜三角形,则称为解斜三角形。
5、实际问题中的应用:(1)、仰角和俯角:与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标线在水平线上方的角叫做仰角,目标线在水平线下方的角叫俯角。
两角和与差的正弦、余弦和正切(二倍角公式)一.【学习目标】1、掌握并熟练使用两角和与差的余弦、正弦、正切进行证明、化简和求值;2、能针对不同情况进行寻找已知角之间的关系,灵活使用两角和与差的余弦、正弦、正切公式,二倍角公式进行证明、化简和求值.二.重点、难点、易错(混)点、常考点灵活使用两角和与差的余弦、正弦、正切进行证明、化简和求值三.【知识梳理】1.两角和与差的正弦、余弦、正切公式: C (),cos()αβαβ--= ; C (),cos()αβαβ++= S (),sin()αβαβ--= ; S (),sin()αβαβ++= . T (),tan()αβαβ++= 由T ()αβ+可得公式变形tan tan αβ+= T (),tan()αβαβ--=由T ()αβ-可得公式变形得:tan tan αβ-= 2. 二倍角的正弦、余弦、正切公式2:sin 2S ________________;2:tan 2T ________________。
2:cos 2C ________________=________________=________________;四.【基础题达标】 1.12cos312sinππ-=2.sin15°sin30°sin75°=__________.3.cos20°cos40°cos60°cos80° =4.),0(πθ∈,θθsin 1sin 1--+=5.313sin 253sin 223sin 163sin +的值等于 6.12cos312sinππ-=7.化简:x x sin 6cos 2-= 8.若51cos sin =+θθ,则θ2sin 的值 9.81cos sin =x x 且24ππ<<x ,则=-x x sin cos 10.),0(πθ∈,θθsin 1sin 1--+=11.函数)(2cos 21cos )(R x x x x f ∈-=的最大值为 12..若223tan 1tan 1+=-+αα,则=-αα2cos 2sin 113.50tan 10tan 350tan 10tan ++=14.化简:15tan 115tan 1-+=15.已知cos (6πα-)+sin α76)πα+的值是考点一: 运用公式求值、求角问题【例1】 (1)已知cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎫0,π2,求cos(α-β)的值. (2)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; (3)已知π2<β<α<34π,sin(α-β)=1213,cos(α+β) =-35,求sin2α的值(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.【训练1】已知βα,是锐角且1010sin ,55sin ==βα,求βα+【训练2】(2012·江苏卷)设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________.考点二: 公式的变形应用【例2】已知:)tan(βα+=βtan 2。
高考一轮复习---两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β.C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎪⎭⎫ ⎝⎛∈+≠+Z k k ,2,,ππβαβα 两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎪⎭⎫ ⎝⎛∈+≠+≠Z k k k ,且42ππαππα 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角. 二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎪⎪⎭⎫ ⎝⎛+=+=2222cos ,sin b a ab a b ϕϕ三、考点解析考点一 三角函数公式的直接应用例、(1)已知sin α=35,α∈⎪⎭⎫ ⎝⎛ππ,2,tan β=-12,则tan(α-β)的值为( ) A .-211 B.211 C.112 D .-112(2)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( ) A .-229 B .-429 C.229 D.429[解题技法]应用三角公式化简求值的策略:(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.跟踪训练1.已知sin α=13+cos α,且α∈⎪⎭⎫ ⎝⎛2,0π,则)4sin(2cos παα+的值为( ) A .-23 B.23 C .-13 D.132.已知sin α=45,且α∈⎪⎭⎫ ⎝⎛23,2ππ,则sin ⎪⎭⎫ ⎝⎛+32πα的值为________. 考点二 三角函数公式的逆用与变形用例、(1)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________.[解题技法]两角和、差及倍角公式的逆用和变形用的技巧:(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β;cos αsin β+sin(α-β)=sin αcos β;1±sin α=⎝⎛⎭⎫sin α2±cos α22;sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1; cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.跟踪训练1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b 2.已知cos ⎪⎭⎫ ⎝⎛-6πα+sin α=435,则sin ⎪⎭⎫ ⎝⎛+6πα=________. 3.化简sin 2⎪⎭⎫ ⎝⎛-6πα+sin 2⎪⎭⎫ ⎝⎛+6πα-sin 2α的结果是________.考点三 角的变换与名的变换考法(一) 三角公式中角的变换典例、已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎪⎭⎫ ⎝⎛--54,53,若角β满足sin(α+β)=513,则cos β的值为________.[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+ββα22a 等.考法(二) 三角公式中名的变换典例、已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值;(2)求tan(α-β)的值.[解题技法]三角函数名的变换技巧:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.跟踪训练1.已知tan θ+1tan θ=4,则cos 2⎪⎭⎫ ⎝⎛+4πα=( ) A.12 B.13 C.14 D.152.若sin ⎪⎭⎫ ⎝⎛+4πA =7210,A ∈⎪⎭⎫ ⎝⎛ππ,4,则sin A 的值为( ) A.35 B.45 C.35或45 D.343.已知sin α=-45,α∈⎥⎦⎤⎢⎣⎡ππ223,,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136 C .-613 D .-136课后作业1.sin 45°cos 15°+cos 225°sin 165°=( )A .1 B.12 C.32 D .-122.若2sin x +cos ⎪⎭⎫ ⎝⎛-x 2π=1,则cos 2x =( ) A .-89 B .-79 C.79 D .-7253.若cos ⎪⎭⎫ ⎝⎛-6πα=-33,则cos ⎪⎭⎫ ⎝⎛-3πα+cos α=( ) A .-223 B .±223C .-1D .±1 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A. 3 B.2 C.22 D.335.若α∈⎪⎭⎫ ⎝⎛ππ,2,且3cos 2α=sin ⎪⎭⎫ ⎝⎛-απ4,则sin 2α的值为( ) A .-118 B.118 C .-1718 D.17186.已知sin 2α=13,则cos 2⎪⎭⎫ ⎝⎛-4πα=( ) A .-13 B.13 C .-23 D.237.已知sin ⎪⎭⎫ ⎝⎛+2πα=12,α∈⎪⎭⎫ ⎝⎛-0,2π,则cos ⎪⎭⎫ ⎝⎛-3πα的值为________. 8.已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________. 9.若tan ⎪⎭⎫ ⎝⎛-4πα=16,则tan α=________. 10.化简:sin 235°-12cos 10°cos 80°=________. 11.已知tan α=2.(1)求tan ⎪⎭⎫ ⎝⎛+4πα的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.。
第4节 两角和与差的正弦、余弦和正切公式考纲传真1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.1.两角和与差的正弦、余弦、正切公式 (1)六个公式:①sin(α±β)=sin_αcos_β±cos_αsin_β; ②cos(α±β)=cos_αcos_β∓sin_αsin_β; ③tan(α±β)=tan α±tan β1∓tan αtan β.(2)公式T (α±β)的变形:①tan α+tan β=tan(α+β)(1-tan_αtan_β); ②tan α-tan β=tan(α-β)(1+tan_αtan_β). 2.二倍角的正弦、余弦、正切公式 (1)三个公式:①sin 2α=2sin_αcos_α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.(2)公式S 2α、C 2α的变形: ①sin αcos α=12sin_2α;②sin 2α=12(1-cos_2α);③cos 2α=12(1+cos_2α).1.(人教A 版教材习题改编)sin 34°sin 26°-cos 34°cos 26°的值是( )A.12B.32 C .-12 D .-32『解析』 sin 34°sin 26°-cos 34°cos 26°=-(cos 34°cos 26°-sin 34°sin 26°)=-cos 60°=-12.『答案』 C 2.下列各式中,值为32的是( ) A .2sin 15°cos 15° B .cos 215°-sin 215° C .2sin 215°-1 D .sin 215°+cos 215°『解析』 2sin 15°cos 15°=sin 30°=12,cos 215°-sin 215°=cos 30°=32,2sin 215°-1=-cos 30°=-32, sin 215°+cos 215°=1.故选B. 『答案』 B3.已知tan(α+β)=3,tan(α-β)=5,则tan 2α=( ) A.18 B .-18 C.47 D .-47『解析』 tan 2α=tan 『(α+β)+(α-β)』 =tan (α+β)+tan (α-β)1-tan (α+β)·tan (α-β)=3+51-3×5=-47.『答案』 D4.若cos α=-45,α是第三象限角,则sin(α+π4)=( )A .-7210 B.7210 C .-210 D.210『解析』 由题意知sin α=-35,∴sin(α+π4)=sin αcos π4+cos αsin π4=-35×22+(-45)×22=-7210.『答案』 A5.(2012·江西高考)若sin α+cos αsin α-cos α=12,则tan 2α=( )A .-34 B.34 C .-43 D.43『解析』 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34. 『答案』 B三角函数式的化简化简:(1)sin 50°(1+3tan 10°);(2)(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ(0<θ<π).『思路点拨』 (1)切化弦,逆用两角和的正弦公式; (2)统一为θ2的三角函数,变形化简.『尝试解答』 (1)sin 50°(1+3tan 10°) =sin 50°(cos 10°+3sin 10°cos 10°)=2sin 50°(12cos 10°+32sin 10°)cos 10°=2sin 50°sin (30°+10°)cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.(2)由θ∈(0,π),得0<θ2<π2,∴cosθ2>0.因此2+2cos θ=4cos 2θ2=2cosθ2.又(1+sin θ+cos θ)(sin θ2-cosθ2)=(2sin θ2cosθ2+2cos 2θ2)(sin θ2-cos θ2) =2cosθ2(sin 2θ2-cos 2θ2)=-2cos θ2cos θ. 故原式=-2cos θ2cos θ2cosθ2=-cos θ.,1.本题(2)中有开方运算,联想二倍角公式的特征进行升幂,化为完全平方式. 2.三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”; (3)三看“结构特征”,帮助我们找到变形的方向.化简:(1)2+2cos 8+21-sin 8;(2)2cos 4x -2cos 2x +122tan (π4-x )sin 2(x +π4).『解析』 (1)2+2cos 8+21-sin 8 =2(1+cos 8)+21-2sin 4cos 4 =2×2cos 24+2(sin 4-cos 4)2 =-2cos 4+2(cos 4-sin 4) =-2sin 4.(2)原式=2cos 2x (cos 2x -1)+122tan (π4-x )·cos 2(π4-x )=-4cos 2x sin 2x +14cos (π4-x )sin (π4-x )=1-sin 22x2sin (π2-2x )=cos 22x 2cos 2x =12cos 2x .三角函数的给值求值(1)(2012·江苏高考)设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.(2)(2013·烟台模拟)已知cos(α-π6)+sin α=435,则sin(α+7π6)=________. 『思路点拨』 (1)2α+π12=2(α+π6)-π4,求出α+π6的正弦、余弦,再代入求解;(2)先用两角差的余弦公式展开cos(α-π6),再逆用公式合并,最后用诱导公式求sin(α+76π). 『尝试解答』 (1)∵α为锐角且cos(α+π6)=45,∴sin(α+π6)=35.∴sin(2α+π12)=sin 『2(α+π6)-π4』=sin 2(α+π6)cos π4-cos 2(α+π6)sin π4=2sin(α+π6)cos(α+π6)-22『2cos 2(α+π6)-1』=2×35×45-22『2×(45)2-1』=12225-7250=17250. (2)cos(α-π6)+sin α=cos αcos π6+sin αsin π6+sin α=32cos α+32sin α=3sin(α+π6)=453. ∴sin(α+π6)=45,∴sin(α+76π)=sin(π+α+π6)=-sin(α+π6)=-45.『答案』 (1)17250 (2)-45,给值求值问题,解决的关键是把所求角用已知角表示.(1)当已知角有两个时,所求角一般表示为两个已知角的和或差的形式.(2)当已知角有一个时,此时应着眼于所求角与已知角的和或差的关系,然后应用诱导公式把所求角变成已知角.(3)注意根据角的象限确定三角函数值的符号.已知0<β<π2<α<3π4,cos(π4-α)=35,sin(3π4+β)=513,求sin(α+β)的值.『解析』 因为sin(3π4+β)=sin 『π2+(π4+β)』=cos(π4+β)=513,又因为0<β<π2<α<3π4,所以π4<π4+β<3π4,-π2<π4-α<-π4,故sin(π4+β)=1-cos 2(π4+β)=1-(513)2=1213,sin(π4-α)=-1-cos 2(π4-α)=-1-(35)2=-45.所以sin(α+β)=sin 『(π4+β)-(π4-α)』=sin(π4+β)cos(π4-α)-cos(π4+β)sin(π4-α)=1213×35-513×(-45)=5665.三角函数的给值求角已知0<α<π2<β<π,tan α2=12,cos(β-α)=210.(1)求sin α的值;(2)求β的值. 着眼点由二倍角公式求tan α,由同角关系求sin α由β=α+(β-α),求cos β,进而求β的值.『尝试解答』 (1)由tanα2=12,得tan α=2tanα21-tan 2α2=43,∴cos α=34sin α,①又sin 2α+cos 2α=1,②由①、②联立,得25sin 2α=16, ∵0<α<π2,∴sin α=45.(2)由(1)知,cos α=35,sin α=45又0<α<π2<β<π,∴0<β-α<π.由cos(β-α)=210,得0<β-α<π2. ∴sin(β-α)=9810=7210, ∴sin β=sin 『(β-α)+α』=sin(β-α)cos α+cos(β-α)·sin α=7210×35+210×45=25250=22.由π2<β<π得β=34π.,1.第(2)问中,由sin β=22易错误得出β=π4,这些错误的原因都是忽视了角的范围. 2.“给值求角”的求解思路:(1)求角的某一三角函数值,(2)讨论角的范围,确定角的大小.其中求角的某一三角函数值时,应选择在该范围内是单调函数,若角的范围是(0,π),选余弦较好;若角的范围为(-π2,π2),选正弦较好.已知cos α=17,cos(α-β)=1314,且0<β<α<π2,试求角β的值.『解析』 由cos α=17,0<α<π2,得sin α=1-cos 2α=1-(17)2=437.由0<β<α<π2,得0<α-β<π2.又∵cos(α-β)=1314,∴sin(α-β)=1-cos 2(α-β)=3314,由β=α-(α-β),得cos β=cos 『α-(α-β)』=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. 又0<β<π2,所以β=π3.一点注意三角函数是定义域到值域的多对一的映射,时刻关注角的范围是防止增解的有效措施. 两个技巧1.拆角、拼角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β= α+β2-α-β2,α-β2=(α+β2)-(α2+β). 2.化简技巧:切化弦,“1”的代换等. 三种变化1.变角:设法沟通所求角与已知角之间的关系.2.变名:尽可能减少函数名称,其方法是“弦切互化”、“升幂与降幂”等. 3.变式:对式子变形一般要尽可能有理化、整式化、降低次数等.从近两年的高考试题来看,和差角公式、二倍角公式是高考的热点,常与三角函数式的求值、化简交汇命题.题型全面,难度中低档,源于教材,主要考查公式的灵活运用,三角恒等变换能力以及化归转化等数学思想.规范解答之五 三角函数的给值求值问题(12分)(2012·广东高考)已知函数f (x )=A cos(x 4+π6),x ∈R ,且f (π3)= 2.(1)求A 的值;(2)设α,β∈『0,π2』,f (4α+43π)=-3017,f (4β-23π)=85,求cos(α+β)的值.『规范解答』 (1)由f (π3)=2得A cos(π12+π6)=2,2分即A ·cos π4=2,∴A =2.4分(2)由(1)知f (x )=2cos(x 4+π6).由⎩⎨⎧f (4α+43π)=-3017,f (4β-23π)=85,得⎩⎨⎧2cos (α+π3+π6)=-3017,2cos (β-π6+π6)=85,6分解得⎩⎨⎧sin α=1517,cos β=45.8分∵α,β∈『0,π2』,∴cos α=1-sin 2α=817,sin β=1-cos 2β=35.10分∴cos(α+β)=cos αcos β-sin αsin β=817×45-1517×35=-1385.12分『解题程序』 第一步:根据f (π3)=2求A 的值;第二步: 根据f (4α+43π)=-3017,f (4β-23π)=85,求sin α、cos β;第三步:求cos α,sin β的值;第四步:根据两角和的余弦公式求cos(α+β).易错提示:(1)在利用诱导公式求sin α时,符号出错. (2)在利用两角和的余弦公式时,公式记忆不准确,导致失误.防范措施:(1)在利用诱导公式时,先判断角的范围,确定三角函数值的符号,再写出结果.(2)对于两角和与差的余弦公式,应特别注意符号的差别,防止出错.1.(2012·陕西高考)设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于( ) A.22 B.12C .0D .-1 『解析』 a =(1,cos θ),b =(-1,2cos θ). ∵a ⊥b ,∴a ·b =-1+2cos 2θ=0, ∴cos 2θ=2cos 2θ-1=0. 『答案』 C2.(2012·江西高考)若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.12『解析』 由tan θ+1tan θ=sin θcos θ+cos θsin θ=1sin θcos θ=4,得sin θcos θ=14,则sin 2θ=2sin θcos θ=2×14=12.『答案』 D。
§4.5 两角和与差的正弦、余弦、正切公式知识梳理:1.两角和与差的余弦、正弦、正切公式cos(α-β)= (C (α-β));cos(α+β)= (C (α+β)); sin(α-β)= (S (α-β));sin(α+β)= (S (α+β)); tan(α-β)= (T (α-β));tan(α+β)= (T (α+β)). 2.二倍角公式sin2α= cos2α= = = ;tan2α= .3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为tan α±tan β= 试一试1.已知α∈R ,sin α+2cos α=102,则tan2α= .2.若sin α+cos αsin α-cos α=12,则tan2α= .3.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为 .考点一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为. (2)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)=.变式 (1)若α∈(π2,π),tan(α+π4)=17,则sin α=.(2)计算:1+cos20°2sin20°-sin10°(1tan5°-tan5°)=.题型二 三角函数公式的灵活应用例2 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为.题型三 三角函数公式运用中角的变换例3 (1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=,cos β=.课堂练习:1.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4= .2.已知tan α=4,则1+cos2α+8sin 2αsin2α的值为 .3.(2013·重庆)4cos50°-tan40°= .4.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是 .5.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.两角和与差的正弦、余弦、正切公式作业1. 已知α∈⎝⎛⎭⎫-π2,0,cos α=35,则tan ⎝⎛⎭⎫α+π4=________.2.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=_______.3.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=_______.4.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α的值为_______.5.函数y =sin(πx +φ)(φ>0)的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,记∠APB =θ,则sin2θ的值是_______.6. .(2013·浙江高考改编)已知α∈R ,sin α+2cos α=102,则tan 2α=________. 7. 3tan12°-3(4cos 212°-2)sin12°=________.8. (1)若tan2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=.(2)(2014·课标全国Ⅰ改编)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则2α-β=.9.已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.10. 已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4).(1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围.§4.5 两角和与差的正弦、余弦、正切公式知识梳理:1.两角和与差的余弦、正弦、正切公式cos(α-β)= (C (α-β));cos(α+β)= (C (α+β)); sin(α-β)= (S (α-β));sin(α+β)= (S (α+β)); tan(α-β)= (T (α-β));tan(α+β)= (T (α+β)). 2.二倍角公式sin2α= cos2α= = = ;tan2α= .3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为 tan α±tan β=试一试1.已知α∈R ,sin α+2cos α=102,则tan2α=. 答案 -34解析 ∵sin α+2cos α=102, ∴sin 2α+4sin αcos α+4cos 2α=52.化简得:4sin2α=-3cos2α, ∴tan2α=sin2αcos2α=-34. 2.若sin α+cos αsin α-cos α=12,则tan2α=.答案 34解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan2α=2tan α1-tan 2α=34.3.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为. 答案 1解析 ∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin [(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin [(x +φ)-φ]=sin x , ∴f (x )的最大值为1.考点一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为. (2)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)=.答案 (1)-3 (2)539解析 (1)由根与系数的关系可知 tan α+tan β=3,tan αtan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.(2)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2).∵0<α<π2,则π4<π4+α<3π4, ∴sin(π4+α)=223.又-π2<β<0,则π4<π4-β2<π2, 则sin(π4-β2)=63.故cos(α+β2)=13×33+223×63=539.思维升华 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.变式 (1)若α∈(π2,π),tan(α+π4)=17,则sin α=.(2)计算:1+cos20°2sin20°-sin10°(1tan5°-tan5°)=.答案 (1)35 (2)32解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)原式=2cos 210°4sin10°cos10°-sin10°·cos 25°-sin 25°sin5°cos5°=cos10°2sin10°-sin20°sin10°=cos10°-2sin20°2sin10°=cos10°-2sin (30°-10°)2sin10°=cos10°-2sin30°cos10°+2cos30°sin10°2sin10°=32. 题型二 三角函数公式的灵活应用例2 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为.答案 (1)cos α (2) 3 解析 (1)原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)4cos 2α2.因为α∈(0,π),所以cos α2>0,所以原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)2cosα2=(cos α2+sin α2)·(cos α2-sin α2)=cos 2α2-sin 2α2=cos α.(2)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C 2=π3,tan A +C 2=3,所以tan A 2+tan C 2+3tan A 2tan C2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2 =3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C2= 3. 题型三 三角函数公式运用中角的变换例3 (1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=,cos β=.(2)(2013·课标全国Ⅱ改编)已知sin2α=23,则cos 2⎝⎛⎭⎫α+π4=. 答案 (1)-1010 95010 (2)16解析 (1)∵α,β∈(0,π2),从而-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010,cos(α-β)=31010. ∵α为锐角,sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050. (2)因为cos 2⎝⎛⎭⎫α+π4=1+cos2⎝⎛⎭⎫α+π42=1+cos ⎝⎛⎭⎫2α+π22=1-sin2α2,所以cos 2⎝⎛⎭⎫α+π4=1-sin2α2=1-232=16.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.变式 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β=. (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是.答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,7ππ4方法与技巧 1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos2α2,sin 2α=1-cos2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通. 2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. 3.在三角求值时,往往要估计角的范围后再求值.课堂练习:1.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4=. 答案322解析 因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以 tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322.2.已知tan α=4,则1+cos2α+8sin 2αsin2α的值为.答案654解析 1+cos2α+8sin 2αsin2α=2cos 2α+8sin 2α2sin αcos α,∵tan α=4,∴cos α≠0,分子、分母都除以cos 2α得2+8tan 2α2tan α=654.3.(2013·重庆)4cos50°-tan40°=. 答案3解析 4cos50°-tan40°=4sin40°cos40°-sin40°cos40°=2sin80°-sin40°cos40°=2sin (50°+30°)-sin40°cos40°=3sin50°+cos50°-sin40°cos40°=3sin50°cos40°= 3.4.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是.答案 -1解析 cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x )=3cos(x -π6)=-1.10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310.两角和与差的正弦、余弦、正切公式作业1. 已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos α=35,则tan ⎝⎛⎭⎪⎫α+π4=________. [解析] 由α∈⎝⎛⎭⎪⎫-π2,0,cos α=35,得sin α=-1-cos 2α=-45,tan α=sin αcos α=-43,tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=tan α+11-tan α =-43+11+43=-17. [答案] -172.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=. 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β, cos β(cos α-sin α)+sin β(cos α-sin α)=0, 即(cos β+sin β)(cos α-sin α)=0. 又α、β为锐角,则sin β+cos β>0, ∴cos α-sin α=0,∴tan α=1.3.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=.答案7210解析 因为sin2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2),所以cos2θ=1-sin 22θ=35,所以sin(2θ+π4)=sin2θcos π4+cos2θsin π4=45×22+35×22=7210.4.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α的值为. 答案3解析 ∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14, ∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.5.函数y =sin(πx +φ)(φ>0)的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,记∠APB =θ,则sin2θ的值是.答案1665PD =1,根据函数的图象,可得AD =12,BD =32.在Rt △APD 和Rt △BPD 中,sin ∠APD =15,cos ∠APD =25,sin ∠BPD =313,cos ∠BPD =213.所以sin θ=sin(∠APD +∠BPD )=865,cos θ=cos(∠APD +∠BPD )=165,故sin2θ=2sin θcos θ=2×865×165=1665.6. .(2013·浙江高考改编)已知α∈R ,sin α+2cos α=102,则tan 2α=________.[解析] 把条件中的式子两边平方,得sin 2α+4sin αcos α+4cos 2α=52,即3cos 2α+4sin αcos α=32,所以3cos 2α+4sin αcos αcos 2α+sin 2α=32,所以3+4tan α1+tan 2α=32,即3tan 2α-8tan α-3=0,解得tan α=3或tan α=-13,所以tan 2α=2tan α1-tan 2α=-34. [答案] -347.3tan12°-3(4cos 212°-2)sin12°=.答案 -4 3解析 原式=3sin12°cos12°-32(2cos 212°-1)sin12°23⎝⎛⎭⎫12sin12°-32cos12°cos12°=23sin (-48°)2cos24°sin12°cos12°=-23sin48°sin24°cos24° =-23sin48°12sin48°=-4 3.8. (1)若tan2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=.(2)(2014·课标全国Ⅰ改编)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则2α-β=.解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0,解得tan θ=-12或tan θ= 2. ∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故原式=1+121-12=3+2 2.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π-α),得α-β=π-α,∴2α-β=π2.9.已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.(1)解 ∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45,两式相加得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2,∴[f (β)]2-2=4sin 2π4-2=0.10. 已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4).(1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围.解 (1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4· cos ⎝⎛⎭⎫x +π4 =1-cos2x 2+12sin2x +sin ⎝⎛⎭⎫2x +π2 11=12(sin2x +cos2x )+12. 由tan α=2,得sin2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45.cos2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以,f (α)=12(sin2α+cos2α)+12=35.(2)由(1)得f (x )=12(sin2x +cos2x )+12=22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤5π4. 所以-22≤sin ⎝⎛⎭⎫2x +π4≤1,0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12. 11. 10.已知f (x )=-3sin 2x +sin x cos x ,(1)求f ⎝ ⎛⎭⎪⎫25π6的值;(2)设α∈(0,π),f ⎝ ⎛⎭⎪⎫α2=14-32,求sin α的值. [解] f (x )=-3sin 2x +sin x cos x =-3×1-cos 2x 2+12sin 2x =-32+12sin 2x +32cos 2x =-32+sin ⎝ ⎛⎭⎪⎫2x +π3,(1)f ⎝ ⎛⎭⎪⎫25π6=-32+sin ⎝ ⎛⎭⎪⎫25π3+π3=-32+sin ⎝ ⎛⎭⎪⎫8π+2π3=-32+sin 2π3=-32+32=0.(2)f ⎝ ⎛⎭⎪⎫α2=-32+sin ⎝ ⎛⎭⎪⎫α+π3=14-32, ∴sin ⎝ ⎛⎭⎪⎫α+π3=14. ∵α∈(0,π),∴α+π3∈⎝ ⎛⎭⎪⎫π3,4π3,又0<sin ⎝ ⎛⎭⎪⎫α+π3=14<12, ∴α+π3∈⎝ ⎛⎭⎪⎫5π6,4π3. ∴cos ⎝ ⎛⎭⎪⎫α+π3=-1-sin 2⎝ ⎛⎭⎪⎫α+π3=-1-⎝ ⎛⎭⎪⎫142=-154, ∴sin α=sin ⎝ ⎛⎭⎪⎫α+π3-π3=sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3 =14×12+154×32=1+358.。
两角和与差的正弦、余弦及正切公式应用
一、 知识梳理: (阅读教材必修4第124页—第135页)
(1)、两角和与差公式:
sin()=sincoscossin
cso()=coscossinsin
tan()=
(2)、二倍角公式:
Sin2=2sincos cos2=co- si=2 co-1=1-2 si
tan2=
(3)、和差倍的变形应用:
tan()=;
1=2 ;1+cos=2 ; 1-cos=2
(3)、辅助角公式:asin+bcos=sin(+)
常用结论:sin=2sin; sin=2sin;
二、 题型探究
探究一:和差公式的应用.
例1: 【2015高考新课标1,理2】o o o o sin 20cos10cos160sin10- =( )
(A )32-
(B )32
(C )12- (D )12 【答案】D 例2:【2015高考重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα-
=-( ) A 、1 B 、2 C 、3 D 、4
【答案】C
探究二:二倍角公式的应用
例3:【2015高考山东,理16】设()2sin cos cos 4f x x x x π⎛⎫=-
+ ⎪⎝⎭.求()f x 的单调区间;
探究三:辅助角公式的应用
例4:求函数y=的值域。
例5:求函数y= (>0),函数的图象与直线y=2的两个相邻交点的距离等于求函数的单调增区间。
探究四:公式的综合应用
例6:求函数f(x)=sinxcosx在上的最大值。
三、方法提升:
1、仔细分析角与角之间的关系是利用两角和与两角差的三角函数公式进行三角函数求值、
化简及证明的关键;
2、熟记、的结构特征和符号,掌握公式的正用和逆用和变形用的方法,注意整体思维,
不要乱套公式;
3、二倍角公式是和角公式的特例,体现了将一般化为特殊的基本数学思想方法,二倍角的
三角函数公式,可以起到转化作用,也可以起到升幂,降幂的作用;
4、在综合化简、求值、证明中,要注意三个角度思考问题,(1)、角的角度;(2)、函数名
称的角度;(3)、式子特点及运算角度。
四、反思感悟
五、课时作业
一、选择题:
1、已知tan=- ,那么的值等于(B )
A、-
B、-
C、
D、
2、已知cos(-) +sin= ,则sin(+)=( D )
B、C、 D、
3、函数y=cosx(sinx+cosx)的最小值为( C )
A、 B、 C、 D、2
4、“sin=”是“cos2”的(A )
A、充分而不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
5、若(-),cos (-)= ,=-,cos(+)=( C )
A 、
B 、-
C 、
D 、
6、若= ,则cos+=( C )
A 、
B 、- D 、
7、 =(C )
A 、
B 、 2 D 、
8.若sin θ+cos θ
sin θ-cos θ=2,则sin θcos θ的值是 ( B )
A .-310 B.310 C .±310 D.34
二、填空题
9.cos()= ,cos()=,则tantan= ; 10. cos() + sin() = ;
三、解答题
11. 【2015高考重庆,理18】 已知函数()2
sin sin 3cos 2f x x x x
π⎛⎫=-- ⎪⎝⎭ (1)求()f x 的最小正周期和最大值;
(2)讨论()f x 在2,63π
π⎡⎤
⎢⎥⎣⎦上的单调性.
12.已知tan= ,tan(=,求tan(
13.已知tan,tan是方程的两个根,求下例各式的值:(1)、tan(
(2)、
(3)、。