材料力学第四章
- 格式:docx
- 大小:216.18 KB
- 文档页数:16
第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
4、钻井中的钻杆工作时受扭。
二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
轴:主要发生扭转变形的杆。
§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。
外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。
外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。
(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。
作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。
1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、切应变(角应变、剪应变):直角角度的改变量。
4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。
⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。
第四章 应力应变关系前一章引进了应力和应变的概念以及应力分析和应变分析的公式。
应力分析仅用到力的平衡概念,应变分析仅用到几何关系和位移的连续性。
这些都没有涉及到所研究物体的材料性质。
本章开始将研究材料的性质。
这些性质决定了各种材料特殊的应力-应变关系,显示出材料的力学性能。
下面将着重描述低碳钢的力学性能,介绍各向同性材料的广义胡克定律。
作为选读材料,将介绍各向异性的复合材料单层板的应力-应变关系。
§4-1 低碳钢的拉伸试验在分别考虑了应力和应变后,从直觉上知道这两个量是互相关联的。
事实上,在第一章的绪论里已经提到过应力应变之间的胡克定律。
它描述了很大一类材料在小变形范围,在简单拉伸(压缩)条件下所具有的线性弹性的力学性能。
低碳钢Q235是工程上常用的金属材料。
这一节着重介绍低碳钢的力学性能,然后简单介绍其他一些材料的性能。
有关材料性能的知识来自于宏观的材料试验,以及从这些试验得出的宏观的、唯象的理论。
固体物理学家一直在从原子和分子量级上研究这些力学性能的微观基础。
力学家也已开始从细观尺度来分析材料的力学性能,并已经取得了很大进展。
材料力学作为固体力学的入门课程,将只限于材料的宏观力学性能的描述。
为了确定应力与应变关系,最常用的办法是用单向拉伸(压缩)试验来测定材料的力学性质。
这种试验通常是在常温(室温)下对试件进行缓慢而平稳加载的静载试验。
805l d =一、低碳钢拉伸试验按照我国的国家标准 “金属拉伸试验试样” (GB6397-86),将试件按规定做成标准的尺寸。
图4-1所示是一根中间直径为d 的圆杆型试件,两端的直径比中间部分大,以便于在试验机夹头上夹持。
试件中间取一段长度为l 的等直部分作为标距。
对圆截面标准试件,规定标距l 与直径d 的关系为 ,或,分别称为10倍试件和5倍试件。
试件也可制成截面为矩形的平板型,平板试件的10倍与5倍试件的标距分别为10l d==l和l =,其中A 为试件的横截面面积。
第四章弯曲应力
4-14-24-34-44-54-64-74-84-94-10下页4-1(4-1)试求图示各梁中指定截面上的剪力和弯矩。
解:(a)
(b)
(c)
(d)
=
(e)
(f)
(g)
(h)
=
返回
4-2(4-2) 试写出下列各梁的剪力方程和弯矩
方程,并作剪力图和弯矩图。
解:(a)
(b)时
时
(c)
时
时
(d)
(e)时,
时,
(f)AB段:
BC段:
(g)AB段内:
BC段内:
(h)AB段内:
BC段内:
CD段内:
返回
4-3(4-3)试利用荷载集度、剪力和弯矩间的微分关系作下列各梁的剪力图和弯矩图。
返回
4-4(4-4) 试作下列具有中间铰的梁的剪力图和弯矩图。
返回
4-5(4-6)已知简支梁的剪力图如图所示。
试作梁的弯矩图和荷载图。
已知梁上没有集中力偶作用。
返回
4-6(4-7) 试根据
图示简支梁的弯矩
图作出梁的剪力图
与荷载图。
返回
4-7(4-15)试作图示刚架的剪力图、弯矩图和轴力图。
返回
4-8(4-18)圆弧形曲杆受力如图所示。
已知曲杆轴线的半径为R,试写出任意横截面C上剪力、弯矩和轴力的表达式(表示成角的函数),并作曲杆的剪力图、弯矩图和轴力图。
解:(a)
(b)
返回
4-9(4-19)图示吊车梁,吊车的每个轮子对梁的作用力都是F,试问:
(1)吊车在什么位置时,梁内的弯矩最大?最大弯矩等于多少?
(2)吊车在什么位置时,梁的支座反力最大?最大支反力和最大剪力各等于多少?
解:梁的弯矩最大值发生在某一集中荷载作用处。
,得:
当时,
当M极大时:,
则,故,
故为梁内发生最大弯矩的截面
故:=
返回
4-10(4-21)长度为250mm、截面尺寸为的薄钢尺,由于
两端外力偶的作用而弯成中心角为的圆弧。
已知弹性模量。
试求钢尺横截面上的最大正应力。
解:由中性层的曲率公式及横截面上最大弯曲正应力
公式
得:
由几何关系得:
于是钢尺横截面上的最大正应力为:。