材料力学性能第四章
- 格式:doc
- 大小:3.35 MB
- 文档页数:16
材料⼒学性能第⼀章:绪论⼀、需要掌握的概念材料⼒学性能的定义、弹性变形、线弹性、滞弹性、弹性后效、弹性模量、泊松⽐、弹性⽐功、体弹性模量⼆、需要重点掌握的内容 1、弹性模量的物理本质以及影响弹性模量的因素; 2、掌握根据原⼦间势能函数推倒简单结构材料弹性模量的⽅法; 3、弹性⽐功的计算,已知材料的应⼒应变曲线能求出材料卸载前和卸载后的弹性⽐功。
材料⼒学性能的定义 是指材料(⾦属和⾮⾦属等)及由其所加⼯成的⼯件在外⼒(拉、压、弯曲、扭转、剪切、切削等)作⽤下⾬加⼯、成型、使役、实效等过程中表现出来的性能(弹塑性、强韧性、疲劳、断裂及寿命等)。
这些性能通常受到的环境(湿度、温度、压⼒、⽓氛等)的影响。
强度和塑性和结构材料永恒的主题!弹性变形 是指材料的形状和尺⼨在外⼒去除后完全恢复原样的⾏为。
线弹性 是指材料的应⼒和应变成正⽐例关系。
就是上图中弹性变形⾥前⾯的⼀段直线部分。
杨⽒模量(拉伸模量、弹性模量) 我们刚刚谈到了线弹性,在单轴拉伸的条件下,其斜率就是杨⽒模量(E)。
它是⽤来衡量材料刚度的材料系数(显然杨⽒模量越⼤,那么刚度越⼤)。
杨⽒模量的物理本质 样式模量在给定环境(如温度)和测试条件下(如应变速率)下,晶体材料的杨⽒模量通常是常数。
杨⽒模量是原⼦价键强度的直接反应。
共价键结合的材料杨⽒模量最⾼,分⼦键最低,⾦属居中。
对同⼀晶体,其杨⽒模量可能随着晶体⽅向的不同⽽不同,俗称各向异性。
模量和熔点成正⽐例关系。
影响杨⽒模量的因素内部因素 --- 原⼦半径 过渡⾦属的弹性模量较⼤,并且当d层电⼦数为6时模量最⼤。
外部因素1. 温度:温度升⾼、原⼦间距增⼤,原⼦间的结合⼒减弱。
因此,通常来说,杨⽒模量随着温度的上升⽽下降。
2. 加载速率:⼯程技术中的加载速率⼀般不会影响⾦属的弹性模量。
3. 冷变形:冷变形通常会稍稍降低⾦属的弹性模量,如钢在冷变形之后,其表观样式模量会下降4% - 6%。
泊松⽐简单来说,泊松⽐就是单轴拉伸或压缩时材料横向应变和轴向应变⽐值的负数。
第4章金属在冲击载荷下的力学性能◆4.1 冲击载荷下金属变形和断裂的特点◆4.2 冲击弯曲和冲击韧性◆4.3 低温脆性◆4.4 影响韧脆转变温度的冶金因素许多机器零件在实际工作中要受到冲击载荷的作用,如冲床、锻锤、汽车行驶通过道路上的凹坑、飞机起飞和降落等。
冲击载荷属于动态载荷,而且,温度降低和加载速度提高都会增加材料的脆断倾向。
本章主要讨论冲击载荷作用下材料的性能评定和冷脆倾向及其影响因素。
4.1 冲击载荷下金属变形和断裂的特点一、加载速率冲击载荷与静载荷的主要区别:加载速率不同 加载速率:载荷施加于机件的速率,用单位时间内增加的应力表示(σ=d σ/dt ),单位为MPa/s 。
冲击载荷加载速率佷高静载荷加载速率低形变速率:单位时间内的变形量。
加载速率↑,形变速率↑二、形变速率用形变速率可以间接地反映加载速率。
表示方法绝对形变速率:单位时间内试件长度的增长率V =dl /dt ,单位为m/s相对形变速率(应变速率):单位时间内应变的变化量de d ετ∙=(e —真应变)三、加载状态划分现代机械中,不同机件的应变速率范围:10−6/s ~106/s •静载:应变速率在 ≤ 10−5/s 范围,金属材料的力学性能变化不明显;•准静态: =10−5/s ~ 10−2/s (相当于静载);•动态: ≥ 10−2/s ,金属材料的力学性能变化明显。
必须考虑加载速度对力学性能的影响。
ε∙ε∙ε∙静拉伸试验 :10−5/s ~ 10−2/s冲击试验 : 102/s ~ 104/s四、形变速率对弹性变形的影响弹性变形受应变速率影响不大原因:弹性变形传播速度较快,是以声速在介质中传播;普通摆锤冲击试验时绝对变形速度:5~5.5m/s冲击弹性变形总能紧跟上冲击外力的变化因此,弹性变形可以及时响应冲击载荷。
应变速率对金属的弹性行为及弹性模量不会产生影响。
五、形变速率对塑性变形的影响形变速率对塑性变形及断裂过程有显著影响。
材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P15 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
材料力学性能教案第一章:材料力学性能概述教学目标:1. 理解材料力学性能的概念及其重要性。
2. 掌握材料力学性能的主要指标。
3. 了解不同材料的力学性能特点。
教学内容:1. 材料力学性能的概念:定义、重要性。
2. 材料力学性能的主要指标:弹性模量、屈服强度、抗拉强度、韧性、硬度等。
3. 不同材料的力学性能特点:金属材料、非金属材料、复合材料等。
教学活动:1. 引入讨论:为什么了解材料的力学性能很重要?2. 讲解材料力学性能的概念及其重要性。
3. 通过示例介绍不同材料的力学性能特点。
4. 练习计算材料力学性能指标。
作业:1. 复习材料力学性能的主要指标及其计算方法。
2. 选择一种材料,描述其力学性能特点,并解释其在实际应用中的作用。
第二章:弹性模量教学目标:1. 理解弹性模量的概念及其物理意义。
2. 掌握弹性模量的计算方法。
3. 了解弹性模量在不同材料中的变化规律。
教学内容:1. 弹性模量的概念:定义、物理意义。
2. 弹性模量的计算方法:胡克定律、应力-应变关系。
3. 弹性模量在不同材料中的变化规律:金属材料、非金属材料、复合材料等。
教学活动:1. 复习上一章的内容,引入弹性模量的概念。
2. 讲解弹性模量的计算方法,并通过示例进行演示。
3. 通过实验或示例观察不同材料的弹性模量变化规律。
作业:1. 复习弹性模量的概念及其计算方法。
2. 完成弹性模量的计算练习题。
第三章:屈服强度与抗拉强度教学目标:1. 理解屈服强度与抗拉强度的概念及其物理意义。
2. 掌握屈服强度与抗拉强度的计算方法。
3. 了解屈服强度与抗拉强度在不同材料中的变化规律。
教学内容:1. 屈服强度与抗拉强度的概念:定义、物理意义。
2. 屈服强度与抗拉强度的计算方法:应力-应变关系、极限状态方程。
3. 屈服强度与抗拉强度在不同材料中的变化规律:金属材料、非金属材料、复合材料等。
教学活动:1. 复习上一章的内容,引入屈服强度与抗拉强度的概念。
第四章 缺口试件的力学性能前面介绍的拉伸、压缩、弯曲、扭转乃至硬度试验等静载荷试验方法,都是采用横截面均匀的光滑试样,但实际生产中存在的构件,绝大多数都不是截面均匀无变化的的光滑体,往往存在着截面的急剧变化,例如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等。
这种截面变化的部位可以视为缺口(切口)。
由于缺口的存在,在载荷(静载荷或冲击载荷)作用下,缺口截面上的应力状态将发生变化,产生“缺口效应”,从而影响到金属材料的力学性能。
§4.1 静载荷作用下的缺口效应一、缺口试样在弹性状态下的局部应力和局部应变1. 应力集中和应变集中一薄板的中心边缘开缺口,并承受拉应力σ作用。
缺口部分不能承受外力,这一部分外力要有缺口截面其他部分材料来的承担,因而缺口根部的应力最大。
或者说,远离缺口处的截面上的力线的分布是均匀的,而在缺口截面上,由于截面突然缩小,力线密度增加,越靠近缺口根部力线越密,出现所谓应力集中的现象。
应力集中程度以应力集中系数表示之:max max l t nl n K σσσσ=-缺口截面轴向最大应力-缺口净截面平均轴向应力(名义应力)K t 和材料性质无关,只决定于缺口几何形状(所以又称为几何应力集中因子或弹性应力集中因子)。
例如:1t K =+圆孔:3t K ≈(无限宽板)应力集中必然导致应变集中,在弹性状态下,有:E σε=则: max max l t n l t n n K K K E Eεσσεεε⋅===⋅=⋅ 即在弹性状态下,应力集中系数和应变集中系数相同。
2. 多轴应力状态由图可见,薄板开有缺口承受拉应力后,缺口根部还出现了横向拉伸应力σx ,它是由材料的横向收缩引起的。
可以设想,加入沿x 方向将薄板分成很多细小的纵向拉伸试样,每一个小试样受拉伸后都能产生自由变形。
根据小试样所处的位置不同,它们所受的纵向拉伸应力σy 大小也不一样,越靠近缺口根部,σy 越大,相应的纵向应变εy 也越大(应力应变集中)。
每一个小试样在产生纵向应变εy 的同时,必然也要产生横向收缩应变εx ,且εx =-νεy 。
如果横向应变能自由进行,则每个小试样必然相互分离开来。
但是,实际上薄板是弹性连续介质,不允许各部分自由收缩变形。
由于这种约束,各个小试样在相邻界面上必然产生横向拉应力σx ,以阻止横向收缩分离。
因此,σx 的出现是金属变形连续性要求的结果。
在缺口截面上σx 的分布是先增后减,这是由于缺口根部金属能自由收缩,所以根部的σx =0。
自缺口根部向内部发展,收缩变形阻力增大,因此σx 逐渐增加。
当增大到一定数值后,随着σy 的不断减小,σx 也随之减小。
(薄板,平面应力,z 向变形自由,σz =0,有单向拉伸状态转变为两向拉伸状态)如是厚板,处于平面应变状态,垂直于板厚方向上的收缩变形同样收到约束,σz =ν(σx +σy )。
厚板缺口单向拉伸时,缺口根部为两向拉伸应力状态,缺口内侧为三向拉伸应力状态。
缺口处出现应力集中和多轴拉伸应力状态后,使缺口根部的应力状态柔度因数α降低(<0.5),金属难以产生塑性变形(或者说,要使试样发生屈服,就需要更高的轴向应力,因τmax =(σ1-σ3)/2,σ3↑,要想屈服,必须σ1↑),则:屈服强度增加(缺口强化)sn sQ σσ=,称为约束系数 材料的脆性增加(脆断倾向增加,缺口脆性)此外,在缺口圆柱试样中,切口根部处于两向拉伸应力作用下(σl 、σθ),可知:l t n K σσ=;0r σ=;l t n K θσνσνσ==Mises 等效应力:()1221e t n K σσνν=-+ ()1221e t t nK K σννσ'==-+ 称为复合应力集中因子(≈0.88K t )3. 局部应变速率的增大 试验机夹头移动速率:dl v dt=, 试样应变速率:d dtεε=, 由dl d l ε=可得: d dl v dt ldt lεε=== 可知:试验机的夹头移动速率恒定时,试样应变速率的大小取决于试样的工作长度。
(如l 0为100mm 的试样,v=0.01mm/s ,应变速率ε为10-4/s ),而对于缺口处相当于l 0=1mm 的试样,应变速率为10-2/s ,换言之,相对于光滑试样而言,即使对于这种不太尖锐的缺口,缺口处的应变速率ε已提高了两个数量级。
应变速率的急剧增加将带来严重后果(后面讲)。
二、缺口试样在弹塑性状态下的局部应力和局部应变1. 应力重分布对于塑性较好的材料,随外加载荷的增大,从缺口根部开始出现塑性变形,。
而且塑性区逐渐扩大,直至整个截面上都产生塑性变形,应力将重新分布。
以厚板为例,根据Tresca 屈服准则,金属屈服的条件是σ1-σ3=σs (或σy -σx =σs )。
在缺口根部,σx =0,σy 最大,因此,随着载荷的增加,σy 增加,在缺口根部最先满足屈服条件σy -σx =σs ,首先屈服,产生塑性变形,该处应力σy得到松弛(不考虑硬化,σy =σs ),导致应力峰值向内部移动,峰值之前出现所谓的“塑性区”,峰值成为塑性区和弹性区的分界线(在塑性区中,由于的σy 下降,σx 、σz 也随之下降)。
当然,随着峰值的内移,σx ≠0,需要更大的σy 才能保证塑性变形连续进行下去。
随着载荷的增加,塑性变形逐步向内部转移,各应力峰值也逐步向中心移去,直至缺口截面的全面屈服,这时,应力峰值处于试样中心(颈缩就是这样一种状态)。
2. 弹塑性条件下的局部应变在绝大多数的零构件的设计中,其名义应力总是低于屈服强度,但由于应力集中,切口根部的局部应力有可能高于屈服强度。
因此,零构件在整体上是弹性的,而在切口根部产生了塑性应变,形成塑性区。
且切口根部局部应变最大。
这里,切口根部局部应力与名义应力之比定义为弹塑性应力集中因子:nK σσσ= 弹塑性状态下的应变集中因子仍以K ε表示之。
根据Neuber 于1961年提出的法则(诺贝尔法则):2t n nK K K σεσεσε=⋅=⋅ (弹性情况:t K K K σε==)则:2..n n t K σεσε⋅=Neuber 关系虽然不能给出缺口顶端一定深度范围内塑性应力、应变的分布,但可求出缺口顶端表面的应力、应变值。
如载荷一定,试样(缺口尺寸)一定,则弹塑性条件下的局部应力和局部应变可以根据真应力-真应变曲线获得。
也可根据Hollomon 方程求取:n n p K K σεε=≈;n n E σε=;2.n n n E σσε=()121n t n K EK σε+⎡⎤=⎢⎥⎢⎥⎣⎦综上所述,机件上的缺口造成了三向应力应变状态和应力应变集中,使机件的安全性受到威胁,因此,必须采用缺口试样进行静载荷力学性能试验,以确定材料对不同缺口的敏感性。
§4.2 缺口试样静拉伸试验一、试验方法切口圆柱试样 双切口平板试样切口深度:t切口根部曲率半径:ρ;切口张角:ω偏置5mm二、测试指标1. 切口强度(切口试样的抗拉强度)(缺口强度)max 24bn nP d σπ= 2. 切口强度比(切口敏感性)(缺口强度比)bn bNSR σσ= 若NSR>1.0,表示材料对缺口不敏感,缺口处发生了塑性变形的扩展,比值越大,塑性扩展量越大,脆化倾向越小,称为缺口韧性,若NSR<1.0,表示材料对缺口敏感,缺口处还未发生明显的塑性变形就出现低应力脆断,称为缺口脆性。
(缺口形状强烈影响缺口敏感性,为了便于比较,缺口形状和尺寸规定严格,其中ω=45º~60º;ρ=0.1~0.2mm ;d n =7~15mm ;d n /d 0=0.7~0.85;所用光滑试样直径应等于d n )三、断口形貌a )脆性金属,随外载荷增加,应力分布不变,但应力值随之增大,平均应力σn 尚低时,因应力集中形成的处于缺口根部表面的最大应力σlmax 有可能超过材料的断裂抗力,此处萌生裂纹,引起过早的脆性断裂。
NSR<1;b )有一定塑性的材料,因外载荷增加,应力峰值σlmax 增加(应变硬化),且位置内移,当达到材料的断裂抗力时,在此处启裂(多为微孔聚集型,因有塑性),表现为亚表面存在纤维区。
此时,NSR可以稍低于1,或稍大于1,视塑性区大小而定;c)塑性好的材料,随外载荷增加,塑性区可以扩展到试样中心,出现全面屈服,应力峰值σlmax位于试样中心,如缺口较钝(K t较小,<2),则类似于光滑试样出现的颈缩,中心启裂,形成杯锥状断口;如缺口尖锐(K t较大,>6),断裂由塑性应变集中引起,因此,断裂由外向内而完成,形成环心圆的纤维层断口。
两种情况均有NSR>1。
(注意:不能把NSR>1误认为缺口使材料得到了强化,似乎缺口的存在是一件好事,实际材料并非得到强化,而是缺口几何的存在造成多轴应力状态阻止了塑性变形的发展,阻止了颈缩和载荷下降,使得缺口试样的缺口强度σbn 接近了材料的实际断裂抗力S k(σf))§4.3 切口强度的估算及切口敏感性再评价一、切口强度的估算1. 基本假设含缺口的构件的断裂可能包含三个阶段:①裂纹在缺口根部起始;②裂纹的亚临界扩展,裂纹由初始尺寸扩展到临界尺寸(a c);③当裂纹扩展到临界尺寸时,即当a=a c 时,缺口试件最终断裂。
裂纹在切口根部形成,可以假定是由切口根部材料的材料元的断裂引起的。
裂纹起始后的尺寸a近似地等于切口深度(a n)加起始裂纹尺寸a i,通常a n>>a i,因此有a=a n+a i≈a n。
假设裂纹在根部形成后,其长度立即达到临界裂纹长度,则切口试件将在不发生亚临界裂纹扩展的条件下断裂,则切口根部裂纹形成应力近似地等于切口试件的断裂应力,即切口强度。
2. 脆性材料的切口强度脆性材料在发生塑性屈服之前发生断裂,其断裂遵循正应力断裂准则。
但局部应力达到材料的断裂强度σf 时,缺口根部材料元发生断裂而形成裂纹,有切口根部形成应力:t ni f ni f t K K σσσσ=⇒=根据上述假设,有切口强度:bn ni f t b t K K σσσσ===3. 高塑性材料的切口强度高塑性材料遵循正应变断裂准则。
当局部应变达到材料的断裂延性εf 时,缺口根部材料元发生断裂而形成裂纹,在薄板(平面应力)条件下(缺口根部表面为单向拉伸应力状态),根据前述可得:()121n t n f K EK σεε+⎡⎤==⎢⎥⎢⎥⎣⎦→t ni K σ=ni t σ=在厚板(平面应变)条件下,由于应力状态的变化,材料的断裂强度和断裂延性值要发生变化:()**1.05~1.070.30f f f f σσεε==且应力集中因子应以复合应力集中因子(0.88K t )代入:从而得到:ni t σ=统一为:1.00.64ni t σαα⎧==⎨⎩平面应力平面应变 由上述假设,得切口强度:1.00.64bn tσαα⎧==⎨⎩平面应力平面应变(因平面应力条件下,裂纹的亚临界扩展不可忽略,因此根据上述公式得到的切口强度的估算值略低于实测值,或者说,应是实测值的下界)4. 低塑性材料的切口强度低塑性材料,即使是薄板,由于沿厚度方向的应力σz 无法通过塑性变形而得到释放,因此,其切口根部仍处于平面应变状态下,α=0.64。