2.12准确数和近似数
- 格式:ppt
- 大小:6.05 MB
- 文档页数:25
2.12 近似数学习目标:1.了解近似数的概念;2.能按要求求近似数;3.要准确地说出精确位及按要求进行四舍五入取近似数。
复习旧知:(一、混合运算法则:先算,再算,最后算,有括号的先算括号。
(二)、计算:(1)-3×22-(-3×2)3 (2)412×[-9×(-13)2-0.8]÷(-154)【问题导学】1.根据自己已有的生活经验填空:(1)我班有名学生,名男生,名女生;(2)我班教室约为平方米。
(3)我的体重约为千克,我的身高约为厘米;(4)中国大约有亿人口。
在这些数据中,哪些数是与实际相接近的?哪些数是与实际完全符合的?2. 按四舍五入法对圆周率π(=3.1415926……)取近似数,请填空。
π≈ 3 (精确到_________);π≈3.1 (精确到_______或叫做精确到_________)π≈3.14 (精确到_____或叫做精确到______);π≈3.142 (精确到_______或叫做精确到_________) ;π≈3.141 6 (精确到_______或叫做精确到_______)……3.可课本,并回答:什么叫准确数?什么叫近似数?思考现实中都是准确数吗?自学检测:1.下列各数,哪些是近似数,哪些是准确数?(1) 某歌星在体育馆举办音乐会,大约有一万二千人参加.(2) 张明家里养了5只鸡. (3) 月球与地球相距约38万千米.(4) 圆周率π取3.14159. (5) 据会议秘书处宣布,参加今天会议的有513人.而另一则报道说:约有500人参加了今天的会议.2.小明测得教室的宽度为6.126米,把它四舍五入到十分位是( )(A)6米 (B)6.1米 (C)6.12米 (D)61.2米3.今年我市累计完成一般预算收入216.58亿元,数据216.58亿精确到( ) (A)百亿位 (B)亿位 (C)百万位 (D)百分位课堂训练:1.近似数4.609万精确到________位.2.8.434 8精确到0.01的近似数是________.3.据初步测算,今年上半年国内生产总值是172 840亿元,比上年同期增长了3.7个百分点,数据172 840亿元用科学记数法表示为________亿元(精确到千亿).4.用四舍五入法,按括号中的要求对下列各数取近似数.(1) 0.340 82 (精确到千分位);(2) 64.8 (精确到个位)(3) 1.504 6 (精确到0.01);(4) 1 295 330 000 (精确到千万位)5. 下列由四舍五入得到的近似数,各精确到哪一位?(1)54.8;(2)0.002 04;(3)3.6万;(4)3.05×1046.用四舍五入法,按括号里的要求对下列各数取近似值:(1)0.651 48 (精确到千分位);(2)1.567 3 (精确到0.01).7. “光年”是一个长度单位,1光年就是光在一年中通过的距离,已知光的速度为300000千米/秒,请计算1光年表示多少千米(1年按365天计算,结果精确到百亿位)?【拓展延伸】在学校组织的一次体检中,甲、乙两名同学的身高都约为1.7×102cm,但甲却说他比乙高9 cm,你认为有这种可能吗?若有,请举例说明。
1.5 近似数和有效数字一、教学任务分析二、教学流动安排活动1 问题引入活动2 学习近似数的概念活动3 近似数概念的应用活动4 有效数字的概念活动5 近似数和有效数字的巩固活动6 巩固概念三、课前准备教具:电脑、课件四、教学过程设计活动1 让学生用刻度尺量数学课本由学生的结果差异提出问题由学生思考,可以激发学生探究的热情活动2 学习近似数概念活动3 按四舍五入法对圆周率∏取近似数有∏≈3(精确到个位)∏≈3.1(精确到0.1,或叫做精确到十分位)∏≈3.14(精确到0.01,或叫做精确到百分位)∏≈3.142(精确到0.001,或叫做精确到千分位)∏≈3.1416(精确到0.0001,或叫做精确到万分位)师生共同活动活动4 由活动3引入并讲解有效数字的概念活动5 例6:按括号内的要求,用四舍五入法对下列各数取近似值(1)0.0158(精确到0.001) (2)30435(保留3个有效数字)(3)1.804(保留2个有效数字) (4)1.804(保留3个有效数字)通过练习对近似数和有效数字有初步认识,师生共同活动,巩固所学知识。
活动6 巩固练习教科书P56练习课堂小结通过小结,进一步巩固所学知识,使学生所学知识系统化。
作业:P56 4 (2)(4) 5 6教学设计示例一、素质教育目标(一)知识教学点1.使学生理解近似数和有效数字的意义2.给一个近似数,能说出它精确到哪一痊,它有几个有效数字3.使学生了解近似数和有效数字是在实践中产生的.(二)能力训练点通过说出一个近似数的精确度和有效数字,培养学生把握关键字词,准确理解概念的能力.(三)德育渗透点通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想(四)美育渗透点由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受.二、学法引导1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习三、重点、难点、疑点及解决办法1.重点:理解近似数的精确度和有效数字.2.难点:正确把握一个近似数的精确度及它的有效数字的个数.3.疑点:用科学记数法表示的近似数的精确度和有效数字的个数.四、课时安排1课时五、教具学具准备投影仪,自制胶片六、师生互动活动设计教者提出生活中应用准确数和近似数的例子,学生讨论回答,学生自己找出类似的例子,教者提出精确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决.七、教学步骤(一)提出问题,创设情境师:有10千克苹果,平均分给3个人,应该怎样分?生:平均每人千克师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?生:不能师:哪怎么分生:取近似值师:板书课题2.12近似数与有效数字【教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性(二)探索新知,讲授新课师出示投影1下列实际问题中出现的数,哪些是精确数,哪些是近似数.(1)初一(1)有55名同学(2)地球的半径约为6370千米(3)中华人民共和国现在有31个省级行政单位(4)小明的身高接近1.6米学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的例子.师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确.以开始提出的问题为例,揭示近似数的有关概念板书:1.精确度2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字.例如:3.3 有二个有效数字3.33 有三个有效数字讨论:近似数0.038有几个有效数字,0.03080呢?【教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边第一个不是零的数起;二是从左边第一个不是零的数起,到精确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②例1.(出示投影2)下列由四舍五入吸到近似数,各精确到哪一位,各有哪几个有效数字?(1)43.8(2).03086(3)2.4万学生口述解题过程,教者板书.对于近似数2.4万学生又能认为是精确到十分位,这时可组织学生讨论近似数与5.4和近似数5.4万中的两个4的数位有什么不同,从而得出正确的答案.【教法说明】对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.巩固练习见课本122页练习2、3页例2(出示投影3)下列由四舍五入得来的近似数,各精确到哪一位,各有几个有效数字?(1)21.80(2)2.60万(3)学生活动,教者不给任何提示,请三位同学板演(基础较差些的做第一小题,基础较好的做第二、三小题)其余学在练习本上完成,请一优秀学生讲评同桌同学互相检查评定.【教法说明】①通过本例的教学,学生能进一步把握近似数的精确度和有效数字的概念,②通过分层板演,学生点评,能提高所有学生的积极性,每个层次的学生都得到发展(三)尝试反馈,巩固练习(出示投影4)一、填空1.某校有25个班,光的速度约力每秒30万千米,一星期有7天,某人身高约1.65米,远些数据中,准确数为_________,近似数为____________2.近似数0.1080精确到__________位,有_________个有效数字,分别是___ _________二、下列各近似数,各精确到哪一位,各有哪几个有效数字:1 32.02 1.5万 3学生活动:学生抢答:【教法说明】抢答培养学生的竞争意识.(四)归纳小结师生共同小结(1)有效数字的意义及两个注意点;(2)带单位的近似数(为2.3万)和用科学记数法表示的近似数的精确度和有效数字的求法.八、随堂练习1.判断下列各题中的效,哪些是准确数,哪些是近似数?(1)小明到书店买了10本书(2)中国人口约有13亿(3)一次数学测验中,有5人得了100分(4)小华体重约54千克2.填空题(1)3.14精确到________位,有_________有效数字(2)0.0102精确到_________位,有效数字是__________ (3)精确到__________位,有效数字是___________ 3.选择题(1)下列近似数中,精确到千位的是()A.1.3万B.21.010C.1018D.15.28(2)有效数字的个数是()A.从右边第一个不是0的数字算起B.从左边第一个不是0的数字算起C.从小数点后的第一个数字算起D.从小数点前的第一个数字算起九、布置作业课本第124页A组l.十、板书设计近似数与有效数字》教案及诊断作者:徐冬艳(初中数学辽宁朝阳初中数学班) 评论数/浏览数: 1 / 101 发表日期:2011-07-0520:07:01教学目标:1、在测量情境中体会用近似数表示长度的必然性,能用近似数表示生活中的数量。
近似数教学教案(优秀10篇)近似数教学教案篇一… …一。
教学内容:求出积的近似数和有关它的一些内容。
二。
教学目的:(1)进一步巩固小数乘法计算。
(2)根据要求,会用“四舍五入法”取积的近似值。
(3)体会“四舍五入法”是解决实际问题的重要工具,培养学生的实践能力和思维的灵活性。
三。
教学重、难点:重点:应用“四舍五入法”取积的近似数。
难点:要根据实际需要求出积的近似值。
四。
教学过程:(一)复习:1.保留一位小数2.345.682.保留两位小数4.25634.7083.保留整数5.676.502(二)导入课:1.老师出示几个语句,你知道那些句子表达是准确数,哪些是近似数。
你是根据句中的哪些字词来判断的呢?(1)我们班有28人(2)这个箱子里大约有23个苹果。
(3)小明的身高是172厘米,体重约60千克。
2.我们生活中有时需要很准确的数字,但是有些时候往往不需要知道很精确的数字,只需要知道它们的近似值就可以了,那我们一般用什么方法来取近似值生:四舍五入法3.师:现在就用“四舍五入法”求出小数的近似值。
保留整数保留一位小数保留两位小数2.0954.307思考并回答:怎么样用“四舍五入法”将这些小数保留整数、一位小数或两位小数,去它们的近似值?按要求,它们的近似值各应是多少?4.揭题谈话:在实际应用中,小数乘法乘得积往往不需要保留很多的小数位数,这时可根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似数。
板书:积的'近似数(三)探求新知:1.出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45狗约有多少亿个嗅觉细胞?(得数保留一位小数)(1)读题,找出已知所求,列式计算,板书:0.04945(2)指明板演,集体订正。
(3)按要求,积保留一位小数,怎么保留?结果怎样?0.49×45≈2.2(亿个)师:今天我们学习了用四舍五入法取积的近似数,那么谁来归纳一下?生答,互相补充,归纳概括:我们求积的近似数时,首先求出积的准确值,然后明确要保留的小数位数,再看比要保留的小数位数多一位上的数字,按“四舍五入”法截取积的近似数。
教学目标:
知识与技能目标:
1、了解近似数和准确数的概念,能正确区分正确数和准确数。
2、能按要求取近似数和确定近似数的精确度。
过程与方法目标:
经历观察、猜测、验证、归纳、交流等数学活动过程,在亲身经历“取近似数和确定近似数的精确度”这些
活动中去发现问题、探索问题,促进他们对知识的理解的掌握
情感、态度价值观目标
1、在“取近似数和确定近似数的精确度”的过程中,积极参与小组活动,敢于发表自己的见解,体验与同伴
合作交流的乐趣,学会在交流中获益,初步培养学生的团结协作精神。
2、通过近似数在生活中的应用,让学生感受数学与生活的紧密联系,体会近似数的意义及其在生活中的作用。
教学重难点:
教学重点:能熟练地运用四舍五入法按要求对小数取近似数和确定近似数是小数的精确度。
教学难点:理解并掌握用四舍五入法按要求对整数(包括用科学计数法表示的数)取近似数和确定近似数是
整数(包括用科学计数表示的数)的精确度。
教具准备:
多媒体课件、导学案
教学过程:
附板书设计:
取近似数
426500(精确到万位) 426500≈43万→数字+计数单位 426500≈4.3×105→科学计数法 ↑
确定精确度
42.3万精确到千位 4.85×103 精确到十位
四舍五入到哪一位就精确到哪一位
2.9近似数 ――四舍五入法。
初中数学七年级上册《2.12近似书》教案教学目标一、知识与技能了解近似数的概念,并按要求取近似数二、过程与方法经历对实际问题的探究过程,体会用近似数字刻画现实问题的思想.三、情感态度和价值观在独立思考的基础上,积极参与对数学问题的讨论,并敢于表现自己,丰富学习数学的成功体验,激发对空间与图形的好奇心.教学重点了解近似数、精确度的意义,能根据具体要求取近似数.教学难点近似数的意义,按实际需要取近似数.教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备练习本;课时安排1课时教学过程一、导入新课问题1:(1)我们班有名学生。
(2)七年级约有名学生。
(3)一天有小时,一小时有分,一分钟有秒。
(4)你回家约要分钟。
问题2:在这些数据中,哪些是与实际接近的?哪些数据是与实际完全符合的?二、新课学习1、得出概念问题1:根据我们预习的结果,上述的4个问题中,是准确数,是不能准确反映实际情况的。
这些数只是一个大概的数,我们给它取个名字叫做。
问题2:你能列举出生活中哪些是准确数,哪些用到近似数吗?问题3:七年级的实际学生数为224,与第2个问题相比较,误差是。
问题4:为什么会产生这个误差?近似数与准确数的接近程度,用精确度表示。
524精确到个位,而约5百精确到位。
2、尝试解决问题问题5:按四舍五入对圆周率取得的近似数精确到哪一位?π≈3(精确到位)π≈3.1(精确到0.1或叫做精确到位)π≈3.14(精确到或叫做精确到位)π≈3.142(精确到或叫做精确到位)练习:教材P46页练习问题6:在表示近似数的方法有和。
还有其它的吗?3、例题讲解教材P46例6。
注意精确度1.8与1.80的区别。
4、扩展问题7:3.21×105精确到位。
科学记数法是为了便于表示比较大的数而产生的。
分析:321 000保留3位有效数字,若只取3 2 1,则与原数出入太大,不合理。
这时我们用科学记数来表示,可表示为3.21×105,这样就符合了题目。
七年级数学教案近似数与有效数字9篇近似数与有效数字 1一学习目标:1了解近似数与有效数字的概念,体会近似数的意义及在生活中的作用2能说出一个近似数的精确度或有几个有效数字,能按照要求用四舍五入的方法取一个数的近似数二重点与难点:按要求用四舍五入法取一个数的近似数三设计思路:本节课通过生活情境让学生搜集生活中的数据,感受数的意义,使得学生进一步认识了近似数,学会了如何去取一个数的近似值,以及指出一个近似数的有效数字,通过讨论交流使学生理解用科学记数法记数,不仅便于记一些较大(小)的数,而且易于表示近似数的有效数字.四教学过程(一)情境创设(1)从早晨起床到上学,你从你的生活环境中获得哪些数的信息?(2)生活中,有些数据是准确的,有些是近似的,你能举例说明吗?(设计说明:让学生自己搜集生活中与数有关的信息,从中进一步感受数的意义)(二)近似数实际生产生活中的许多数据都是近似数,例如测量长度,时间,速度所得的结果都是近似数,且由于测量工具不同,其测量的精确程度也不同。
在实际计算中对于像π这样的数,也常常需取它们的近似值.请说说生活中应用近似数的例子。
(设计说明:通过交流生活中近似数的例子,使学生认识到生活中存在近似数,感受近似数在生活中的作用,体会数学与生活的关系)取一个数的近似值有多种方法,四舍五入是最常用的一种方法。
用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位.例如,圆周率=3.1415926…取π≈3,就是精确到个位(或精确到1)取π≈3.1,就是精确到十分位(或精确到0.1)取π≈3.14,就是精确到百分位位(或精确到0.01)取π≈3.142,就是精确到千分位位(或精确到0.001)(三)有效数字对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
例如:上面圆周率π的近似值中,3.14有3个有效数字3,1,4;3.142有4个有效数字3,1,4,2.(四)例题教学例1 小亮用天平称得罐头的质量为2.026kg,,按下列要求取近似数,并指出每个近似数的有效数字:(1)精确到0.01kg;(2)精确到0.1kg;(3)精确到1kg.(设计说明:简单应用上面所学知识,先四舍五入取近似值,再确定近似数的有效数字,应注意提醒学生不能随便将小数点后的0去掉.)例2 用四舍五入法,按要求对下列各数取近似值,并用科学记数法表示.(1)地球上七大洲的面积约为149480000(保留2个有效数字)(2)某人一天饮水1890ml(精确到1000ml)(3)小明身高1.595m(保留3个有效数字)(4)人的眼睛可以看见的红光的波长为0.000077cm(精确到0.00001)请与同学交流讨论.(设计说明:通过讨论使学生理解用科学记数法记数,不仅便于记一些较大(小)的数,而且易于表示近似数的有效数字)(五)课堂练习1 基础训练书p78 1,22 创新探究( 1)胜利农场养鸡35467只,一个个体户养鸡13530只(四舍五入到十位),光明农场养鸡64800只(四舍五入到百位),要比较他们养鸡的多少,胜利农场养鸡数应四舍五入到哪一位数时,误差会少些。
第 2 章 有理数 2.1 有理数华东师大版数学七年级上册课后习题答案1、正数和负数练习 1. 略2. 8844 表示海平面以上 8844 米,-155 表示海平面以下 155 米。
海平面的高度用 0(米)表示。
3. 正数:+6,54, 22 ,0.0017负数:-21,-3.14,-9994. 不对,因为一个数不是正数,还可能是 0,而 0 不是负数。
2、有理数练习1. 举例略,这些数都是有理数。
2. 只有一个,是 0。
习题 2.11. 整数:1,-789,325,0,-20;分数:- 0.10 510.10,100.1,- 5% ; ,, 8正数:1 5 ; ,,325,10.10,100.1 8负数:-0.10,-789,-20,-5%。
, 2. 本题是开放性问题,答案不唯一,例如:重叠部分填:1, 2,3…(注意要添上省略号);左圈内填:0.1,0.2,0.3;右圈内填 0,-1,-2。
两个圈的重叠部分表示正整数的集合。
3. 按照第 2 题的不同填法本题有不同的答案。
4. (1)1,-1,1;第 10 个数,第 100 个数,第 200 个数, 第 201 个数分别为-1,-1,-1,1。
(2)9,-10,11;第 10 个数,第 100 个数,第 200 个数, 第 201 个数分别为-10,-100,-200,201。
(3) 1,- 1 1 ;第 10 个数,第 100 个数,第 200 个数,8 9 10 11 1 1第 201 个数分别为 , , ,- 。
10 100 200 2012.2 数轴 1. 数轴练习1(1)正确,符合数轴的定义;(2) 不正确,单位长度不一致; (3) 不正确,负数标注错误。
2. -3 位于原点左边,距离原点 3 个单位长度; 4.2 位于原点右边,距离原点 4.2 个单位长度; -1 位于原点左边,距离原点 1 个单位长度;1位于原点右边,距离原点 12 2个单位长度。