六年级数学——抓住不变量解题
- 格式:docx
- 大小:30.94 KB
- 文档页数:3
六年级数学分数应用题-抓不变量(2)——抓不变量解题姓名_______________ 班级 _______________一、填空题1.甲仓库有粮食180吨;乙仓库有粮食120吨;甲仓库运出一部分到乙仓库后;乙仓库与甲仓库的粮食比为7:3。
甲仓库运了()吨粮食到乙仓库。
2.甲乙两车间原有人数比是3:2;甲车间调48人到乙车间后;甲车间与乙车间的人数比是2:3。
两车间原有()人。
3.一班和二班人数比是8:7;如果将一班的3名同学调到二班去;则两个班人数相等。
两个班共有学生()人。
4.某车间男女工人人数比是2:5;现调走10名女工;现在男女人数之比是4:9;原来车间男工()人;女工人有()人。
5.一个书架有上下两层。
上层放书的本书与下层的比是8:5;如果从上层拿12本放入下层;那么两层放的书同样多。
这个书架上层原有图书()本;下层原有图书()本。
二、解决问题。
1、操场上有108名同学在锻炼身体;其中女生占29;后来又来了几名女生;这时女生人数达到男生的37。
后来有来了几名女生?2、第一桶柴油是第二桶的6倍;从第一桶取出12千克柴油加入第二桶;这时第一桶柴油的重量是第二桶的4倍。
原来第一桶有柴油多少千克?3、两个工程队;原来甲队人员比乙队少14;后来甲队增加21人;这时乙队人员是甲队的89;现在甲队有多少人? 4、新兴小学六年级有两个班;六年一班有学生48人;六年二班有学生56人;两个班各转出相同的人数后;六年二班人数还比六年一班人数多211 ;两个班各转出多少人?5、有两根蜡烛;一根长18cm;另一根长16cm;把两根蜡烛都烧掉同样的长度之后;短的长度是长的一根的56 ;求每根蜡烛都烧掉了多少厘米?6、一杯盐水;盐占盐水的15 ;现在把这杯水蒸发;蒸发了20克水后;盐占盐水的14 ;原来盐和水各多少千克?7、教室里有36个学生;其中女生占 59;后来又来了几个女生;这时候女生占总人数的1119 ;后来又来了多少个女生?8、某科技兴趣小组中女生占712;后来又转来了15女生;这样女生占总人数的35。
六年级奥数——抓“不变量”解题一、知识要点一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
二、精讲精练【例题1】将4361 的分子与分母同时加上某数后得79,求所加的这个数。
解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是分母的79 ,由此可求出新分数的分子和分母。
”分母:(61-43)÷(1-79 )=81分子:81×79 =6381-61=20或63-43=20解法二:4361 的分母比分子多18,79的分母比分子多2,因为分数的 与分母的差不变,所以将79的分子、分母同时扩大(18÷2=)9倍。
① 79 的分子、分母应扩大:(61-43)÷(9-7)=9(倍)② 约分后所得的79 在约分前是:79 =7×99×9 =6381③ 所加的数是81-61=20答:所加的数是20。
练习1:1、 分数97181 的分子和分母都减去同一个数,新的分数约分后是25 ,那么减去的数是多少?2、 分数113 的分子、分母同加上一个数后得35 ,那么同加的这个数是多少?3、319 的分子、分母加上同一个数并约分后得57,那么加上的数是多少? 4、 将5879 这个分数的分子、分母都减去同一个数,新的分数约分后是23,那么减去的数是多少?【例题2】将一个分数的分母减去2得45 ,如果将它的分母加上1,则得23 ,求这个分数。
解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得45”可知,分母比分子的54 倍还多2。
由“分母加1得23 ”可知,分母比分子的32 倍少1,从而将原题转化成一个盈亏问题。
六年级奥数——抓“不变量”解题一、知识要点一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
二、精讲精练【例题1】437将的分子与分母同时加上某数后得,求所加的这个数。
619解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是7分母的,由此可求出新分数的分子和分母。
”97分母:(61-43)÷(1-)=8197分子:81×=63981-61=20或63-43=20437解法二:的分母比分子多18,的分母比分子多2,因为分数的与分母的差不变,所以6197将的分子、分母同时扩大(18÷2=)9倍。
97①的分子、分母应扩大:(61-43)÷(9-7)=9(倍)9777×963②约分后所得的在约分前是:==98199×9③所加的数是81-61=20答:所加的数是20。
1练习1:9721、分数的分子和分母都减去同一个数,新的分数约分后是,那么减去的数是多少?1815132、分数的分子、分母同加上一个数后得,那么同加的这个数是多少?13535 的分子、分母加上同一个数并约分后得、,那么加上的数是多少?31975824、将这个分数的分子、分母都减去同一个数,新的分数约分后是,那么减去的数是793多少?【例题2】42将一个分数的分母减去2得,如果将它的分母加上1,则得,求这个分数。
534解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得”5523可知,分母比分子的倍还多2。
由“分母加1得”可知,分母比分子的倍少1,432从而将原题转化成一个盈亏问题。
35分子:(2+1)÷(-)=12243分母:12× -1=172解法二:两个新分数在未约分时,分子相同。
单位1的转化抓住不变量例1、有甲、乙两个粮库,原来甲粮库存粮的吨数是乙粮库的75。
如果从乙粮库调6吨粮食到甲,甲粮库存粮的吨数就是乙粮库的54。
问原来甲、乙粮库各存粮多少吨?分析:抓住甲、乙粮库总的存粮吨数保持不变。
解:6÷(544+-755+)=6÷361=216(吨)216×755+=90(吨) 甲216×757+=126(吨) 乙答:甲粮库存粮90吨,乙粮库存粮126吨。
例2、小芳在看一本小说,晚饭前,已看的页数是未看的71,晚饭后她又看了8页这时已看的页数是未看的61,求这本小说共有多少页?分析:抓住小芳又看了8页的部分和所对应的分率,求小说的总页数,用除法。
解:8÷(611+-711+)=448(页)答:这本小说共有448页。
例3、育才小学六年级学生中女生占127,后来又转来了15名女生,这样女生占六年级总人数的53,求六年级原来有学生多少人?分析:抓住“后来转来的15名女生”的部分和它多对应的分率,求“六年级学生总数”,用除法。
解:15÷[53÷(1-53)-127÷(1-127)]=15÷101=150(人) 男生150÷(1-127)=360(人)答:六年级原来有学生360人。
例4、甲乙二人共同生产一批零件,甲生产的是乙的35。
如果甲把自己生产的零件给乙55个,甲生产的就是乙的43,问甲、乙两人各生产多少个零件?分析:抓住“55个零件”和它所对应的分率,先求出甲、乙二人共同生产的零件总数。
解:55÷(535+-433+)=55÷5611=280(个)280×535+=175(个) 甲280-175=105(个) 乙答:甲生产175个零件,乙生产105个零件。
同步拔高1.有东、西两个粮库,如果从东库取出51放入西库,东库存粮的吨数是西库存粮吨数的21。
第12讲 抓不变量解题1.有关X的“灵魂⼋问”2.抓不变量解题男⽣与⼥⽣的⽐是5:3,如果把男⽣当成X,则⼥⽣为_____男⽣与⼥⽣的⽐是7:3,如果把⼥⽣当成X,则男⽣为_____男⽣与⼥⽣的⽐是5:3,如果把全班当成X,则⼥⽣为_____4男⽣是⼥⽣的 ,如果把男⽣当成X,则⼥⽣为_____94男⽣是⼥⽣的 ,如果把全班当成X,则男⽣为_____94男⽣是⼥⽣的 ,如果把⼥⽣当成X,则全班为_____94男⽣是全班的 ,如果把⼥⽣当成X,则男⽣为_____9男⽣是全班的30%,如果把男⽣当成X,则⼥⽣为_____学校合唱团男⽣⼈数是⼥⽣的40%,⼜来了3名⼥⽣后,男⽣3⼈数是⼥⽣的 .学校合唱团有男⽣多少⼈?8兄弟两⼈各有⼈⺠币若⼲元,其中弟的钱数是兄的80%,若弟给兄24元,则弟的钱数是兄的 ,求兄弟两⼈原来各有多少元?3“抓不变量解题”的⼀般步骤国庆节前⼣,六(2)班同学分成两个组打扫卫⽣,第⼀组和第⼆组⼈数⽐是7:3,后来发现第⼆组⼈⼿明显不够,于是卫⽣委员从第⼀组派5名同学到第⼆组,这时⼀、⼆两组⼈数⽐是3:2,求六(2)班共有多少名同学?去年王爷爷栽了⼀枇桃树和梨树,桃树和梨树的⽐是5:3,今年春季王爷爷⼜种了7棵梨树,这样梨树占两种树总数的 ,求现在两种有多少棵?115数学课外兴趣⼩组中,上学期男⽣占 ,这学期增加21名⼥⽣后,男⽣就只占 了,这个⼩组现有⼥⽣多少⼈?9552有两筐梨,⼄管是甲筐的 ,从甲筐取出5千克梨放⼊⼄管后,⼄筐的梨是甲筐的 ,甲、⼄两筐梨共重多少千克?5397和定部分定⽅程全搞定差不变今年妈妈54岁,⼥⼉26岁,当⼥⼉的年龄是妈妈的 之时,妈妈多少岁?239有两堆⻩沙,第⼀堆重25吨,第⼆堆重21吨.如果从这两堆中各⽤去同样多的⼀部分后,第⼆堆剩下的吨数是第⼀堆的75%.每堆⽤去的吨数是多少?。
第十二讲 抓“不变量”解题【典型例题1】将4361的分子与分母同时加上某数后得79。
求所加的这个数。
【分析】解法一:因为分数的分子与分母加上了同一个数,所以分数的分母与分子的差不变,仍是18,所以,原题转化成了一个简单的分数问题:“一个分数的分子比分母少18,且分子是分母的79,由此可求出新分数的分子和分母。
”分母:(61-43)÷(1—79)=81 分子:81×79 =6381-61=20或63-43=20解法二:4361的分母比分子多18,79的分母比分子多2。
因为分数的分母与分子差不变,所以将79的分子、分母同时扩大到原来的18÷2=9(倍)。
①79 的分子、分母应扩大到原来的:(61-43)÷(9-7)=9(倍)②约分后所得的79在约分前是:79 = 7×99×9= 4361 ③所加的数是:81-61=20”答:所加的这个数是20。
【随堂练习1】(1)分数 97181 的分子和分母都减去同一个数,新的分数约分后是 25。
求减去的这个数。
(2)分数 113 的分子、分母同加上一个数后得 35。
求同加的这个数。
【典型例题2】将一个分数的分母减去2得 45。
如果将它的分母加上1,则得 23,求这个分数。
【分析】解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得 45”可知,分母比分子的 54倍还多2。
由“分母加1得 23”可知,分母比分子的 32倍少1,从而将原题转化成一个盈亏问题。
分子:(2+1)÷(32—54)=12 分母:12×32—1=17 解法二:两个新分数在未约分时,分子相同。
①将两个分数化成分子相同的分数,且使分母相差3。
23= 46= 1218; 45= 1215②原分数的分母是:18—1=17或15+2=17 答:这个分数为 1217。
【随堂练习2】1、将一个分数的分母加上2得 79,分母加上3得 34。
小学六年级数学经典例题(一)抓不变量解题1.甲、乙两包糖果的重量的比是4 :1,如果从甲包取出10克放入乙包后,甲、乙两包糖果重量的比变为7 :5。
那么两包糖果重量的总和是多少?2。
小明读一本书,已读的和末读的页数比是1 :5。
如果再读30页,则已读的和末读的页数之比为3 :5。
这本书共有多少页?3。
运输队要运一批货物,已经运走的和剩下的比是 1 :4。
如果再运走4吨,那么运走的和剩下的比为3 :7。
这批货物共多少吨?4。
六年级二班同学分成两个小组做游戏,开始时甲、乙两个组的人数比是5:3,游戏结束时甲组有14人被抢到了乙组,这时甲、乙两组人数比是1:2.甲组原有同学多少人?5。
甲、乙两书架的数量比是4:1,如果从甲书架取出13本书放入乙书架,甲、乙两书架的数量比变为7:5,那么两书架的数量总和是多少本?6。
修一条公路,已修长度和未修长度的比是1:5,又修了490米后,已修长度和未修长度的比是3:1,这时未修公路的长度为多少米?7。
甲、乙两人原来钱数的比是3:4,后来甲又给乙50元钱,这时8。
一条公路,已修的与剩下的比是1:3,再修20千米,已修的与全长的比是2:5,这条公路长多少千米?9. 有甲、乙两个课外活动小组,甲组的人数是乙组的54,后来又从乙组调16人到甲组,这是乙组人数是甲组的43,甲、乙两组原来各有多少人?10. 甲、乙两校原有篮球只数的比是2︰1,如果甲校给乙校4只篮球,甲、乙两校篮球只数的比就是4︰3。
原来甲校有篮球多少只?11. 小明读一本书,第一天读了全书的20%,第二天读了28页,这时读的页数与剩下页数的比是5:6,小明读的这本书共有多少页?12. 小明看一本书,第一天读了一部分,已读的和未读的页数比是2:7,第二天读了68页,已读的和未读的页数比是4:5.这本书共有多少页?13. 张师傅加工一批零件,第一天完成的个数与未完成的个数比是1:4,如果再加工15个,就完成了这批零件的一半,张师傅第一天完成了多少个零件?14. 甲、乙两箱苹果的个数之比是5:2,如果从甲箱取出5个放入乙箱后,甲、乙两箱苹果的数量比是9:5,则两箱苹果共有多少个?15. 如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?16. 小明和小芳星期天一起到新华书店去买书,所带钱数的比是11:3,如果小明给15元小芳,那么小明、小芳的钱数比就是4:3.小明和小芳各带了多少钱?17. 六(2)班同学报名参加绘画兴趣组,一开始有13的人报名,后来又有5人报名,这样,参加人数与不参加人数的比是4:5,六(2)班共有多少个同学?18. 有甲、乙两个课外活动小组,甲组的人数是乙组的4/5,后来又从乙组调16人到甲组,这是乙组人数是甲组的3/4,甲、乙两组原来各有多少人?19. 乙队原有人数是甲队的。
六年级数学抓住不变量解应用题
抓住不变量解应用题(一)
1、某学校有男教师48人;占全校教师人数的80%;调入几名女教师后;女教师占全校教师人数的25%;调入女教师多少人?
2、学校阅览室有36名学生看书;其中女生占
94;后来又有几名女生来看书;这时女生人数占所有看书人数的19
9。
问:后来又有几名女生来看书?
3、现有含糖10%的糖水50千克;要将它的含糖率提高到20%;需要加糖多少千克?
4、一批葡萄运进仓库时的质量是100千克;测得含水量为99%;过一段时间;测得含水量为 98%;这时葡萄的质量是多少千克?
5、某校原有科技书和文艺书共630本;其中科技书占20%;后来又买进一些科技书;这时科技书占总数的30%;求又进进科技书多少本?
抓住不变量解应用题(二)
1、育英小学原来男、女生人数的比是7:5;后来又转来12名女同学;这时男、女生人数的比是9:7.学校现有女生多少人?
2、某车间男工人数是女工人数的2倍;若调走21个男工;那么女工人数是男工人数的2倍。
这个车间的女工有多少人?
3、甲、乙两种电话的价格之比是7:3;如果他们的价格分别上涨70元后;价格之比 是7:4。
这两种商品原来的价格各是多少元?
4、盒里装着各色圆珠笔;其中红色占
41;后来又往盒里放了8支红色圆珠笔;这时红色圆珠笔占总数的12
5;则原有红色圆珠笔多少支?
5、小强和小明各有图书若干本。
已知小强的图书本数占两人图书总数的60%;当小强借给小明20本后;小强和小明图书本数的比是2:3.两人一共有图书多少本?。
六年级下册数学同步拓展第十四讲.抓不变量解题全国通用抓“不变量”解题【知识、方法梳理】一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
【典例精讲】例1.将4361的分子与分母同时加上某数后得79,求所加的这个数。
解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是分母的79,由此可求出新分数的分子和分母。
”分母:(61-43)÷(1-79)=81分子:81×79=6381-61=20或63-43=20解法二:4361的分母比分子多18,79的分母比分子多2,因为分数的与分母的差不变,所以将79的分子、分母同时扩大(18÷2=)9倍。
①79的分子、分母应扩大:(61-43)÷(9-7)=9(倍)②约分后所得的79在约分前是:79=7×99×9=6381③所加的数是81-61=20答:所加的数是20。
练习1:1、分数97181的分子和分母都减去同一个数,新的分数约分后是25,那么减去的数是多少?2、分数113的分子、分母同加上一个数后得35,那么同加的这个数是多少?3、319的分子、分母加上同一个数并约分后得57,那么加上的数是多少?4、将5879这个分数的分子、分母都减去同一个数,新的分数约分后是23,那么减去的数是多少?例2:第 2 页第 3 页故原来的最简分数是1728。
解法二:根据题意,两个新分数的和等于原分数的2倍。
所以(57+12)÷2=1728答:原来的最简分数是1728。
练习3:1、一个最简分数,在它的分子上加一个数,这个分数就等于58。
如果在它的分子上减去同一个数,这个分数就等于12,求这个分数。
巧抓不变量解题一、基础题(1)、修一条公路,已修的和未修的比是4:3,已修了全长的()。
4 /7(2)、苹果的质量比梨少27,苹果与梨质量的比是(). 5:7(3)、一个三角形三个内角度数的比是1:2:3,这三个内角分别是()度,()度和(90)度。
(4)、把一堆煤按3:5分给甲、乙两个食堂,甲比乙少分了2.4吨,甲食堂分了(),乙食堂分了(6 )。
(5)、一桶油,用去了37,用去的与剩下的比是()。
3:4果园里有梨树、苹果树共150棵、梨树与苹果树棵树的比是3:2,梨树有多少颗?一批货物,按4:5 分给甲、乙两个车队来运,乙对共运95吨,甲对共运多少吨?95x45=76知识导航在解决分数应用题时,有些时候需要找准题目的不变量,抓不变量来解决。
共有三种形式:一是抓住和不变;二是抓住部分不变;三是抓住差不变。
以不变应万变。
例1:有含糖率为7%的糖水600克,要使含糖率变为10%,需再加入多少克糖?(部分量不变)分析糖水600克中有水:600*(1-7%)=558克,所以,现在糖水总量是:558/(1-10%)=620克那么要加糖:620-600=20克练习有含盐率15%的盐水200千克,要使含盐率降为5%,需要加水多少千克?400例2:某校合唱队人数是舞蹈队人数的32,如果将合唱队队员调10人到舞蹈队,则合唱队人数变为舞蹈队人数的78,原合唱队有多少人?(和不变)分析根据合唱队与舞蹈队的前后人数之比可知,合唱队原来占全体人数的33+2 ,后来调出10人后,占全体人数的77+8,,则全体人数有:10÷(33+2 -77+8),求出全体人数后,就能根据原来占全体人数的比求出合唱队原来有多少人了.练习某校一年级有两个班,一班人数是二班人数的35,从二班调5人到一班后,一班人数是二班的人数的79,求原来一、二班共有多少人?一班有30人,二班原来有50例3:母亲比女儿大30岁,3年后,母亲的年龄是女儿的4倍,女儿今年多少岁?解:3年后妈妈的年龄是女儿的4倍,即妈妈的年龄比女儿大4倍(4-1=3倍),刚好是她们年龄的差(30岁)。
六年级奥数第15讲抓“不变量”解题(教师版)教学目标掌握“总量不变”,“相差量不变”和“部分量不变”三种不变量思想,并能用不变量思想解决现实生活中的问题。
知识梳理一个数量的变化,往往会引起其他数量的变化。
如“某班转走3名女生”,女生人数变了,总人数也跟着变了,男生与女生、女生与总人数之间的倍数关系也变了……只有注意到这些变化,才能防止出错。
但在这些数量变化时,与它们相关的另外一些数量却没有改变。
在分析数量关系时,这种不变量常常会起到非常重要的作用。
抓住不变量进行思考,可以顺利解答一些经典的应用题,能达到事半功倍的效果。
根据不变量的不同,可以将“量不变”应用题分为三种类型:“总量不变”应用题、“相差量不变”应用题和“部分量不变”应用题。
典例分析考点一:总量不变题中两个变化的量中,一个量在增加,另一个量减少,但是增加的和减少的同样多,所以两个量的总和保持不变。
解题时,一般把两个量的总和看作单位“1”或者把其中一个量看作是1倍的量。
例1、有一个书架,上层与下层书的数量比是7:8,现从上层拿10本给下层,这时上层与下层的数量比是8:7,求原来上、下层各有多少本?【解析】这道题上下层都发生了变化,但总数量不变,可把总数量看作单位“1”,抓住总数量不变,根据上层与下层的数量比是7:8知上层占总数的7/15,又根据上层与下层的数量比是8:7,知上层占总数的8/15,列式:10÷(8/15-7/15)=150(本),150本为总数量,150÷(7+8)=10(本)7×10=70(本)8×10=80(本)。
例2、小丽有故事书108本,小芳有故事书140本,小芳借了若干本故事书给小丽后,小丽的故事书的本数是小芳的3倍。
问小芳借了多少本故事书给小丽?【解析】小芳借了若干本故事书给小丽前后,小芳和小丽拥有故事书的本数都发生了变化,但两人拥有故事书的总本数不变,这是本题解题的关键。
抓住不变量解题练习
一、抓住和不变
1.甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多10吨,甲乙原
来各有多少吨?
2.某校五年级学生参加大扫除的人数是未参加的1
4
,后来又有2个同学主动参加,实
际参加的人数是未参加人数的1
3
,问某班五年级有学生多少人?
3.甲、乙两人原有钱的比是3∶4,后来甲又给乙50元,这时甲钱是乙的1
2
,原来两
人各有多少元钱? 二、抓住部分量不变
4.有科技书和文艺书360本,其中科技书占总数的1
9
,现在又买来一些科技书,此时
科技书占总数的1
6。
又买来多少本科技书?
5.有10千克蘑菇,它们的含水量是99%,稍经晾晒,含水量下降到98%,晾晒后的蘑菇重多少千克?
6.现有浓度为20%的食盐水80克。
把这些食盐水变为浓度为75%的食盐水,需要再加食盐多少克?
三、抓住差不变
7.王叔叔和李叔叔每月工资收入比为3∶2,他们两家每月支出为1200元,两家每月结余的钱数比为9∶4,王叔叔和李叔叔每月工资各为多少元?
8.由奶糖和巧克力混合成的一堆糖中,如果增加10个奶糖,巧克力就占总数的60%,再增加30个巧克力,则巧克力占总数的75%。
那么,原来混合糖中奶糖和巧克力各有多少个?
抓住不变量解题过关练习1
1.甲乙两个仓库共有水泥180吨,如果甲把它的1
3
给乙,甲还比乙多
1
5
,甲乙原来各
有多少吨?
2.明放一群鸭子,岸上的只数是水中的3
4
,从水中上岸9只后,水中的只数与岸上的
只数同样多,这群鸭子有多少只?
3.煤气收款员到一幢楼里收煤气差价款,他走出楼时一算,没交款的户数占已交款户
数的1
8。
如果少收2户,则没交款的户数恰好占已交款户数的
1
6
,这幢楼有多少住户?
4.有一堆糖果,其中奶糖占45%,再放16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块?
5.在阅览室里,女生占全室人数的1
3
,后来又进来5名女生,这时女生占全室人数的
5
13
,阅览室原有多少人?
6.现有浓度为20%的食糖水160克,把这些食糖水变为浓度为75%的食糖水,需加食糖多少克?
7.乙队原有人数是甲队的3
7。
现在从甲队派30人到乙队,则乙队人数是甲队的
2
3。
甲乙两队原来各有多少人?
8.有一堆糖果,其中奶糖占9
20
,再放入16块水果糖后,奶糖就只占
1
4。
这一堆糖果
原来共有多少块?
9.新兴小学六年级有两个班,六年一班有学生48人,六年二班有学生56人,两个班
各转出相同的人数后,六年二班人数还比六年一班人数多2
11
,两个班各转出多少人?
抓住不变量解题过关练习2
1.数学课外兴趣小组中,上学期男生占9
5,这学期增加21名女生后,男生就只占52了,这个小组现有女生多少人?
2.有两筐梨,乙筐是甲筐的5
3,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐的9
7,甲、乙两筐梨共重多少千克?
3.今年妈妈54岁,女儿26岁,当女儿的年龄是妈妈的923
时,妈妈多少岁?
4.有两段布,一段布长40米,另一段长30米,把两段布都用去同样的长度后,发现短的一段布剩下的长度是长的一段布所剩长度的5
3,每段布用去多少米?
5.一堆什锦糖,其中奶糖占920;再放入16千克其他糖后,奶糖只占14。
这堆糖中有奶糖多少千克?
6.甲乙丙三人共有54元,甲用去了自己钱数的53,乙用去了自己钱数的4
3,丙用了自己钱数的3
2,各买了一支相同价钱的钢笔,那么他们三人原来各有多少元?
7.六年级240人,喜欢语文与不喜欢语文的比是5:3,喜欢数学与不喜欢数学的比是7:5,两门都喜欢的是86人,两门都不喜欢的有多少人?
8.甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是86元.在人民市场,甲买一双运动鞋花去了所带钱的49
,乙买一件衬衫花去了人民币16元。
这样两人身上所剩的钱正好一样多。
问甲、乙两人原先各带了多少钱?。