气相色谱知识
- 格式:ppt
- 大小:901.50 KB
- 文档页数:54
气相色谱法知识汇总1.气相色谱法(GC):是以气体为流动相的色谱分析法。
2.气相色谱要求样品:气化,不适用于大部分沸点高和热不稳定的化合物,对于腐蚀性能和反应性能较强的物质更难于分析。
大约有15%~20%的有机物能用气相色谱法进行分析。
3.气相色谱仪的组成:气路系统、进样系统、分离系统、检测系统、温控系统、记录系统。
4.气路系统:包括气源、净化器和载气流速控制;常用的载气有:氢气、氮气、氦气。
5.进样系统:包括:进样装置和气化室,气体进样器(六通阀):试样首先充满定量管,切入后,载气携带定量管中的试样气体进入分离柱;液体进样器:不同规格的微量注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。
6.进样方式:分流进样:样品在汽化室内气化,蒸气大部分经分流管道放空,只有极小一部分被载气导入色谱柱;不分流进样:样品直接注入色谱的汽化室,经过挥发后全部引入色谱柱。
7.分离系统:色谱柱:填充柱(2~6mm直径,1~5m长),毛细管柱(0.1~0.5mm直径,几十米长)。
8.温控系统的作用:温度是色谱分离条件的重要选择参数;气化室、色谱柱恒温箱、检测器三部分在色谱仪操作时均需控制温度;气化室:保证液体试样瞬间气化;检测器:保证被分离后的组分通过时不在此冷凝;色谱柱恒温箱:准确控制分离需要的温度。
9.检测系统:作用:将色谱分离后的各组分的量转变成可测量的电信号;指标:灵敏度、线性范围、响应速度、结构、通用性,通用型——对所有物质均有响应;专属型——对特定物质有高灵敏响应;检测器类型:浓度型检测器:热导检测器、电子捕获检测器;质量型检测器:氢火焰离子化检测器、火焰光度检测器。
10.热导检测器的主要特点:结构简单,稳定性好;对无机物和有机物都有响应,不破坏样品;灵敏度不高。
11.氢火焰离子化检测器的特点:优点:(1)典型的质量型检测器;(2)通用型检测器(测含C有机物);(3)氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速、死体积小、线性范围宽等特点;(4)比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1;缺点:(1)对载气要求高;(2)检测时要破坏样品,无法回收样品;(3)不能检测永久性气体、水及四氯化碳等。
§1 色谱法基础§1.1 色谱法原理§1.2 色谱流出曲线§1.3 色谱术语介绍§2 色谱柱系统§2.1 气固填充色谱柱§2.2 气液填充色谱柱§2.2.1固定液的分类§2.2.2固定液选用原则§2.2.3填充柱的制备§2.3 毛细管气相色谱柱§3 气相色谱检测系统§3.1 热导池检测器§3.2 氢火焰离子化检测器§3.3 电子捕获检测器§3.4 热离子检测器§3.5 火焰光度检测器§4 参考资料§4.1 专著§4.2 杂志§4.3 手册§4.4 学术会议文集§4.5 色谱网站1.色谱与色谱概论2.色谱分类3.色谱结构解释4.色谱仪器特点[Last edit by madprodigy]§1 色谱法基础§1.1色谱法原理在互不相溶的两相——流动相和固定相的体系中,当两相作相对运动时,第三组分(即溶质或吸附质)连续不断地在两相之间进行分配,这种分配过程即为色谱过程。
由于流动相、固定相以及溶质混合物性质的不同,在色谱过程中溶质混合物中的各组分表现出不同的色谱行为,从而使各组分彼此相互分离,这就是色谱分析法的实质。
也就是说,当一种不与被分析物质发生化学反应的被称为载气的永久性气体(例如H2 、N2 、He、Ar 、CO2 等)携带样品中各组分通过装有固定相的色谱柱时,由于试样分子与固定相分子间发生吸附、溶解、结合或离子交换,使试样分子随载气在两相之间反复多次分配,使那些分配系数只有微小差别的组分发生很大的分离效果,从而使不同组分得到完全分离,例如一个试样中含A、B二个组分,已知B组分在固定相中的分配系数大于A,即KB > KA ,如图1-1所示。
当样品进入色谱柱时,组分A、B以一条混合谱带出现,由于组分B在固定相中的溶解能力比A大,因此组分A的移动速度大于B,经过多次反复分配后,分配系数较小的组分A首先被带出色谱柱,而分配系数较大的组分B则迟被带出色谱柱,于是样品中各组分达到分离的目的。
气相色谱基本理论知识气相色谱理论可分为热力学和动力学理论两方面。
热力学理论是从相平衡观点来研究分离过程,以塔片理论为代表。
动力学理论是从动力学观点来研究各种动力学因素对柱效的影响,以Van Deemter 方程式为代表。
在叙述这两个理论前先介绍有关基本概念。
一、基本概念l.色谱峰(流出峰) 由电信号强度对时间作图所绘制的曲线称为色谱流出曲线。
流出曲线(图2-2)上的突起部分称为色谱峰。
正常色谱峰为对称形正态分布曲线,曲线有最高点,以此点的横坐标为中心,曲线对称地向两侧快速、单调下降。
不正常色谱峰有两种:拖尾峰及前延峰。
前沿陡峭,后沿拖尾的不对称色谱峰称为拖尾峰(tailing peak),前沿平缓,后沿陡峭的不对称色峰与不正常色谱峰可用对称因子f s(symmetryfactor)或叫拖尾因子来衡量(图20-3)。
对称因子在0.95~1.05之间为对称峰,小于0.95为前延峰,大于1.05为拖尾峰。
f s = W0.05h/2A = (A+B)/2A (2.1)一个组分的色谱峰可用三项参数即峰高或峰面积(用于定量)、峰位(用保留值表示、用于定性)及峰宽(用于衡量柱效)说明。
2.基线在操作条件下,没有组分流出时的流出曲线称为基线。
稳定的基线应是一条平行于横轴的直线。
基线反映仪器(主要是检测器)的噪音随时间的变化。
3.保留值(滞留值) 是色谱定性参数。
(1)保留时间(t R):从进样开始到某个组分的色谱峰顶点的时间间隔称为该组分的保留时间(retention time),即从进样到柱后某组分出现浓度极大时的时间间隔。
图2-2中t R1及t R2分别为组分l及组分2的保留时间。
(2)死时间(t 0):分配系数为零的组分的保留时间称为死时间(dead time)。
通常把空气或甲烷视为此种组分,用来测定死时间。
(3)调整保留时间(R t '):某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间称为调整保留时间(adjusted retention time),又称为校正保留时间。
⽓相⾊谱基础知识⽓相⾊谱基本知识1、什么是⽓相⾊谱法以⽓体为流动相(称载⽓)的⾊谱分析法称⽓相⾊谱法(GC )。
2.、⽓相⾊谱是基于时间的差别进⾏分离在加温的状态下使样品瞬间⽓化,由载⽓带⼊⾊谱柱,由于各组分在固定相与流动相(载⽓)间相对吸附能⼒/保留性能不同⽽在两相间进⾏分配,在⾊谱柱中以不同速度移动,经⼀段时间后得到分离,再依次被载⽓带⼊检测器,将各组分的浓度或质量转换成电信号变化并记录成⾊谱图,每⼀个峰代表最初混合物中不同的组分。
峰出现的时间称为保留时间(t R ),可以⽤来对每个组分进⾏定性,根据峰的⼤⼩(峰⾯积)对每个组分进⾏定量。
涉及的⼏个术语:固定相(stationary phase ):在⾊谱分离中固定不动、对样品产⽣保留的⼀相;流动相(mobile phase ):与固定相处于平衡状态、带动样品向前移动的另⼀相;⾊谱图:若⼲物质的流出曲线,即在不同时间的浓度或响应⼤⼩;保留时间(retention time ,t R ):样品注⼊到⾊谱峰最⼤值出现的时间;3、⽓相⾊谱法特点3.⒈选择性⾼:能分离同位素、同分异构体等物理、化学性质⼗分相近的物质。
3.⒉分离效能⾼:⼀次可进⾏含有150多个组分的烃类混合物的分离分析。
3.⒊灵敏度⾼:⽓相⾊谱可检测1110-~1310-g的物质。
3.⒋分析速度快:⼀般⼏分钟或⼏⼗分钟便可完成⼀个分析周期。
3.⒌应⽤范围⼴:450℃以下有不低于27~330Pa 的蒸⽓压,热稳定性好的物质。
3.⒍缺点:不适应于⼤部分沸点⾼的和热不稳定的化合物;需要有已知标准物作对照。
4、⽓相⾊谱系统主要包括五⼤系统:载⽓系统、进样系统、分离系统、检测系统和记录系统。
基本流程如下脱⽔管限流器4.1、载⽓系统:可控⽽纯净的载⽓源。
载⽓从起源钢瓶/⽓体发⽣器出来后依次经过减压阀、净化器、⽓化室、⾊谱柱、检测器,然后放空。
载⽓必须是纯洁的(99.999%),要求化学惰性,不与有关物质反应。
气相色谱基本知识1、什么是气相色谱法以气体为流动相(称载气)的色谱分析法称气相色谱法(GC )。
2.、气相色谱是基于时间的差别进行分离在加温的状态下使样品瞬间气化,由载气带入色谱柱,由于各组分在固定相与流动相(载气)间相对吸附能力/保留性能不同而在两相间进行分配,在色谱柱中以不同速度移动,经一段时间后得到分离,再依次被载气带入检测器,将各组分的浓度或质量转换成电信号变化并记录成色谱图,每一个峰代表最初混合物中不同的组分。
峰出现的时间称为保留时间(t R ),可以用来对每个组分进行定性,根据峰的大小(峰面积)对每个组分进行定量。
涉及的几个术语:固定相(stationary phase ): 在色谱分离中固定不动、对样品产生保留的一相; 流动相(mobile phase ):与固定相处于平衡状态、带动样品向前移动的另一相; 色谱图:若干物质的流出曲线,即在不同时间的浓度或响应大小;保留时间 (retention time ,t R ):样品注入到色谱峰最大值出现的时间;3、气相色谱法特点3.⒈选择性高:能分离同位素、同分异构体等物理、化学性质十分相近的物质。
3.⒉分离效能高:一次可进行含有150多个组分的烃类混合物的分离分析。
3.⒊灵敏度高:气相色谱可检测1110-~1310-g的物质。
3.⒋分析速度快:一般几分钟或几十分钟便可完成一个分析周期。
3.⒌应用范围广:450℃以下有不低于27~330Pa 的蒸气压,热稳定性好的物质。
3.⒍缺点:不适应于大部分沸点高的和热不稳定的化合物;需要有已知标准物作对照。
4、气相色谱系统主要包括五大系统:载气系统、进样系统、分离系统、检测系统和记录系统。
基本流程如下脱水管限流器4.1、载气系统:可控而纯净的载气源。
载气从起源钢瓶/气体发生器出来后依次经过减压阀、净化器、气化室、色谱柱、检测器,然后放空。
载气必须是纯洁的(99.999%),要求化学惰性,不与有关物质反应。
气相色谱期末总结一、气相色谱的原理气相色谱的原理是基于化学物质在固定相(柱填料)和流动相(惰性气体)共同作用下的分离行为。
样品经过气相进样器进入GC柱,被固定相吸附或溶解,然后由流动相推动分离,并逐个通过检测器,最终由信号采集系统得到峰形图。
气相色谱的分离机理主要包括吸附、分配和离子交换等。
在吸附色谱中,样品成分在固定相表面吸附,并根据亲和力大小进行分离。
在分配色谱中,样品成分在流动相和固定相之间按照平衡分配系数的大小进行分离。
在离子交换色谱中,固定相上的离子交换基团与样品成分的带电部分发生离子交换反应,实现分离。
二、气相色谱的仪器气相色谱主要由进样系统、柱箱、检测器和信号采集系统等组成。
进样系统包括进样口、气化室、气道、进样针和进样阀等。
进样量的大小和均匀性对分析结果有很大影响,因此进样系统的设计和使用非常重要。
柱箱是气相色谱的核心部分,用于放置和温控柱子。
根据需要,柱子可以是毛细管柱、开管柱或厚膜柱等。
检测器是气相色谱的核心部分,用于将化学物质转化为可测量的信号。
常见的检测器有火焰离子化检测器(FID)、热导率检测器(TCD)、质谱检测器(MS)等。
信号采集系统用于接收检测器输出的信号,并将信号转换为可读的峰形图或数据。
三、气相色谱的方法气相色谱的方法主要包括站相法和程序升温法。
站相法是最早也是最简单的气相色谱方法,即柱子温度恒定,样品在柱子中各部分达到平衡后即得到分离结果。
该方法适用于样品成分相对简单的情况。
程序升温法则是针对样品成分复杂的情况设计的。
柱子温度会按照一定的升温速度进行升温,使样品成分在不同温度下分离出来。
该方法能够得到更好的分离效果,并且可以通过分析峰的保留时间确定样品成分。
四、气相色谱的应用气相色谱广泛应用于各个领域的化学分析,如环境检测、食品安全、制药和石油化工等。
在环境检测中,气相色谱常用于挥发性有机物(VOCs)的分析,如甲醛、苯系物、多氯联苯等。
通过气相色谱分析,可以对环境中有害物质的浓度进行定量分析,评估环境质量。
气相色谱(Gas Chromatography,简称GC)是一种常用的分离和分析技术,广泛应用于化学、药物、环境、食品等领域。
本文将对气相色谱的原理、仪器设备以及应用进行详细介绍。
一、气相色谱的原理气相色谱的原理基于物质在不同条件下的分配行为。
样品经过挥发处理后,进入气相色谱柱。
柱子内填充有固定相,样品通过与固定相发生相互作用,根据其在固定相中的亲疏性质被分离出来。
随后,在检测器的作用下,各组分被逐个检测并记录。
二、气相色谱的仪器设备1. 气相色谱柱:气相色谱柱是气相色谱分离过程的核心部件,通常由不锈钢或玻璃制成。
柱子内填充有固定相,可根据不同的应用需求选择合适的柱子类型。
2. 注射器:气相色谱仪的注射器用于将样品引入柱子,通常采用自动进样装置,实现准确、精密的样品进样。
3. 气相色谱炉:气相色谱炉用于控制柱温,在不同的温度下实现样品的分离。
可根据需要进行温度梯度或等温分析。
4. 检测器:常见的检测器有火焰离子化检测器(FID)、热导率检测器(TCD)、电子捕获检测器(ECD)等。
不同的检测器适用于不同类型的分析需求。
三、气相色谱的应用1. 化学领域:气相色谱广泛应用于有机合成反应的监测和纯化过程中,可用于鉴定反应产物和副产物,优化反应条件等。
2. 药物领域:气相色谱被用于药物的质量控制、药代动力学研究以及药物残留的检测等方面。
3. 环境领域:气相色谱可用于环境污染物的分析,例如大气中的挥发性有机化合物、水体中的有机污染物等。
4. 食品领域:气相色谱可以对食品中的添加剂、农药残留等进行分析,保障食品安全。
四、气相色谱的优势与局限性1. 优势:a. 分离效率高:气相色谱具有较高的分离能力,可对复杂样品进行快速、高效的分离。
b. 灵敏度高:气相色谱结合灵敏的检测器,可对微量物质进行准确的检测。
c. 应用广泛:气相色谱可应用于不同领域的分析需求,具有较大的适用性。
2. 局限性:a. 只适用于挥发性物质:气相色谱只能分析挥发性和具有适当蒸汽压的物质。
气相色谱知识大全气相色谱系统的基本组成 1.气源:常用的有N2、H2、Air、Ar、He等高压气体钢瓶,也可采用氢气发生器、氮气发生器、无油空气泵;2.气路控制系统:由开关阀、稳定阀、针形(调节)阀、切换阀和气阻、压力表、流量计等组成;3.进样系统:即汽化室,可以根据不同的分析要求,装置不同的进样器内衬。
对于气体样品,最好采用六通阀定体积进样,可获好的重复性,对液体样品,一般采用微量注射器进样,对固体样品,多用裂解器或脉冲炉配合;4.色谱分离系统:色谱柱是解决样品组份分离的关键,有填充柱和毛细柱二大类,根据不同的分析要求来具体配置;5.检测器:是将样品中的化学组份转化为电讯号,灵敏度和稳定性是关系到整个仪器性能的心脏部件,常用有TCD、FID、ECD、FPD、NPD;6.色谱工作站7.温度控制器:有恒温控制和程序升温控制二种方式;8.检测器电路;每种类型检测器都必须配置一个控制和测量的电路,从而实现非电量转换。
例如,配合高灵敏度TCD,就要配置一个热导池恒流电源,对FID就需配置一个微电流发大器。
气相色谱注意事项 a. 先通载气,后通电;先关电,后关载气。
当连续使用或做精细分析时,•晚上最好不关载气,可适当调低入口压强至0.1MPa,保证系统内的正压状态。
当TCD•高温运行结束后, 应关热导控制器和温度控制器半小时后才能关载气,以保护传感器元件不被高温氧化;b. 当第一次使用气瓶减压阀时,请将减压阀原出口接头取下,用附件箱中的接头(CF8.470.080)替代。
用Φ3×0.5软管连接减压阀、净化管及仪器,减压阀和净化管接头连接处必须保证不漏气;c. 开气源时,气瓶开关阀应开足,减压阀开关旋至最松,查看减压阀的压力表应压力足够,然后逐渐调减压阀,仪器正常运行时, 使减压阀低压测压强输出为:载气在0.5~0.6MPa之间; 氢气、空气在0.3~0.4之间。
若压力过大会损坏仪器内部阀件,甚至引起净化管炸裂;若压强过小,稳压阀不能正常工作,须调至规定范围内;d. 仪器的载气稳压阀出厂时已校至0.4Mpa,一般情况下用户不要自己调整,以免流量表不准确,若调动,载气流量需重新校正;e. 接入检测器的色谱柱必须事先经过严格老化,其老化温度低于固定相的最高使用温度,高于分析样品时的温度,老化时间应长于36h,并通以适当的流量,•以避免分析时固定相流失引起检测器污染和基线漂移。