材料力学性能第四章
- 格式:doc
- 大小:3.35 MB
- 文档页数:16
工程材料力学性能各个章节主要复习知识点第一章弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。
滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。
包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。
塑性:指金属材料断裂前发生塑性变形的能力。
脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。
韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。
应力、应变;真应力,真应变概念。
穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。
拉伸断口形貌特征?①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。
用肉眼或放大镜观察时,断口呈纤维状,灰暗色。
纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。
其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。
②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。
板状矩形拉伸试样断口呈人字形花样。
人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。
韧、脆性断裂区别?韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆拉伸断口三要素?纤维区,放射区和剪切唇。
缺口试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪几种形式?磨损、腐蚀和断裂是材料的三种主要失效方式。
材料的形变强化规律是什么?层错能越低,n越大,形变强化增强效果越大退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。
在某些合金中,增强效果随合金元素含量的增加而下降。
材料的晶粒变粗,增强效果提高。
第二章应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmaxσmax缺口敏感度:缺口试样的抗拉强度σbn 与等截面尺寸光滑试样的抗拉强度σb的比值表示缺口敏感度,即为NSR=σbnσb第三章低温脆性:在实验温度低于某一温度t2时,会由韧性状态变为脆性状态,冲击吸收功明显降低,断裂机理由微孔聚集性变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。
材料⼒学性能第⼀章:绪论⼀、需要掌握的概念材料⼒学性能的定义、弹性变形、线弹性、滞弹性、弹性后效、弹性模量、泊松⽐、弹性⽐功、体弹性模量⼆、需要重点掌握的内容 1、弹性模量的物理本质以及影响弹性模量的因素; 2、掌握根据原⼦间势能函数推倒简单结构材料弹性模量的⽅法; 3、弹性⽐功的计算,已知材料的应⼒应变曲线能求出材料卸载前和卸载后的弹性⽐功。
材料⼒学性能的定义 是指材料(⾦属和⾮⾦属等)及由其所加⼯成的⼯件在外⼒(拉、压、弯曲、扭转、剪切、切削等)作⽤下⾬加⼯、成型、使役、实效等过程中表现出来的性能(弹塑性、强韧性、疲劳、断裂及寿命等)。
这些性能通常受到的环境(湿度、温度、压⼒、⽓氛等)的影响。
强度和塑性和结构材料永恒的主题!弹性变形 是指材料的形状和尺⼨在外⼒去除后完全恢复原样的⾏为。
线弹性 是指材料的应⼒和应变成正⽐例关系。
就是上图中弹性变形⾥前⾯的⼀段直线部分。
杨⽒模量(拉伸模量、弹性模量) 我们刚刚谈到了线弹性,在单轴拉伸的条件下,其斜率就是杨⽒模量(E)。
它是⽤来衡量材料刚度的材料系数(显然杨⽒模量越⼤,那么刚度越⼤)。
杨⽒模量的物理本质 样式模量在给定环境(如温度)和测试条件下(如应变速率)下,晶体材料的杨⽒模量通常是常数。
杨⽒模量是原⼦价键强度的直接反应。
共价键结合的材料杨⽒模量最⾼,分⼦键最低,⾦属居中。
对同⼀晶体,其杨⽒模量可能随着晶体⽅向的不同⽽不同,俗称各向异性。
模量和熔点成正⽐例关系。
影响杨⽒模量的因素内部因素 --- 原⼦半径 过渡⾦属的弹性模量较⼤,并且当d层电⼦数为6时模量最⼤。
外部因素1. 温度:温度升⾼、原⼦间距增⼤,原⼦间的结合⼒减弱。
因此,通常来说,杨⽒模量随着温度的上升⽽下降。
2. 加载速率:⼯程技术中的加载速率⼀般不会影响⾦属的弹性模量。
3. 冷变形:冷变形通常会稍稍降低⾦属的弹性模量,如钢在冷变形之后,其表观样式模量会下降4% - 6%。
泊松⽐简单来说,泊松⽐就是单轴拉伸或压缩时材料横向应变和轴向应变⽐值的负数。
第4章金属在冲击载荷下的力学性能◆4.1 冲击载荷下金属变形和断裂的特点◆4.2 冲击弯曲和冲击韧性◆4.3 低温脆性◆4.4 影响韧脆转变温度的冶金因素许多机器零件在实际工作中要受到冲击载荷的作用,如冲床、锻锤、汽车行驶通过道路上的凹坑、飞机起飞和降落等。
冲击载荷属于动态载荷,而且,温度降低和加载速度提高都会增加材料的脆断倾向。
本章主要讨论冲击载荷作用下材料的性能评定和冷脆倾向及其影响因素。
4.1 冲击载荷下金属变形和断裂的特点一、加载速率冲击载荷与静载荷的主要区别:加载速率不同 加载速率:载荷施加于机件的速率,用单位时间内增加的应力表示(σ=d σ/dt ),单位为MPa/s 。
冲击载荷加载速率佷高静载荷加载速率低形变速率:单位时间内的变形量。
加载速率↑,形变速率↑二、形变速率用形变速率可以间接地反映加载速率。
表示方法绝对形变速率:单位时间内试件长度的增长率V =dl /dt ,单位为m/s相对形变速率(应变速率):单位时间内应变的变化量de d ετ∙=(e —真应变)三、加载状态划分现代机械中,不同机件的应变速率范围:10−6/s ~106/s •静载:应变速率在 ≤ 10−5/s 范围,金属材料的力学性能变化不明显;•准静态: =10−5/s ~ 10−2/s (相当于静载);•动态: ≥ 10−2/s ,金属材料的力学性能变化明显。
必须考虑加载速度对力学性能的影响。
ε∙ε∙ε∙静拉伸试验 :10−5/s ~ 10−2/s冲击试验 : 102/s ~ 104/s四、形变速率对弹性变形的影响弹性变形受应变速率影响不大原因:弹性变形传播速度较快,是以声速在介质中传播;普通摆锤冲击试验时绝对变形速度:5~5.5m/s冲击弹性变形总能紧跟上冲击外力的变化因此,弹性变形可以及时响应冲击载荷。
应变速率对金属的弹性行为及弹性模量不会产生影响。
五、形变速率对塑性变形的影响形变速率对塑性变形及断裂过程有显著影响。
材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P15 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
材料力学性能教案第一章:材料力学性能概述教学目标:1. 理解材料力学性能的概念及其重要性。
2. 掌握材料力学性能的主要指标。
3. 了解不同材料的力学性能特点。
教学内容:1. 材料力学性能的概念:定义、重要性。
2. 材料力学性能的主要指标:弹性模量、屈服强度、抗拉强度、韧性、硬度等。
3. 不同材料的力学性能特点:金属材料、非金属材料、复合材料等。
教学活动:1. 引入讨论:为什么了解材料的力学性能很重要?2. 讲解材料力学性能的概念及其重要性。
3. 通过示例介绍不同材料的力学性能特点。
4. 练习计算材料力学性能指标。
作业:1. 复习材料力学性能的主要指标及其计算方法。
2. 选择一种材料,描述其力学性能特点,并解释其在实际应用中的作用。
第二章:弹性模量教学目标:1. 理解弹性模量的概念及其物理意义。
2. 掌握弹性模量的计算方法。
3. 了解弹性模量在不同材料中的变化规律。
教学内容:1. 弹性模量的概念:定义、物理意义。
2. 弹性模量的计算方法:胡克定律、应力-应变关系。
3. 弹性模量在不同材料中的变化规律:金属材料、非金属材料、复合材料等。
教学活动:1. 复习上一章的内容,引入弹性模量的概念。
2. 讲解弹性模量的计算方法,并通过示例进行演示。
3. 通过实验或示例观察不同材料的弹性模量变化规律。
作业:1. 复习弹性模量的概念及其计算方法。
2. 完成弹性模量的计算练习题。
第三章:屈服强度与抗拉强度教学目标:1. 理解屈服强度与抗拉强度的概念及其物理意义。
2. 掌握屈服强度与抗拉强度的计算方法。
3. 了解屈服强度与抗拉强度在不同材料中的变化规律。
教学内容:1. 屈服强度与抗拉强度的概念:定义、物理意义。
2. 屈服强度与抗拉强度的计算方法:应力-应变关系、极限状态方程。
3. 屈服强度与抗拉强度在不同材料中的变化规律:金属材料、非金属材料、复合材料等。
教学活动:1. 复习上一章的内容,引入屈服强度与抗拉强度的概念。
【应力腐蚀产生的条件:应力、化学介质、金属材料】【磨损类型:粘着磨损、磨粒磨损、冲蚀磨损、疲劳磨损、腐蚀磨损、微动磨损。
】【磨损三阶段:跑合阶段、稳定磨损阶段、剧烈磨损阶段。
】【氢脆几种形式:氢蚀、白点、氢化物致脆、氢致延滞断裂】【细晶强化:能强化金属又不降低塑性。
】【测得t k:拉伸>扭转缺口静弯曲<缺口冲击弯曲光滑试样拉伸<缺口试样拉伸】蠕变极限的两种表达方式:①σtέ:在规定温度(t)下,使试样在规定时间内产生的稳态蠕变速率()不超过规定值的最大应力。
例如:σ6001X10-5=60MPa:表示温度为600的条件下,稳态速率为1x10-5%/h的蠕变极限为60MPa。
②σtδ/τ:在规定温度(t)下和规定的试验时间()内,使试样产生的蠕变总伸长率()不超过规定值的最大应力。
例如:σ5001/105 =100MPa,表示材料在500温度下,105h后总伸长率为1%的蠕变极限为100MPa。
σtτ:金属材料的持久强度极限,是在规定温度(t)下,达到规定的持续时间()而不发生断裂的最大应力。
例如:某高温合金的7003=30MPa,表示该合金在700、1000h的持久强度极限为1X1030MPa。
蠕变:金属在长时间的恒温、恒载荷作用下缓慢地产生塑性变形的现象。
蠕变极限:在高温长时间载荷作用下不致产生过量塑性变形的抗力指标。
该指标与常温下的屈服强度相似。
应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆性断裂叫应力腐蚀。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。
磨损:机件表面相接触并作相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。
名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收弹性变形功的能力。
3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力。
常见塑性变形方式:滑移和孪生6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。
7比例极限:应力与应变保持正比关系的应力最高限。
8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈服强度。
9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂过程,在裂纹扩展过程中不断的消耗能量。
韧性断裂的断裂面一般平行于最大切应力并于主应力成45度角。
10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。
断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。
11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。
12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。
13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓“缺口效应“①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。
8缺口敏感度:有缺口强度的抗拉强度σbm与等截面尺寸光滑试样的抗拉强度σb的比值. NSR=σbn / σs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
材料力学性能-课后答案-(时海芳-任鑫)第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。
⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。
2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b(抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率)4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。
答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。
5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。
试分析这两种故障的本质及改变措施。
答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。
《材料的力学性能》第一章 材料的拉伸性能名词解释:比例极限P σ,弹性极限e σ,屈服极限s σ,屈服强度0.2σ,抗拉强度b σ,延伸率k δ,断面收缩率k ψ(P7-8),断裂强度f σ(k σ),韧度(P10)1、拉伸试验可以测定那些力学性能?对拉伸试件有什么基本要求? 答:拉伸试验可以测定的力学性能为:弹性模量E ,屈服强度σs ,抗拉强度σb ,延伸率δ,断面收缩率ψ。
2、拉伸图和工程应力-应变曲线有什么区别?试验机上记录的是拉伸图还是工程应力-应变曲线?答:拉伸图和工程应力—应变曲线具有相似的形状,但坐标物理含义不同,单位也不同。
拉伸图横坐标为伸长量(单位mm ),纵坐标为载荷(单位N );工程应力-应变曲线横坐标为工程应力(单位MPa ),纵坐标为工程应变(单位无)。
试验机记录的是拉伸图。
3、脆性材料与塑性材料的应力-应变曲线有什么区别?脆性材料的力学性能可以用哪两个指标表征?答:如下图所示,左图近似为一直线,只有弹性变形阶段,没有塑性变形阶段,在弹性变形阶段断裂,说明是脆性材料。
右图为弯钩形曲线,既有弹性变形阶段,又有塑性变形阶段,在塑性变形阶段断裂,说明是塑性材料。
脆性材料力学性能用“弹性模量“和”脆性断裂强度”来描述。
4、塑性材料的应力-应变曲线有哪两种基本形式?如何根据应力-应变曲线确定拉伸性能?答:分为低塑性和高塑性两种,如下图所示。
左图曲线有弹性变形阶段与均匀塑性变形阶段,没有颈缩现象,曲线在最高点处中断,即在均匀塑性变形阶段断裂,且塑性变形量小,说明是低塑性材料。
右图曲线有弹性变形阶段,均匀塑性变形阶段,颈缩后的局集塑性变形阶段,曲线在经过最高点后向下延伸一段再中断,即在颈缩后的局集塑性变形阶段断裂,且塑性变形量大,说明是高塑性材料。
5、何谓工程应力和工程应变?何谓真应力和真应变?两者之间有什么定量关系?答:6、如何测定板材的断面收缩率?答:断面收缩率是材料本身的性质,与试件的几何形状无关,其测试方法见P8。
第四章缺口试件的力学性能前面介绍的拉伸、压缩、弯曲、扭转乃至硬度试验等静载荷试验方法,都是采用横截面均匀的光滑试样,但实际生产中存在的构件,绝大多数都不是截面均匀无变化的的光滑体,往往存在着截面的急剧变化,例如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等。
这种截面变化的部位可以视为缺口(切口)。
由于缺口的存在,在载荷(静载荷或冲击载荷)作用下,缺口截面上的应力状态将发生变化,产生“缺口效应”,从而影响到金属材料的力学性能。
§4.1 静载荷作用下的缺口效应一、缺口试样在弹性状态下的局部应力和局部应变1. 应力集中和应变集中一薄板的中心边缘开缺口,并承受拉应力σ作用。
缺口部分不能承受外力,这一部分外力要有缺口截面其他部分材料来的承担,因而缺口根部的应力最大。
或者说,远离缺口处的截面上的力线的分布是均匀的,而在缺口截面上,由于截面突然缩小,力线密度增加,越靠近缺口根部力线越密,出现所谓应力集中的现象。
应力集中程度以应力集中系数表示之:maxmaxltnlnKσσσσ=-缺口截面轴向最大应力-缺口净截面平均轴向应力(名义应力)K t 和材料性质无关,只决定于缺口几何形状(所以又称为几何应力集中因子或弹性应力集中因子)。
例如:12t cK ρ=+圆孔:3t K ≈(无限宽板)应力集中必然导致应变集中,在弹性状态下,有:E σε=则: max max l t n l t n n K K K E Eεσσεεε⋅===⋅=⋅ 即在弹性状态下,应力集中系数和应变集中系数相同。
2. 多轴应力状态由图可见,薄板开有缺口承受拉应力后,缺口根部还出现了横向拉伸应力σx ,它是由材料的横向收缩引起的。
可以设想,加入沿x 方向将薄板分成很多细小的纵向拉伸试样,每一个小试样受拉伸后都能产生自由变形。
根据小试样所处的位置不同,它们所受的纵向拉伸应力σy 大小也不一样,越靠近缺口根部,σy 越大,相应的纵向应变εy 也越大(应力应变集中)。
每一个小试样在产生纵向应变εy 的同时,必然也要产生横向收缩应变εx ,且εx =-νεy 。
如果横向应变能自由进行,则每个小试样必然相互分离开来。
但是,实际上薄板是弹性连续介质,不允许各部分自由收缩变形。
由于这种约束,各个小试样在相邻界面上必然产生横向拉应力σx ,以阻止横向收缩分离。
因此,σx 的出现是金属变形连续性要求的结果。
在缺口截面上σx 的分布是先增后减,这是由于缺口根部金属能自由收缩,所以根部的σx =0。
自缺口根部向内部发展,收缩变形阻力增大,因此σx 逐渐增加。
当增大到一定数值后,随着σy 的不断减小,σx 也随之减小。
(薄板,平面应力,z 向变形自由,σz =0,有单向拉伸状态转变为两向拉伸状态) 如是厚板,处于平面应变状态,垂直于板厚方向上的收缩变形同样收到约束,σz =ν(σx +σy )。
厚板缺口单向拉伸时,缺口根部为两向拉伸应力状态,缺口内侧为三向拉伸应力状态。
缺口处出现应力集中和多轴拉伸应力状态后,使缺口根部的应力状态柔度因数α降低(<0.5),金属难以产生塑性变形(或者说,要使试样发生屈服,就需要更高的轴向应力,因τmax =(σ1-σ3)/2,σ3↑,要想屈服,必须σ1↑),则:➢ 屈服强度增加(缺口强化)sn sQ σσ=,称为约束系数 ➢ 材料的脆性增加(脆断倾向增加,缺口脆性)此外,在缺口圆柱试样中,切口根部处于两向拉伸应力作用下(σl 、σθ),可知:l t n K σσ=;0r σ=;l t n K θσνσνσ==Mises 等效应力:()1221e t n K σσνν=-+ ()1221e t t nK K σννσ'==-+ 称为复合应力集中因子(≈0.88K t )3. 局部应变速率的增大 试验机夹头移动速率:dl v dt=, 试样应变速率:d dtεε=&, 由dl d lε=可得: d dl v dt ldt lεε===& 可知:试验机的夹头移动速率恒定时,试样应变速率的大小取决于试样的工作长度。
(如l 0为100mm 的试样,v=0.01mm/s ,应变速率ε&为10-4/s ),而对于缺口处相当于l 0=1mm 的试样,应变速率为10-2/s ,换言之,相对于光滑试样而言,即使对于这种不太尖锐的缺口,缺口处的应变速率ε&已提高了两个数量级。
应变速率的急剧增加将带来严重后果(后面讲)。
二、缺口试样在弹塑性状态下的局部应力和局部应变1. 应力重分布对于塑性较好的材料,随外加载荷的增大,从缺口根部开始出现塑性变形,。
而且塑性区逐渐扩大,直至整个截面上都产生塑性变形,应力将重新分布。
以厚板为例,根据Tresca 屈服准则,金属屈服的条件是σ1-σ3=σs (或σy -σx =σs )。
在缺口根部,σx =0,σy 最大,因此,随着载荷的增加,σy 增加,在缺口根部最先满足屈服条件σy -σx =σs ,首先屈服,产生塑性变形,该处应力σy得到松弛(不考虑硬化,σy =σs ),导致应力峰值向内部移动,峰值之前出现所谓的“塑性区”,峰值成为塑性区和弹性区的分界线(在塑性区中,由于的σy 下降,σx 、σz 也随之下降)。
当然,随着峰值的内移,σx ≠0,需要更大的σy 才能保证塑性变形连续进行下去。
随着载荷的增加,塑性变形逐步向内部转移,各应力峰值也逐步向中心移去,直至缺口截面的全面屈服,这时,应力峰值处于试样中心(颈缩就是这样一种状态)。
2. 弹塑性条件下的局部应变在绝大多数的零构件的设计中,其名义应力总是低于屈服强度,但由于应力集中,切口根部的局部应力有可能高于屈服强度。
因此,零构件在整体上是弹性的,而在切口根部产生了塑性应变,形成塑性区。
且切口根部局部应变最大。
这里,切口根部局部应力与名义应力之比定义为弹塑性应力集中因子:nK σσσ= 弹塑性状态下的应变集中因子仍以K ε表示之。
根据Neuber 于1961年提出的法则(诺贝尔法则):2t n nK K K σεσεσε=⋅=⋅ (弹性情况:t K K K σε==)则:2..n n t K σεσε⋅=Neuber 关系虽然不能给出缺口顶端一定深度范围内塑性应力、应变的分布,但可求出缺口顶端表面的应力、应变值。
如载荷一定,试样(缺口尺寸)一定,则弹塑性条件下的局部应力和局部应变可以根据真应力-真应变曲线获得。
也可根据Hollomon 方程求取:n n p K K σεε=≈;n n E σε=;2.n n n E σσε=()121n t n K EK σε+⎡⎤=⎢⎥⎢⎥⎣⎦综上所述,机件上的缺口造成了三向应力应变状态和应力应变集中,使机件的安全性受到威胁,因此,必须采用缺口试样进行静载荷力学性能试验,以确定材料对不同缺口的敏感性。
§4.2 缺口试样静拉伸试验一、试验方法切口圆柱试样 双切口平板试样切口深度:t切口根部曲率半径:ρ;切口张角:ω偏置5mm二、测试指标1. 切口强度(切口试样的抗拉强度)(缺口强度)max24bnnPdσπ=2. 切口强度比(切口敏感性)(缺口强度比)bnbNSRσσ=若NSR>1.0,表示材料对缺口不敏感,缺口处发生了塑性变形的扩展,比值越大,塑性扩展量越大,脆化倾向越小,称为缺口韧性,若NSR<1.0,表示材料对缺口敏感,缺口处还未发生明显的塑性变形就出现低应力脆断,称为缺口脆性。
(缺口形状强烈影响缺口敏感性,为了便于比较,缺口形状和尺寸规定严格,其中ω=45º~60º;ρ=0.1~0.2mm;d n=7~15mm;d n/d0=0.7~0.85;所用光滑试样直径应等于d n)三、断口形貌➢a)脆性金属,随外载荷增加,应力分布不变,但应力值随之增大,平均应力σn尚低时,因应力集中形成的处于缺口根部表面的最大应力σlmax有可能超过材料的断裂抗力,此处萌生裂纹,引起过早的脆性断裂。
NSR<1;➢b)有一定塑性的材料,因外载荷增加,应力峰值σlmax增加(应变硬化),且位置内移,当达到材料的断裂抗力时,在此处启裂(多为微孔聚集型,因有塑性),表现为亚表面存在纤维区。
此时,NSR可以稍低于1,或稍大于1,视塑性区大小而定;➢c)塑性好的材料,随外载荷增加,塑性区可以扩展到试样中心,出现全面屈服,应力峰值σlmax位于试样中心,如缺口较钝(K t较小,<2),则类似于光滑试样出现的颈缩,中心启裂,形成杯锥状断口;如缺口尖锐(K t较大,>6),断裂由塑性应变集中引起,因此,断裂由外向内而完成,形成环心圆的纤维层断口。
两种情况均有NSR>1。
(注意:不能把NSR>1误认为缺口使材料得到了强化,似乎缺口的存在是一件好事,实际材料并非得到强化,而是缺口几何的存在造成多轴应力状态阻止了塑性变形的发展,阻止了颈缩和载荷下降,使得缺口试样的缺口强度σbn 接近了材料的实际断裂抗力S k(σf))§4.3 切口强度的估算及切口敏感性再评价一、切口强度的估算1. 基本假设含缺口的构件的断裂可能包含三个阶段:①裂纹在缺口根部起始;②裂纹的亚临界扩展,裂纹由初始尺寸扩展到临界尺寸(a c);③当裂纹扩展到临界尺寸时,即当a=a c 时,缺口试件最终断裂。
裂纹在切口根部形成,可以假定是由切口根部材料的材料元的断裂引起的。
裂纹起始后的尺寸a近似地等于切口深度(a n)加起始裂纹尺寸a i,通常a n>>a i,因此有a=a n+a i≈a n。
假设裂纹在根部形成后,其长度立即达到临界裂纹长度,则切口试件将在不发生亚临界裂纹扩展的条件下断裂,则切口根部裂纹形成应力近似地等于切口试件的断裂应力,即切口强度。
2. 脆性材料的切口强度脆性材料在发生塑性屈服之前发生断裂,其断裂遵循正应力断裂准则。
但局部应力达到材料的断裂强度σf 时,缺口根部材料元发生断裂而形成裂纹,有切口根部形成应力:t ni f ni f t K K σσσσ=⇒=根据上述假设,有切口强度:bn ni f t b t K K σσσσ===3. 高塑性材料的切口强度高塑性材料遵循正应变断裂准则。
当局部应变达到材料的断裂延性εf 时,缺口根部材料元发生断裂而形成裂纹,在薄板(平面应力)条件下(缺口根部表面为单向拉伸应力状态),根据前述可得:()121n t n f K EK σεε+⎡⎤==⎢⎥⎢⎥⎣⎦→t ni K σ=ni t σ=在厚板(平面应变)条件下,由于应力状态的变化,材料的断裂强度和断裂延性值要发生变化:()**1.05~1.070.30f f f f σσεε==且应力集中因子应以复合应力集中因子(0.88K t )代入:从而得到:ni t σ=统一为:1.00.64ni t σαα⎧==⎨⎩平面应力平面应变 由上述假设,得切口强度:1.00.64bn tσαα⎧==⎨⎩平面应力平面应变(因平面应力条件下,裂纹的亚临界扩展不可忽略,因此根据上述公式得到的切口强度的估算值略低于实测值,或者说,应是实测值的下界)4. 低塑性材料的切口强度低塑性材料,即使是薄板,由于沿厚度方向的应力σz 无法通过塑性变形而得到释放,因此,其切口根部仍处于平面应变状态下,α=0.64。