自组装单分子膜技术在金属防护中的应用
- 格式:pdf
- 大小:184.63 KB
- 文档页数:5
不同链长烷基硫醇自组装膜对银的防变色作用陈步荣;鲁文晔;陈蝶依;汤涛【摘要】Self-assembled monolayers (SAMs) of three alkanethiols on silver surface were prepared in ethanol solution.The properties of SAMs were investigated by contact angle measurement,electrochemicaltesting,accelerated tarnishing test and X-ray photoelectron spectroscopy (XPS).The results indicate that the hydrophobic SAMs of dodecanethiol (DT),hexa decanethiol (HDT) and octa decanethiol (ODT) were able to form on the surface of silver.And the SAMs had good protection against corrosion for the substrate.The ODT SAM had the best compactness,while the HDT SAM had the best anti-tarnishing effect.%将不同链长的烷基硫醇溶于乙醇,在银表面制备自组装膜.采用接触角测试、电化学试验、加速变色试验和X 射线光电子能谱(XPS)等方法来表征自组装膜的性能.结果表明:十二烷基硫醇(DT)、十六烷基硫醇(HDT)和十八烷基硫醇(ODT)都可以在银表面形成疏水性的自组装膜,对基体腐蚀起到良好的保护作用;ODT自组装膜的致密性最好,而HDT自组装膜的防变色效果最好.【期刊名称】《腐蚀与防护》【年(卷),期】2017(038)006【总页数】6页(P429-433,440)【关键词】烷基硫醇;自组装膜;银;防变色【作者】陈步荣;鲁文晔;陈蝶依;汤涛【作者单位】南京工业大学材料科学与工程学院,南京210009;南京工业大学材料科学与工程学院,南京210009;南京大学匡亚明学院,南京210023;南京工业大学材料科学与工程学院,南京210009【正文语种】中文【中图分类】TG172.3由于银具有良好的物理化学性能和美丽的金属光泽,在历史上常被用作货币和艺术品[1]。
一.引言1.1金属防腐蚀的重要意义金属材料是现代最重要的工程材料,人类社会的文明和发展与金属材料的使用、发展与进步有着极为密切的联系。
但是金属材料及其制品会受到各种不同形式的损坏,其中最重要、最常见的损坏形式腐蚀。
金属腐蚀问题存在于国民经济的各个领域,而且随着经济建设和科学技术的发展,腐蚀的危害越来越严重,对于国民经济的发展的制约作用越来越突出。
使得腐蚀科学在国民经济中所处的地位越来越重要。
据统计,人们每年冶炼出来的金属约有1/10被腐蚀破坏,相当于每年约有1/10 的冶炼厂因腐蚀的存在而做了无用功;而1/10 被腐蚀破坏的金属所殃及的金属制品的破坏,其损失要远远大于金属本身的价值。
据美国国家标准局(NBS)调查,1975年美国因腐蚀造成的损失高达700亿美元,即当年国民经济总产值(GNP)的4.2%;《光明日报》1999年1月20日报道,1997年因腐蚀给我国国民经济带来的损失高达2800亿人民币。
以上所说仅就经济损失而言,在有些领域,尤其在化学工业、石油化工、原子能等工业中,由于金属材料腐蚀造成的跑、冒、滴、漏,不仅造成大量的、宝贵而有限的资源与能源的严重浪费,还能使许多有害物质甚至放射性物质泄漏而污染环境,危害人民的健康,有的甚至会长期造成严重的后果;而由于金属腐蚀所造成的灾难性事故严重地威胁着人们的生命安全;许多局部腐蚀引起的事故,如氧脆和应力腐蚀断裂这一类的失效事故,往往会引起爆炸、火灾等灾难性恶果,在一定程度上威胁着人类的生存与发展,所以对于金属腐蚀问题的研究显得尤为重要。
1.2铝合金及其腐蚀机理铝合金是近代发展起来的一类重要的金属材料。
铝合金具有强度高、密度小、导电导热性强、力学性能优异、可加工性好等优点而广泛应用于化学工业、航空航天工业、汽车制造业、食品工业、电子、仪器仪表业以及海洋船舶工业等领域。
但是铝合金与其他金属一样,也面临着严重的腐蚀问题。
虽然在自然条件下,铝合金表面容易形成一层厚约4 nm 的自然氧化膜,但是这层膜多孔、不均匀且抗蚀性差,难以抵抗恶劣环境的腐蚀的。
分子自组装原理及应用【摘要】分子自组装在生物工程技术上的建模、分子器件、表面工程以及纳米科技领域已经有很广泛的应用。
在未来的几十年中,分子自组装作为一种技术手段将会在新技术领域产生巨大的影响。
在这篇文章里,我们介绍了分子自组装技术的定义、基本原理、分类、影响因素、表征手段等,并阐述了分子自组装技术目前的研究进展,展望了分子自组装技术的应用前景。
【关键词】分子自组装;自组装膜molecular self-assembly technology and itsresearch advances【abstract】numerous self assembling systems have been developed ranging from Models to the study of biotechnology,to molecular electronics,surface engineering,and nanotechnology。
In future decades, the molecules from the assembly as a technical means in the new technology will have a great influence. In this article, we introduce elements of the assembly definition, the basic principles, classifying, influence, the means of index, and describes the elements of technology from the assembly of the present development, the molecules from the assembly the future.【Key words】molecular self-assembly;self-assembled molecular monolayer1前言分子自组装是分子与分子在一定条件下,依赖非共价键分子间作用力自发连接成结构稳定的分子聚集体的过程。
聚合物自组装及其在材料科学中的应用随着材料科学技术的不断发展,聚合物自组装作为一种晶态材料的制备方法备受关注。
自组装是指利用分子之间的相互作用力,使它们自发的组合成一定的结构。
自组装的优点在于制备简单、低成本、高效率,且具有可控性。
聚合物自组装可以制备出各种形状、大小的孔道,因此应用广泛,例如在分离、催化、电子学、生物学等领域。
本文将介绍聚合物自组装及其在材料科学中的应用。
一、聚合物自组装的机理聚合物自组装是指由聚合物链内部或外部的相互作用力引导而组装形成一定的结构。
这些相互作用力包括疏水作用、静电作用、氢键作用、π-π作用和范德华力等。
其中疏水作用是最常见的一种相互作用力。
疏水作用指的是疏水性分子之间的相互作用力,即排除水分子而使分子之间相互靠拢。
在聚合物自组装中,通常利用疏水作用使链段相互靠拢而形成膜状结构。
静电作用是指由于分子电荷的不平衡而产生的相互作用力。
在聚合物自组装中,利用静电作用可以形成电弱相互作用的聚合物微胶束结构。
氢键作用是指含有氢原子的分子与弱碱性或强氧化物相互作用形成的相互作用力。
在聚合物自组装中,利用氢键作用可以形成氢键结构的聚合物微胶束或纳米粒子。
π-π作用是指由于pi电子云的重叠而形成的相互作用力。
在聚合物自组装中,利用π-π作用可以形成π-π堆积结构的聚合物纳米线。
范德华力是指两个或多个分子之间的瞬时极性引起的相互作用力。
在聚合物自组装中,利用范德华力可以形成范德华力结构的聚合物纳米粒子。
二、聚合物自组装的应用1. 分离聚合物自组装在分离领域中应用广泛。
一种应用是聚合物微胶束用于水中重金属污染物的吸附分离。
聚合物微胶束由于具有疏水性和静电性,可以吸附并分离水中的重金属离子,从而达到净化水体的目的。
2. 催化聚合物自组装在催化领域也有着广泛的应用。
一种应用是利用聚合物纳米粒子作为催化剂去除废水中的有机物。
聚合物纳米粒子具有高的比表面积和孔道,能够有效吸附和分解有机物,从而达到净化废水的目的。
金属的腐蚀与防护简介:金属是一种常见的材料,在各个领域中都有广泛应用。
然而,金属材料在使用过程中,容易受到腐蚀的影响,从而导致质量下降甚至失效。
本文将探讨金属腐蚀的原因、危害以及常见的防护措施。
一、腐蚀的原因金属腐蚀是指金属在特定环境下与所处介质发生反应,从而引起金属表面或内部的氧化、脱层、破损等现象。
主要原因如下:1. 化学反应:金属与介质中的氧气、水、酸等发生化学反应,形成金属氧化物或金属盐,从而破坏金属结构;2. 电化学反应:金属在电解质溶液中,作为阴阳极参与电化学反应,产生腐蚀电流,导致金属丧失;3. 生物腐蚀:微生物、海洋生物或土壤中的细菌、藻类等对金属表面进行化学作用,加速金属腐蚀;4. 物理因素:高温、高湿度、紫外线、机械刮擦等物理因素也会对金属产生腐蚀影响。
二、腐蚀的危害金属腐蚀带来的危害主要体现在以下几个方面:1. 结构破损:金属腐蚀导致金属结构受损,影响其使用寿命,甚至引发安全事故;2. 功能下降:腐蚀使金属表面变得不平整、粗糙,降低了其原有的功能,如电导性、导热性等;3. 资源浪费:腐蚀使金属材料减少,需要更多的资源进行修复和替换,增加了成本和能源消耗;4. 环境污染:金属腐蚀产生的废物、气体和废水会对环境造成污染,对植物和动物产生不良影响。
三、金属腐蚀的防护措施为了减少金属腐蚀的发生,需要采取一系列的防护措施。
以下是常见的几种防护方法:1. 表面涂层:通过涂覆金属表面的保护膜,阻隔介质对金属的侵蚀。
常见的涂层包括漆膜、涂层、电镀层等;2. 阳极保护:在金属表面附近放置一个具有更高活性的金属,作为阳极进行保护,使其更容易受到腐蚀。
常见的阳极保护材料包括锌合金、铝合金等;3. 防蚀合金:将金属与其他元素进行合金化处理,提高其抗腐蚀性能。
如不锈钢中的铬能形成致密的氧化膜,阻隔外界介质;4. 缓蚀剂:添加适量的缓蚀剂到金属表面,形成保护膜,减缓腐蚀速度。
常见的缓蚀剂有无机盐、有机酸等;5. 电化学防蚀:利用电化学原理,通过施加外电场或电流,实现金属防蚀。
材料学中的自组装技术应用自组装技术是材料学中一种重要的制备方法,通过自身分子间相互作用,材料可以自我组织成有序的结构。
自组装技术广泛应用于纳米材料、薄膜、生物材料等领域,为材料科学和工程带来了许多创新和突破。
本文将介绍材料学中的自组装技术及其应用。
一、自组装技术概述自组装是指在适当条件下,材料自身分子间的相互作用力驱动下,将分子、纳米粒子等按照一定规则自发组装成有序结构的过程。
自组装技术是材料学中一种灵活、高效的制备方法,可以制备出各种形态的材料,如纳米颗粒、纳米薄膜、纳米线等。
二、自组装技术的分类根据自组装过程的不同,自组装技术可以分为静态自组装和动态自组装两类。
1. 静态自组装静态自组装是指在静态平衡条件下,材料自身分子间的相互吸引力和斥力相互平衡,使得材料自发组装成有序结构的过程。
常见的静态自组装技术有分子自组装和胶体自组装。
分子自组装是指通过分子间的非共价相互作用力,如氢键、范德华力等,使得分子有序排列形成有机分子的自组装结构。
这种自组装结构具有一定的稳定性和可控性,可应用于有机光电器件、药物传递等领域。
胶体自组装是指由胶体颗粒组成的体系通过相互作用力有序排列形成有序结构。
胶体自组装技术常用于制备纳米颗粒、纳米薄膜等材料,其结构和性质可通过调控胶体颗粒的形状、大小、表面性质等进行调控。
2. 动态自组装动态自组装是指利用外部刺激或条件改变材料中的相互作用力,使材料分子或颗粒发生有序排列的过程。
动态自组装技术具有可逆性和响应性,常用于智能材料、微观机械等领域。
三、自组装技术的应用自组装技术在材料科学和工程中具有广泛的应用前景。
1. 纳米材料制备自组装技术可用于纳米材料的制备,如纳米颗粒、纳米薄膜、纳米线等。
通过调控自组装过程中的相互作用力和条件,可以精确控制纳米材料的大小、形状及结构,从而调控其性能和功能。
2. 生物材料应用自组装技术在生物材料领域有着广泛的应用。
通过自组装技术,可以制备出具有特定功能的生物材料,如药物传递系统、组织工程支架等。
硅/二氧化硅表面自组装单分子膜的性质、制备及应
用研究的开题报告
一、研究背景
自组装单分子膜(self-assembled monolayers, SAMs)是指由分子
自发地在固体表面形成的一层单分子厚度的有序单层,具有良好的表面
化学与物理学性质,因此在油墨、涂料、传感器和纳米器件等领域有着
广泛的应用。
硅/二氧化硅表面自组装单分子膜的研究,对于硅基纳米器件、光刻、抗腐蚀涂料等领域有一定的重要性。
二、研究内容
本研究将以硅/二氧化硅表面为实验对象,主要研究以下内容:
1. 自组装单分子膜的制备方法:包括溶液法、气相法等,并比较各
种制备方法的优缺点。
2. 自组装单分子膜的表征方法:包括循环伏安法、红外光谱法、原
子力显微镜等表征手段,探究其表面化学、物理学性质。
3. 自组装单分子膜的应用研究:深入探究其在硅基纳米器件、光刻、抗腐蚀涂料等领域的应用,并比较各种应用方式的效果。
三、研究意义
本研究将从制备、表征以及应用等多个方面对硅/二氧化硅表面的自组装单分子膜进行深入研究,有助于拓展其在各个领域的应用,提高其
制备及表征的效率与精度,为相关领域的研究提供参考。
同时也有助于
推动自组装单分子膜及其应用研究的发展。