高考数学 题型全归纳 正弦定理的变形应用典型例题
- 格式:doc
- 大小:68.56 KB
- 文档页数:1
2020年高考数学:正弦定理的常见变形及推广(1)已知△ABC 中,∠A =60︒,a ,则++sin +sin +sin a b cA B C=A .1B .2C .D .无法求解(2)已知△ABC 中,∠B =45︒,b =A . BCD .无法求解(3)在ABC △中,若::A B C =1∶2∶3,则a ∶b ∶c =A .1∶2∶3B .3∶2∶1C .1 2D .2∶1【参考答案】(1)B ;(2)B ;(3)C . 【试题解析】(1)根据正弦定理的变形,可得2sin sin sin sin a b c aA B C A++==++.故选B .(2)根据正弦定理的推广,可得2sin sin 45b R B ===︒,即R =,故△ABC ,故选B .(3)设A =k ,B =2k ,C =3k ,由++180A B C ︒=,得6k =180°,k =30°,∴A =30°,B =60° ,C =90°,∴a ∶b ∶c =sin A ∶sin B ∶sin C =12.故选C . 【解题必备】正弦定理的常见变形及推广如下: (1)sin sin sin ,,,sin sin ,sin sin ,sin sin sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c======. (2)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++.(3)::sin :sin :sin a b c A B C =.(4)正弦定理的推广:2sin sin sin a b cR A B C===,其中R 为ABC △外接圆的半径. (5)===2sin sin sin a b c R A B C的两种变形的应用: ①(边化角)2sin ,2sin ,2sin a R A b R B c R C ===; ②(角化边)sin ,sin ,sin 222a b c A B C R R R===. 熟记正弦定理的变形,可使解题过程更加简捷,从而达到事半功倍的效果.1.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若60A =︒,a =ABC△的外接圆的面积为 A .2πB .23π C .πD .4π2.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若ABC △的外接圆的半径是3,3a =,则A =A .30︒B .60︒C .60︒或120︒D .30︒或150︒3.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若sin cos cos A B Ca b c==,则ABC △中最长的边是 A .a B .bC .cD .b c 或4.已知ABC △的外接圆的半径R =cm ,A =60°,则BC 边的长为______________ cm .1.【答案】C 【解析】由2sin aR A=得1R =,所以ABC △的外接圆的面积为π,故选C . 2.【答案】D【解析】根据正弦定理,得2sin a R A =,31sin 262a A R ===, ∵0180A <<︒︒,∴30A =︒或150A =︒.故选D . 3.【答案】A【解析】由正弦定理可知sin cos B B =,sin cos C C =,所以45B C ==︒, 故90A =︒,所以a 为最长的边.故选A . 4.【答案】9【解析】根据正弦定理的推广可知2sin BCR A=,所以2sin BC R A =9==cm .。
2024全国高考真题数学汇编正弦定理与余弦定理一、单选题1.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A B C D 二、解答题2.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.3.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .4.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.5.(2024北京高考真题)在ABC 中,,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.参考答案1.C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,由正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.2.(1)4(3)5764【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以sin 16B =,再根据正弦定理得sin sin a b A B =,即4sin A =sin 4A =,法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin 4A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin B =因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()9157cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin 16B ===,所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=3.(1)π3B =(2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===因为()0,πC ∈,所以sin 0C >,从而sin 2C =,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而,a b ===,由三角形面积公式可知,ABC的面积可表示为21113sin 222228ABC S ab C c c ==⋅= ,由已知ABC的面积为32338c =所以c =4.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 122A A +=,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A得到:224cos 30(2cos 0A A A -+=⇔=,解得cos 2A =,又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan 3A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=,又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,2222)sin 211t t A A t t-+==+++,整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=,由正弦定理可得,sin sin sin a b cA B C==,即2ππ7πsin sin sin 6412bc==,解得b c ==故ABC的周长为2+5.(1)2π3A =;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角,则cos 0B ≠,则2sin 7B =,则7sin sin sin b a BA A ==,解得sin 2A =,因为A 为钝角,则2π3A =.(2)选择①7b =,则sin 7B ==2π3A =,则B 为锐角,则3B π=,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin B ,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B⎛⎫=+=+=+ ⎪⎝⎭131142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C,解得sin 14C =,因为C为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭111142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7522ABC S ac B ==⨯⨯=△。
高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。
6.4.3.2正弦定理一、概念1.正弦定理:设ABC ∆的三个内角C B A ,,所对的边长分别为c b a ,,,外接圆的半径为R ,则R CcB b A a 2sin sin sin === 证明:2.正弦定理的变形(1)A R a sin 2=;B R b sin 2=;C R c sin 2= (2)=A sin R a 2;=B sin R b 2;=C sin Rc 2 (3)c b a C B A ::sin :sin :sin =(4)CB A cb a Cc B b A a sin sin sin sin sin sin ++++=== (5)C A c B A b a sin sin sin sin ==;C B c A B a b sin sin sin sin ==;ACa B Cbc sin sin sin sin == 3.三角形的面积公式:设ABC ∆的角C B A ,,所对的边长分别为c b a ,,,则ABC ∆的面积c b a ABC ch bh ah S 212121===∆(其中c b a h h h ,,分别为边c b a ,,上的高)B ca A bcC ab sin 21sin 21sin 21=== C BA cBC A b A C B a sin 2sin sin sin 2sin sin sin 2sin sin 222=== C B A R sin sin sin 22=(其中R 是ABC ∆的外接圆半径)R abc 4= )(21c b a r ++=(其中r 是ABC ∆的内切圆半径) 22)()(21AC AB AC AB ⋅-= ))()((c p b p a p p ---=(海伦公式)(其中p 为半周长2cb a p ++=) 特别地,若设点),(),,(2211y x B y x A ,则122121y x y x S OAB -=∆ 4.三角形解的个数ABC ∆中,已知b a ,和A 时,三角形的解得情况如下:A 为锐角 A 为钝角图形关系式 A b a sin <A b a sin =b a A b <<sinb a ≥b a ≥解的个数 无解一解两解一解一解例1.证明角平分线定理:ABC ∆中,AD 是角内A 或其外角的平分线,则CDBDAC AB =题型一 已知两角和一边,解三角形例2.在ABC ∆中,已知015=A ,045=B ,33+=c ,解这个三角形小结:已知三角形的两角及一边,解三角形的步骤: ①先由内角和定理求出第三个角; ②再用正弦定理另外两边.跟踪训练:在ABC ∆中,已知030=A ,0105=C ,10=a ,解这个三角形题型二 已知两边和其中一边的对角,解三角形 例2.在ABC ∆中,已知030=B ,2=b ,2=c ,解这个三角形小结:(1)已知三角形的两边及一边所对的角,解三角形的步骤: 解法1:①先由正弦定理求另外一边所对的角(注意大边对大角); ②再用内角和定理求第三个角; ③由正弦定理求第三边.解法2:①由已知角的余弦定理得到第三边的方程,解出第三边(注意大角对大边) ②再用余弦定理或正弦定理求出第二个角; ③用内角和定理求第三个角. 跟踪训练:在ABC ∆中,已知3=a ,2=b ,045=B ,解这个三角形题型三 判断三角形解得个数例3.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若3=a ,4=b ,030=A ,则此三角形( )A.有一解B.有两解C.无解D.不确定跟踪训练1.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若2=b ,4=c ,060=B ,则此三角形( )A.有一解B.有两解C.无解D.不确定跟踪训练2.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若18=a ,20=b ,0150=A ,则此三角形( )A.有一解B.有两解C.无解D.不确定跟踪训练 3.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,根据下列条件,判断三角形解得情况,其中正确的有①8=a ,16=b ,030=A ,有一个解; ②18=b ,20=c ,060=B ,有两个解 ③5=a ,2=c ,090=A ,无解; ④30=a ,25=b ,0150=A ,有一个解;题型四 判断三角形的形状例4.ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若22tan tan ba B A =,试判断三角形的形状小结:根据已知条件判断三角形形状,通常有两种思路:(1)化边为角:根据正弦定理把已知条件中的边角混合关系化为角的关系,再根据三角恒等变换化简,进而确定三角形的形状(2)化角为边:根据正弦定理和余弦定理把已知条件中的边角混合关系化为边的关系,再根据代数运算化简,进而确定三角形的形状跟踪训练1.ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若A a B c C b sin cos cos =+,试判断三角形的形状小结:三角形的射影定理:ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,则B cC b a cos cos +=,A c C a b cos cos +=,A b B a c cos cos +=注:a c b B c C b 22cos cos -=-,b c a A c C a 22cos cos -=-,cb a A b B a 22cos cos -=-跟踪训练2.ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若A b a B a c cos )2(cos -=-,试判断三角形的形状总结:三角形中常见的结论:设ABC ∆的角C B A ,,所对的边长分别为c b a ,,,则 (1)三角形的内角和定理:π=++C B A (2)三角形的大边对大角,大角对大边(3)锐角三角形的任何一个内角的正弦都大于其余角的余弦(4)平行四边形的性质:平行四边形的两条对角线的平方和等于四条边的平方和 (5)中线长定理:设ABC ∆的边c b a ,,上的中线分别为CF BE AD ,,,则222)(221a c b AD -+=,222)(221b c a BE -+=,222)(221c b a CF -+= (6)角平分线定理:ABC ∆中,AD 是角A 或其外角的平分线,则CD BDAC AB =(7)(1)=+)sin(B A ,=+)cos(B A ,=+)tan(B A ,=+2sinB A ,=+2cos B A ,=+2tan BA (8)B A B A =⇔-)sin(⇔ABC ∆为等腰三角形 (9)B A B A =⇔=2sin 2sin 或2π=+B A ⇔ABC ∆为等腰或直角三角形(10)B A b a B A >⇔>⇔>sin sin B A cos cos <⇔(11)三角形中的射影定理:B cC b a cos cos +=,A c C a b cos cos +=,A b B a c cos cos +=注:a c b B c C b 22cos cos -=-,b c a A c C a 22cos cos -=-,cb a A b B a 22cos cos -=-(12)ABC Rt ∆的内切圆半径22c b a c b a S r ABC -+=++=∆,旁切圆半径2'c b a r ++=(13)1tan tan >B A ⇔ABC ∆为锐角三角形;1tan tan =B A ⇒ABC ∆为直角三角形; 1tan tan <B A ⇔ABC ∆为锐角三角形;(14)若2sin sin sin 222<++C B A ,则ABC ∆为钝角三角形 若2sin sin sin 222=++C B A ,则ABC ∆为直角三角形 若2sin sin sin 222>++C B A ,则ABC ∆为锐角三角形(15)若c b a ,,成等差数列,则①C B A sin ,sin ,sin 也成等差数列;②30π≤<B(16)若c b a ,,成等比数列,则30π≤<B(17)ABC ∆中的恒等式:①1cos cos cos 2sin 2sin 2sin 4-++==C B A CB A R r ②2cos 2cos 2cos 4sin sin sin cB AC B A =++③2cos 2sin 2sin 4sin sin sin cB AC B A =-+④C B A C B A sin sin sin 42sin 2sin 2sin =++ ⑤1cos cos cos 42cos 2cos 2cos --=++C B A C B A ⑥C B A C B A tan tan tan tan tan tan =++⑦12tan 2tan 2tan 2tan 2tan 2tan=++AC C B B A ⑧2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑨1cot cot cot cot cot cot =++A C C B B A。
正弦定理和余弦定理应用举例题组一距 离 问 题1.一船自西向东航行,上午10时到达灯塔P 的南偏西75°、距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船航行的速度为( )A.海里/时 B .34海里/时17626C.海里/时 D .34海里/时17222解析:如图.由题意知∠MPN =75°+45°=120°,∠PNM =45°.在△PMN 中,由正弦定理,得sin120sin 45MN PM = ,∴MN.又由M 到N 所用时间为14-10=4小时,∴船的航行速度v== (海里/时).答案:A2.一船以每小时15km 的速度向东航行,船在A 处看到一灯塔M 在北偏东60°方向,行驶4h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.解析:如图,依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得=,解得BM=30 km.60sin45°BMsin30°2答案:3.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.解:在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .①在△BCD 中,由正弦定理可得BC ==a . ②a sin105°sin45°3+12在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A 、B 两点之间的距离为AB ==a .AC 2+BC 2-2AC ·BC ·cos30°22题组二高 度 问 题4.据新华社报道,强台风“珍珠”在广东饶平登陆.台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是 ( )A.米 B .10米 C.米 D .20米2063610632解析:如图,设树干底部为O ,树尖着地处为B ,折断点为A ,则∠ABO=45°,∠AOB=75°,∴∠OAB=60°.由正弦定理知,20sin 45sin 60AO ,∴AO= (米).答案:A5.在一个塔底的水平面上某点测得该塔顶的仰角为θ,由此点向塔底沿直线行走了30 m ,测得塔顶的仰角为2θ,再向塔底前进103m ,又测得塔顶的仰角为4θ,则塔的高度为________.解析:如图,依题意有PB=BA=30,PC=BC=.在三角形BPC 中,由余弦定理可得cos2θ,所以2θ=30°,4θ=60°,在三角形PCD 中,可得PD =PC ·sin4θ=15(m).答案:15 m6.某人在山顶观察地面上相距2 500m 的A 、B 两个目标,测得目标A 在南偏西57°,俯角为30°,同时测得B 在南偏东78°,俯角是45°,求山高(设A 、B 与山底在同一平面上,计算结果精确到0.1 m).解:画出示意图(如图所示)设山高PQ =h ,则△APQ 、△BPQ 均为直角三角形,在图(1)中,∠PAQ =30°,∠PBQ =45°.∴AQ =tan 30PQ = ,BQ =tan 45PQ =h .在图(2)中,∠AQB =57°+78°=135°,AB =2 500,所以由余弦定理得:AB 2=AQ 2+BQ 2-2AQ ·BQ cos ∠AQB ,即2 5002h )2+h 2h ·h )h 2,∴h984.4(m).答:山高约984.4 m.题组三角 度 问 题7.在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,如果c =a ,B =30°,那么3角C 等于 ( )A .120°B .105°C .90°D .75°解析:∵c =a ,∴sin C =sin A =sin(180°-30°-C )=sin(30°+C )3333=(sin C +cos C ),33212即sin C =-cos C .∴tan C =-.又C ∈(0,180°),33∴C =120°.答案:A8.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定解析:设增加同样的长度为x ,原三边长为a 、b 、c ,且c 2=a 2+b 2,a +b >c 新的三角形的三边长为a +x 、b +x 、c +x ,知c +x 为最大边,其对应角最大.而(a +x )2+(b +x )2-(c +x )2=x 2+2(a +b -c )x >0,由余弦定理知新的三角形的最大角的余弦为正,则为锐角,那么它为锐角三角形.答案:A题组四正、余弦定理的综合应用9.有一山坡,坡角为30°,若某人在斜坡的平面上沿着一条与山坡底线成30°角的小路前进一段路后,升高了100米,则此人行走的路程为 ( )A .300 mB .400 mC .200 mD .200 m3解析:如图,AD 为山坡底线,AB 为行走路线,BC 垂直水平面.则BC=100,∠BDC=30°,∠BAD=30°,∴BD=200,AB=2BD=400 米.答案:B10.线段AB 外有一点C ,∠ABC =60°,AB =200 km ,汽车以80km/h 的速度由A 向B 行驶,同时摩托车以50km/h 的速度由B 向C 行驶,则运动开始________h 后,两车的距离最小.解析:如图所示:设th 后,汽车由A 行驶到D ,摩托车由B 行驶到E ,则AD =80t ,BE =50t .因为AB =200,所以BD =200-80t ,问题就是求DE 最小时t 的值.由余弦定理:DE 2=BD 2+BE 2-2BD ·BE cos60°=(200-80t )2+2500t 2-(200-80t )·50t=12900t 2-42000t+40000.当t =7043时DE 最小.答案:704311.如图,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.解:因为CP ∥OB ,所以∠CPO =∠POB =60°-θ,∴∠OCP =120°.在△POC 中,由正弦定理得=,∴=,所以CP =sinθ.OP sin ∠PCO CP sin θ2sin120°CP sin θ43又Error!=,∴OC =sin(60°-θ).2sin120°43因此△POC 的面积为S (θ)=CP ·OC sin120°=·sin θ·sin(60°-θ)×1212434332=sin θsin(60°-θ)=sin θ(cos θ-sin θ)43433212=,θ∈(0°,60°).23所以当θ=30°时,S (θ)取得最大值为.3312.(2010·宁波模拟)某建筑的金属支架如图所示,根据要求AB 至少长2.8 m ,C 为AB 的中点,B 到D 的距离比CD 的长小0.5 m ,∠BCD =60°,已知建造支架的材料每米的价格一定,问怎样设计AB ,CD 的长,可使建造这个支架的成本最低?解:设BC =am (a ≥1.4),CD =bm ,连接BD .则在△CDB 中,(b -)2=b 2+a 2-2ab cos60°.12∴b =.a 2-14a -1∴b +2a =+2a .a 2-14a -1设t =a -1,t ≥-1=0.4,2.82则b +2a =Error!+2(t +1)=3t ++4≥7,34t 等号成立时t =0.5>0.4,a =1.5,b =4.答:当AB =3 m ,CD =4 m 时,建造这个支架的成本最低.。
正弦定理1. 正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即公式适用于任意三角形。
2. 正弦定理的变形3. 判断三角形解的问题 “已知a,b 和A,解三角形”①当sin B >1,无解 ②sin B =1,一解 ③sinB <1,两个解(其中B 可能为锐角也可能为钝角,具体是锐角还是钝角还是两个都可以,要根据“大边对大角”及“三角形内角和等于180”来判断)题型一:已知两角及任意一边解三角形1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A. 6 B. 2 C. 3 D .2 62.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12C .2 D.14变形:题型二:已知两边及一边对角解三角形1.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对2.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.4 .在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 5.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.6. 判断满足下列条件的三角形个数 (1)b=39,c=54,︒=120C 有________组解(2)a=20,b=11,︒=30B 有________组解(3)b=26,c=15,︒=30C 有________组解(4)a=2,b=6,︒=30A 有________组解7.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.8.在△ABC 中,B=4π,b=2,a=1,则A 等于 .题型三:正弦定理的边角转化1.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定2.在△ABC 中,若cos A cos B =b a,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 3.在△ABC 中,如果Cc B b A a tan tan tan ==,那么△ABC 是( ) A.直角三角形 B.等边三角形 C.等腰直角三角形 D.钝角三角形 4. 在△ABC 中,已知b B a 3sin 32=,且cosB=cosC ,试判断△ABC 形状。
正弦定理和余弦定理的应用典型例题:例1. (2012年上海市理5分)在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是 ▲A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【答案】C 。
【考点】正弦定理和余弦定理的运用。
【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B R b A R a ===代入得到222a b c +<。
由余弦定理的推理得222cos 02a b c C ab+-=<。
∴C 为钝角,即该三角形为钝角三角形。
故选C 。
例2. (2012年广东省文5分)在ABC ∆中,若°60A ∠=,°45B ∠=,32BC =,则=AC 【 】A . 43B . 23C . 3D . 32【答案】B 。
【考点】正弦定理的应用。
【解析】由正弦定理得sin sin BC ACA B=,即0032sin 60sin 45AC =,解得=23AC 。
故选B 。
例3. (2012年湖北省文5分)设△ABC 的内角,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且>>A B C ,320cos =b a A ,则sin :sin :sin A B C 为【 】 A.4∶3∶2 B.5∶6∶7 C.5∶4∶3 D.6∶5∶4 【答案】D 。
【考点】正弦定理和余弦定理的应用。
【解析】∵,,a b c 为连续的三个正整数,且>>A B C ,∴a b c >>。
∴2,1=+=+a c b c ①。
又∵已知320cos =b a A ,∴3cos 20bA a=②。
由余弦定理可得222cos 2+-=b c a A bc ③。
则由②③可得2223202b b c a a bc+-=④。
联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b 。
2020年高考理科数学 《解三角形》题型归纳与训练【题型归纳】题型一 正弦定理、余弦定理的直接应用例1ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin2BA C +=. (1)求cos B(2)若6a c +=,ABC ∆面积为2,求b . 【答案】(1)15cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin2BB =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABC S ∆=,则172ac =. 由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出例2 ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = . 【答案】π3【解析】1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=.【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。
【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。
例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.【答案】34【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B=π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 【易错点】大边对大角,应注意角的取值范围【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。
正弦定理一、考点、热点回顾(一)正弦定理及其变形1. 正弦定理:________=________=________=2R ,其中R 是三角形外接圆的半径. 2. 正弦定理的常用变形(1)a ∶b ∶c =________________;(2)a =__________,b =__________,c =__________; (3)sin A =________,sin B =__________,sin C =________;3. 三角形中边角的不等关系在三角形中,A >B >C ⇔ a >b >c ⇔ sinA >sinB >sinC 。
(二)正弦定理的应用:解三角形 1、 解三角形的概念2、 利用正弦定理解三角形利用正弦定理可解决两类解三角形问题: (1)已知两角及一边解三角形基本思路: 1)由三角形的内角和定理求出第三个角.2)由正弦定理公式的变形,求另外的两条边.(2)已知两边及其中一边的对角解三角形基本思路:1)由正弦定理求出另一已知边所对的角.2)由三角形的内角和定理求出第三个角. 3)由正弦定理公式的变形,求第三条边.(3)解三角形的解的情况在△ABC 中,已知a ,b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与射线AB 的公共点(除去顶点A )A 为锐角 A 为钝角或直角 图形关系式 a <b sin A a =b sin A b sin A <a <ba ≥b a >b a ≤b 解的个数无解一解两解一解一解无解(三)三角形的面积公式S △ABC =12ah =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·()()()p p a p b p c ---二、典型例题考点一、正弦定理概念及变形例1、已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a =________.变式训练1、(1)在△ ABC 中,若b =1,c =3,C =2π3,则a = .(2)在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C=________.考点二、已知两角及一边解三角形例2、在△ABC中,已知a=8,B=60°,C=75°,求A,b,c.变式训练2、(1)在△ABC中,若A=60°,B=45°,BC=32,则AC=() A.43B.2 3C. 3D.3 2(2)在△ABC中,A=45°,B=75°,c=2,则此三角形的最短边的长度是。
专题01:正弦定理常见题型题型一:正弦定理及辨析例1:1.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若sin cos A Ba b=,则B =( ) A .34πB .3π C .4π D .6π【答案】C 【解析】 【分析】 由正弦定理结合sin cos A Ba b=求得tan 1B =,即可求出B . 【详解】 由正弦定理可得sin sin cos A B B a b b==,则sin cos B B =,tan 1B =,又()0,B π∈,则4B π=.故选:C. 举一反三1.(多选)在ABC 中,角A ,B ,C 所对的边为a ,b ,c , 则下列说法正确的有( ) A .A :B :C = a :b :c B .sin sin sin sin a b c aA B C A++=++C .若A >B , 则a >bD .πA B C ++=【答案】BCD 【解析】 【分析】结合三角形的性质、正弦定理求得正确答案. 【详解】在三角形中,大角对大边,所以C 选项正确. 三角形的内角和为π,所以D 选项正确.由正弦定理得::sin :sin :sin a b c A B C =,所以A 选项错误. 设sin sin sin a b ck A B C===, 则()sin sin sin sin sin sin sin sin sin sin k A B C a b c a k A B C A B C A++++===++++,B 选项正确.故选:BCD2.在ABC 中,15,10,60a b A ===︒,则sin B =( )ABCD【答案】A 【解析】 【详解】由正弦定理可知:sin sin sin a b B A B =⇒=故选:A题型二:正弦定理解三角形例2:1.(2015·山东·高考真题)在△ABC 中,105A ∠=︒,45C ∠=︒,AB =BC 等于______.【解析】 【分析】由和角正弦公式求sin105︒函数值,再应用正弦定理求BC 即可. 【详解】sin105sin(6045)sin 60cos 45cos 60sin 45︒=︒+︒=︒︒+︒︒=由正弦定理可知,sin sin AB BCC A=,∴sin sin AB A BC C ==2.(2016·江苏·高考真题)在ABC 中,AC=6,4cos .54B C π==,(1)求AB 的长;(2)求()6cos A π-的值.【答案】(1)2【解析】 【详解】试题分析:(1)利用同角三角函数的基本关系求sin B , 再利用正弦定理求AB 的长;(2)利用诱导公式及两角和与差正余弦公式分别求sin ,cos A A ,然后求cos().6A π-试题解析:解(1)因为4cos B=5,0B π<<,所以2243sin 1cos 1(),55B B =-=-= 由正弦定理知sin sin AC AB B C =,所以26sin 25 2.3sin 5AC CAB B⨯⋅===(2)在ABC 中,A B C π++=,所以,于是cos cos()cos()cos cos sin sin ,444A B C B B B πππ=-+=-+=-+又43cos ,sin ,55B B ==故42322cos 55A =-= 因为0A π<<,所以272sin 1cos A A =- 因此23721726cos()cos cos sin sin 6662A A A πππ--=+==举一反三1.(2012·湖南·高考真题(文))在△ABC 中,7,BC=2,B =60°,则BC 边上的高等于 A 3B 33C 36+D 339+【答案】B 【解析】 【详解】 7232127sin 60sin 7A A A =⇒==, 所以321sin sin()sin cos cos sin C A B A B A B =+=+= 则BC 边上的高3213377h C ===B . 2.(2018北京高考)在△ABC 中,a =7,b =8,cos B = –17.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.【答案】(1) ∠A =π3 (2) AC 33【解析】 【详解】分析:(1)先根据平方关系求sin B ,再根据正弦定理求sin A ,即得A ∠;(2)根据三角形面积公式两种表示形式列方程11sin 22ab C hb =,再利用诱导公式以及两角和正弦公式求sin C ,解得AC 边上的高.详解:解:(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =2431cos 7B -=.由正弦定理得sin sin a b A B = ⇒ 7sin A =8437,∴sin A =32.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A =311432727⎛⎫⨯-+⨯ ⎪⎝⎭=3314.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=33337142⨯=,∴AC 边上的高为332.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的. 题型三:正弦定理判定三角形解得个数例3:1.设在ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,若满足3,,6a b m B π===的ABC 不唯一,则m 的取值范围为( ) A .33⎝ B .3)C .132⎛ ⎝⎭D .1,12⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】根据正弦定理计算可得; 【详解】解:由正弦定理sin sin a b A B =12m=,所以m =, 因为ABC 不唯一,即ABC 有两解,所以566A ππ<<且2A π≠,即1sin 12A <<,所以12sin 2A <<,所以11122sin A <<m <<故选:A2.在ABC 中,若3b =,2c =,45B =,则此三角形解的情况为( ) A .无解 B .两解C .一解D .解的个数不能确定【答案】C 【解析】 【分析】求出sin C 的值,结合大边对大角定理可得出结论. 【详解】由正弦定理可得sin sin b c B C=可得2sin 2sin sin 33c B C B b ===<, 因为c b <,则C B <,故C 为锐角,故满足条件的ABC 只有一个. 故选:C. 举一反三1.在△ABC 中,3A π∠=,b =6,下面使得三角形有两组解的a 的值可以为( )A .4 B.C.D.【答案】C 【解析】 【分析】由正弦定理即可求解. 【详解】解:由题意,根据正弦定理有sin sin a bA B=,所以sin sin b A B a =,要使三角形有两组解,则sin sin 1b AB a=<,且a b <,即sin b A a b <<,所以6a <,所以a 的值可以为 故选:C .2.(多选)ABC 中,角A ,B ,C 所对的三边分别是a ,b ,c ,以下条件中,使得ABC 无解的是( )A .120a b A ===;B .45a b A ===;C .60;b A B ===D .,sin ,60c A B c ===, 【答案】ABD 【解析】 【分析】根据正余弦定理及三角形的性质分析解即可. 【详解】对于A ,大边对大角,而a <b ,无解; 对于B ,由正弦定理得sinB 1>,无解;对于C ,由cos A 可得sin A =a ,再由正弦定理或余弦定理可求出c ,有解;对于D ,由=c 和a ,通过余弦定理可得cos 0C =,与60C =矛盾,无解. 故选:ABD题型四:正弦定理求外接圆的半径例4:1.(2011·全国·高考真题(理))设向量,,a b c 满足2a b ==,2a b ⋅=-,,60a c b c --=︒,则c 的最大值等于A .4B .2CD .1【答案】A 【解析】 【详解】因为2a b ==,2a b ⋅=-,所以1cos ,2a b a b a b⋅==-, ,120a b =︒.如图所以,设,,OA a OB b OC c ===,则CA a c =-, C B b c =-,120AOB ∠=︒. 所以60ACB ∠=︒,所以180AOB ACB ∠+∠=︒,所以,,,A O B C 四点共圆. 不妨设为圆M ,因为AB b a =-,所以222212AB a a b b =-+=. 所以23AB =由正弦定理可得AOB ∆的外接圆即圆M 的直径为2R 4AB sin AOB==∠.所以当OC 为圆M 的直径时,c 取得最大值4. 故选A.点睛:平面向量中有关最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决. 2.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________ 211213【解析】 【分析】运用正弦定理及余弦定理可得解. 【详解】 根据余弦定理:22212cos 4922372BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯=, 得7BC =由正弦定理△ABC sin3=故答案为 举一反三1.(2022·湖北·鄂南高中模拟预测)ABC 的内角A B C 、、的对边分别为a b c 、、,且1,cos sin a b C c A ==-,则ABC 的外接圆半径为__________.【解析】 【分析】利用正弦定理可得sin sin cos sin sin B A C C A =-,进而可得34A π=,即得.【详解】1a =,则cos sin b a C c A =-,由正弦定理,得sin sin cos sin sin B A C C A =- 故()sin sin cos sin sin A C A C C A +=-,展开化简得:cos sin sin sin A C C A =-,()0,C π∈,sin 0C ≠, 故cos sin A A =-,()0,A π∈, 即34A π=,∴外接圆直径2R sin aA==,.2.(2022·河南·长葛市第一高级中学模拟预测(文))在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边若2a =,3b =,sin 2sin cos A B C =,则ABC 外接圆的半径为_____________.【解析】 【分析】利用正弦定理角化边求出cos C ,再根据余弦定理求出c ,进而求出外接圆半径.由正弦定理得,2cos a b C =,1cos 3C =, 由余弦定理得222222231cos 22233a b c c C ab +-+-===⨯⨯,解得3c =.又sin C =,所以外接圆半径12sin c R C =⋅=故答案为:8. 题型五:正弦定理边角互化例5:1.(2019·全国·高考真题(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】34π. 【解析】 【分析】先根据正弦定理把边化为角,结合角的范围可得. 【详解】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠得sin cos 0B B +=,即tan 1B =-,3.4B π∴=故选D . 【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在(0,)π范围内,化边为角,结合三角函数的恒等变化求角.2.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+ 【答案】(1)5π8; (2)证明见解析. 【解析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出.(1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =. (2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a cb bc a b c a a b c +--+-=+--+-,化简得:2222a b c =+,故原等式成立. 举一反三1.(2014·江西·高考真题(文))在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若32a b =,则2222sin sin sin B A A -的值为( )A .19B .13C .1D .72【答案】D 【解析】 【分析】根据正弦定理边化角求解即可. 【详解】由正弦定理有22222222sin sin 221sin B A b a b A a a --⎛⎫==- ⎪⎝⎭.又3322b a b a =⇒=, 故297212142b a ⎛⎫-=⨯-= ⎪⎝⎭.故选:D【点睛】本题主要考查了正弦定理边化角的问题,属于基础题.2.(2022·安徽·一模(理))在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin a c B =,则tan A 的最大值为( )A .1B .32C .43D .54 【答案】C【解析】【分析】 先由正弦定理化简得111tan tan C B +=,结合基本不等式求得tan tan 4B C ≥,再由正切和角公式求解即可.【详解】在ABC 中,sin a c B =,所以sin sin sin A C B =,又()sin sin A B C =+,整理得:sin cos cos sin sin sin B C B C B C +=,又sin sin 0B C ≠,得到111tan tan C B +=,因为角A 、B 、C 为锐角,故tan A 、tan B 、tan C 均为正数,故1≥tan tan 4B C ≥,当且仅当tan tan 2B C ==时等号成立, 此时tan tan tan tan 1tan tan()11tan tan 1tan tan 1tan tan B C B C A B C B C B C B C +⋅=-+=-=-=---⋅,当tan tan B C 取最小值时,1tan tan B C 取最大值,11tan tan B C -取最小值,故111tan tan B C-⋅的最大值为43, 即当tan tan 2B C ==时,tan A 的最大值为43. 故选:C .。