六年级数学抓住不变量解应用题
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
巧抓不变量解题一、基础题(1)、修一条公路,已修的和未修的比是4:3,已修了全长的()。
4 /7(2)、苹果的质量比梨少,苹果与梨质量的比是(). 5:7(3)、一个三角形三个内角度数的比是1:2:3,这三个内角分别是()度,()度和(90)度。
(4)、把一堆煤按3:5分给甲、乙两个食堂,甲比乙少分了2.4吨,甲食堂分了(),乙食堂分了(6 )。
(5)、一桶油,用去了,用去的与剩下的比是()。
3:4果园里有梨树、苹果树共150棵、梨树与苹果树棵树的比是3:2,梨树有多少颗?一批货物,按4:5 分给甲、乙两个车队来运,乙对共运95吨,甲对共运多少吨?95x=76知识导航在解决分数应用题时,有些时候需要找准题目的不变量,抓不变量来解决。
共有三种形式:一是抓住和不变;二是抓住部分不变;三是抓住差不变。
以不变应万变。
例1:有含糖率为7%的糖水600克,要使含糖率变为10%,需再加入多少克糖?(部分量不变)分析糖水600克中有水:600*(1-7%)=558克,所以,现在糖水总量是:558/(1-10%)=620克那么要加糖:620-600=20克练习有含盐率15%的盐水200千克,要使含盐率降为5%,需要加水多少千克?400例2:某校合唱队人数是舞蹈队人数的,如果将合唱队队员调10人到舞蹈队,则合唱队人数变为舞蹈队人数的,原合唱队有多少人?(和不变)分析根据合唱队与舞蹈队的前后人数之比可知,合唱队原来占全体人数的 ,后来调出10人后,占全体人数的,,则全体人数有:10÷( -),求出全体人数后,就能根据原来占全体人数的比求出合唱队原来有多少人了.练习某校一年级有两个班,一班人数是二班人数的,从二班调5人到一班后,一班人数是二班的人数的,求原来一、二班共有多少人?一班有30人,二班原来有50例3:母亲比女儿大30岁,3年后,母亲的年龄是女儿的4倍,女儿今年多少岁?解:3年后妈妈的年龄是女儿的4倍,即妈妈的年龄比女儿大4倍(4-1=3倍),刚好是她们年龄的差(30岁)。
抓不变量解题1.甲、乙两包糖果的重量的比是4 :1,如果从甲包取出10克放入乙包后,甲、乙两包糖果重量的比变为7 :5。
那么两包糖果重量的总和是多少?2。
小明读一本书,已读的和末读的页数比是1 :5。
如果再读30页,则已读的和末读的页数之比为3 :5。
这本书共有多少页?3。
运输队要运一批货物,已经运走的和剩下的比是1 :4。
如果再运走4吨,那么运走的和剩下的比为3 :7。
这批货物共多少吨?4。
六年级二班同学分成两个小组做游戏,开始时甲、乙两个组的人数比是5:3,游戏结束时甲组有14人被抢到了乙组,这时甲、乙两组人数比是1:2.甲组原有同学多少人?5。
甲、乙两书架的数量比是4:1,如果从甲书架取出13本书放入乙书架,甲、乙两书架的数量比变为7:5,那么两书架的数量总和是多少本?6。
修一条公路,已修长度和未修长度的比是1:5,又修了490米后,已修长度和未修长度的比是3:1,这时未修公路的长度为多少米?7。
甲、乙两人原来钱数的比是3:4,后来甲原来有多少元?8。
一条公路,已修的与剩下的比是1:3,再修20千米,已修的与全长的比是2:5,这条公路长多少千米?9.有甲、乙两个课外活动小组,甲组的人数是乙组的4,后来又从乙组调16人到甲组,5这是乙组人数是甲组的3,甲、乙两组原来4各有多少人?10.甲、乙两校原有篮球只数的比是2︰1,如果甲校给乙校4只篮球,甲、乙两校篮球只数的比就是4︰3。
原来甲校有篮球多少只?11.小明读一本书,第一天读了全书的20%,第二天读了28页,这时读的页数与剩下页数的比是5:6,小明读的这本书共有多少页?12.小明看一本书,第一天读了一部分,已读的和未读的页数比是2:7,第二天读了68页,已读的和未读的页数比是4:5.这本书共有多少页?13.张师傅加工一批零件,第一天完成的个数与未完成的个数比是1:4,如果再加工15个,就完成了这批零件的一半,张师傅第一天完成了多少个零件?14.甲、乙两箱苹果的个数之比是5:2,如果从甲箱取出5个放入乙箱后,甲、乙两箱苹果的数量比是9:5,则两箱苹果共有多少个?15.如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?16.小明和小芳星期天一起到新华书店去买书,所带钱数的比是11:3,如果小明给15元小芳,那么小明、小芳的钱数比就是4:3.小明和小芳各带了多少钱?17.六(2)班同学报名参加绘画兴趣组,一开始有13的人报名,后来又有5人报名,这样,参加人数与不参加人数的比是4:5,六(2)班共有多少个同学?18.有甲、乙两个课外活动小组,甲组的人数是乙组的4/5,后来又从乙组调16人到甲组,这是乙组人数是甲组的3/4,甲、乙两组原来各有多少人?19. 乙队原有人数是甲队的。
应用题中的不变量一、部分量不变例1、育红小学六年级图书角原来有科技书与文艺书本数比是5∶6,借出10本科技书后,科技书与文艺书本数比是3∶4。
科技书原来有多少本?解法一:本题文艺书本数不变。
由原来有科技书是文艺书本数的56,现在科技书是文艺书本数的34,则文艺书本数是10÷(56-34)本,得科技书原来有的本数。
10÷(56-34)×56=10÷112×56=100(本)解法二:本题文艺书本数不变。
由科技书与文艺书本数比。
原来5∶6=10∶12现在3∶4=9∶12则文艺书本数的份数12不变,得科技书原来有的本数。
10÷(10-9)×10=100(本)例2、小军原有的钱数是小明的3/4,小军用去100元后,这时小军的钱数是两人总钱数的5/17。
小军原来有多少元钱?[思路点拔]:题中小军的钱数减少了,总钱数也减少了,但小明的钱数没有变,因此,我们可以把小明的钱数看作单位“1”。
这时“小军用去100元后,这时小军的钱数是两人总钱数的5/17”就转化为“小军用去100后,这时小军的钱数是小明的5/(17-5),即5/12”,再根据题中前两个条件可知,100元相当于小明的钱数的3/4-5/12=1/3。
因此小明的钱数是100÷1/3=300(元),小军原有钱数是300×3/4=400(元)例3、唐洋小学六(4)班男生人数占班级总人数的9/16,后来又转走了4名男生,这时男生人数占班级总人数的8/15,求六(4)班原来有学生多少名?[思路点拔]:从男生转走了4名看出,男生人数和班级总人数都发生了变化,但女生人数没有变。
因此可以把女生人数这个不变量看作单位“1”,原来男生人数占班级总人数的9/16,女生人数就占班级总人数的1-9/16=7/16,原来男生人数是女生人数的9/16÷7/16=9/7;现在男生人数占总人数的8/15,女生人数就占班级总人数的1-8/15=7/15,现在男生人数是女生人数的8/15÷7/15=8/7,男生人数减少了4名,分率减少了9/7-8/7=1/7,据此求出女生人数为4÷1/7=28(名),六(4)班原有学生人数是28÷7/16=64(名) 例4、有含糖率为7%的糖水600克,要使含糖率变为10%,需再加入多少克糖?[思路点拔]:糖水600克中有水:600*(1-7%)=558克,所以,现在糖水总量是:558/(1-10%)=620克那么要加糖:620-600=20克例5、鸡栏里有公鸡和母鸡共80只,其中公鸡,后来又买回若干只公鸡后,母鸡占总只数的,问又买回多少只公鸡?[思路点拔]:首先,找准不变量:母鸡只数,可以直接计算出来,算出其只数80×(1-)=44只。
分数应用题——抓住不变量专项练习
一、基本练习
①甲是20,乙是30,甲是乙的) () (,乙是甲的)
() ( ②合唱队男生人数是总人数的51,那么男生人数是女生人数的)
() ( ③甲是乙的52,那么甲是甲乙和的) () (,乙是甲乙和的)
() ( ④甲是乙的
74,那么甲是甲乙之差的) () ( 二、总量是不变量
1、甲、乙两车间的人数之比是3:7,从乙车间抽调42人到甲车间后,甲、乙两车间的人数之比是2:3,求甲、乙两车间原来一共有多少人?
2、小明放一群鸭子,岸上的只数是水中的
4
3,从水中上岸9只后,水中的只数与岸上的只数同样多,这群鸭子有多少只?
3、五年一班有5
1的同学参加夏令营,后来又有2名同学参加,这时参加夏令营的人数是不参加的31,五年一班有多少人参加了夏令营?
4、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是乙的
2
1,原来两人各有多少元钱?
三、其中一个量是不变量
5、五年一班女生人数是男生人数的
119,后来又转进2名女生,这时女生人数是男生人数的11
10,五年一班现在共有学生多少人?
6、某厂共有职工120人,其中女职工占全厂的5
1,后来这个厂又从下岗女工中招收了一些人,这时女职工人数占全厂的41,这个厂现有职工多少人?新招收的女工多少人?
7、一杯盐水,盐占盐水的51,再加入16克盐后,盐占盐水的4
1,原来盐水有多少千克?
8、张庄小学六年级学生中女生占
127,后来又转来了15名女生,这样女生占六年级总人数的53,六年级原来有多少名学生?。
抓不变量解答分数应用题一、抓住和不变1、甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多10吨,甲乙原来各有多少吨?练习:甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多1/5,甲乙原来各有多少吨?2、某校五年级学生参加大扫除的人数是未参加的1/4,后来又有2个同学主动参加,实际参加的人数是未参加人数的1/3,问某班五年级有学生多少人? 练习:煤气收款员到一幢楼里收煤气差价款,他走出楼时一算,没交款的户数占已交款户数的1/8。
如果少收2户,则没交款的户数恰好占已交款户数的1/6,这幢楼有多少住户?2、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是乙的1/2,原来两人各有多少元钱?3、小明放一群鸭子,岸上的只数是水中的3/4,从水中上岸9只后,水中的只数与岸上的只数同样多,这群鸭子有多少只?二、抓住部分不变1、有科技书和文艺书360本,其中科技书占总数的1/9,现在又买来一些科技书,此时科技书占总数的1/6。
又买来多少本科技书?练习:有10千克蘑菇,它们的含水量是99%,稍经晾晒,含水量下降到98%,晾晒后的蘑菇重多少千克?2、现有质量分数为20%的食盐水80克。
把这些食盐水变为质量分数为75%的食盐水,需要再加食盐多少克?练习:有一堆糖果,其中奶糖占45%,再放16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块?2、在阅览室里,女生占全室人数的1/3,后来又进来5名女生,这时女生占全室人数的5/13,阅览室原有多少人?三、抓住差不变王叔叔和李叔叔每月工资收入比为3:2,他们两家每月支出为1200元,两家每月结余的钱数比为9;4,王叔叔和李叔叔每月工资各为多少元?综合练习:1.由奶糖和巧克力混合成的一堆糖中,如果增加10个奶糖,巧克力就占总数的60%,再增加30个巧克力,则巧克力占总数的75%。
那么,原来混合糖中奶糖和巧克力各有多少个?2、现有浓度为20%的食糖水160克,把这些食糖水变为浓度为75%的食糖水,需加食糖多少克?3、乙队原有人数是甲队的3/7。
小学六年级小升初数学复习巧用不变量法解决应用题汇总1.一杯盐水,盐占盐水的101,加入10 g 盐后,盐占盐水的112。
原来盐水有多少克?【分析】盐水的质量=盐的质量+水的质量。
一杯盐水加入10 g 盐后,盐的质量发生变化,但水的质量不变,根据水的质量不变,找出等量关系,列方程解题。
解:设原来糖水有 x g 。
)1121()10()1011(-⨯+=-x x 1190119109+=x x 1190119109=-x x 100=x 答:原来糖水有100 g 。
, 【方法归纳】解决此题时,要注意加入盐后,盐和盐水两个量都有变化,而水的质量不变。
2.玩具厂有职工128人,男职工人数占全厂总人数的41,后来调进男职工若干人,这时男职工人数占全厂总人数的52,玩具厂现在有职工多少人?解法一:设后来调进男职工x 人 128×(1-41)=(128+x )×(1-52)x =32 (人)玩具厂现在有职工128+32=160(人) 解法二:128×(1-41)=96(人) 96÷(1-52)=160(人)3.体育课上,同学们站成一列,小明数了数,排在他前面的人数占总人数的32,排在他后面的人数占总人数的41,从前数,小明排在第几位?解:1÷(1-32-41)=12(人) 12×32+1=9(人) 从前数,小明排在第9位。
4. 某厂有两个车间,A 车间的人数是B 车间的75,如果从B 车间调8人到A 车间,A 车间的人数就是B 车间的54,原来A 、B 车间各有多少人?解法一:设原来B 车间有x 人,A 车间有x 75人。
x 75+8=(x -8)×54∴x =168 人 A 车间:168×75=120 人解法二: 8÷(454+-755+)=8×36=288(人) A 车间:288×575+=120 人B 车间:288×577+=168人5. 一场篮球比赛正在进行中,江苏队和广东队的得分之比是1:2,此时,江苏队命中一记三分球,将江苏队和广东队的得分之比变成 3:4,这时比赛的真实比分是( ):( )。
抓不变量解题1.甲、乙两包糖果的重量的比是4 :1,如果从甲包取出10克放入乙包后,甲、乙两包糖果重量的比变为7 :5。
那么两包糖果重量的总和是多少?2。
小明读一本书,已读的和末读的页数比是1 :5。
如果再读30页,则已读的和末读的页数之比为3 :5。
这本书共有多少页?3。
运输队要运一批货物,已经运走的和剩下的比是1 :4。
如果再运走4吨,那么运走的和剩下的比为3 :7。
这批货物共多少吨?4。
六年级二班同学分成两个小组做游戏,开始时甲、乙两个组的人数比是5:3,游戏结束时甲组有14人被抢到了乙组,这时甲、乙两组人数比是1:2.甲组原有同学多少人?5。
甲、乙两书架的数量比是4:1,如果从甲书架取出13本书放入乙书架,甲、乙两书架的数量比变为7:5,那么两书架的数量总和是多少本?6。
修一条公路,已修长度和未修长度的比是1:5,又修了490米后,已修长度和未修长度的比是3:1,这时未修公路的长度为多少米?7。
甲、乙两人原来钱数的比是3:4,后来甲原来有多少元?8。
一条公路,已修的与剩下的比是1:3,再修20千米,已修的与全长的比是2:5,这条公路长多少千米?9.有甲、乙两个课外活动小组,甲组的人数是乙组的4,后来又从乙组调16人到甲组,5这是乙组人数是甲组的3,甲、乙两组原来4各有多少人?10.甲、乙两校原有篮球只数的比是2︰1,如果甲校给乙校4只篮球,甲、乙两校篮球只数的比就是4︰3。
原来甲校有篮球多少只?11.小明读一本书,第一天读了全书的20%,第二天读了28页,这时读的页数与剩下页数的比是5:6,小明读的这本书共有多少页?12.小明看一本书,第一天读了一部分,已读的和未读的页数比是2:7,第二天读了68页,已读的和未读的页数比是4:5.这本书共有多少页?13.张师傅加工一批零件,第一天完成的个数与未完成的个数比是1:4,如果再加工15个,就完成了这批零件的一半,张师傅第一天完成了多少个零件?14.甲、乙两箱苹果的个数之比是5:2,如果从甲箱取出5个放入乙箱后,甲、乙两箱苹果的数量比是9:5,则两箱苹果共有多少个?15.如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?16.小明和小芳星期天一起到新华书店去买书,所带钱数的比是11:3,如果小明给15元小芳,那么小明、小芳的钱数比就是4:3.小明和小芳各带了多少钱?17.六(2)班同学报名参加绘画兴趣组,一开始有13的人报名,后来又有5人报名,这样,参加人数与不参加人数的比是4:5,六(2)班共有多少个同学?18.有甲、乙两个课外活动小组,甲组的人数是乙组的4/5,后来又从乙组调16人到甲组,这是乙组人数是甲组的3/4,甲、乙两组原来各有多少人?19. 乙队原有人数是甲队的。
抓不变量1、有甲、乙两根绳子,甲长23米,乙长11米,两根绳子剪去相同的长度后,乙绳子是甲绳长的 83,乙绳剪去了多少米?2、甲杯的水比乙杯的水少12.4毫升,从甲和乙都倒出6毫升水后,甲杯水重量的 32等于乙杯水重量的53,甲、乙两杯原各有多少毫升?3、小明和小强买同一种玩具车,玩具车的价格是小明所有钱的53,是小强所有钱的32,当他们都买了玩具车之后,小明剩下的钱比小强剩下的钱多10元,问小明剩下的钱是多少?4、甲、乙两人共有人民币若干元,其中甲占53,若乙给甲12元,则乙余下的钱占总数的41。
甲、乙两人各有人民币多少元?5、甲的书的本数是乙的43,甲给乙6本书后,甲的书的本数是乙的53,甲原有书多少本?6、六年级一班召开班会。
一个男生上台向老师报告:“台下男生人数是女生的54。
”男生下台后,一位女生上台说:“台下男生人数只有女生的87。
”六年级一班共有多少人?7、一包糖,奶糖占总个数的31,放入18个水果糖后,奶糖占总个数的92,奶糖有多少个?8、一杯盐水重240克,盐占盐水的51,又加入一些盐后,盐占盐水的41,加入了多少克盐?9、高桥小学有一些同学报名参加数学竞赛,其中男生占53,后来又有5名女生报名,这样男生人数只占5027,报名参赛的男生有多少人?10、甲、乙两人去看电影,一张电影票价是甲所有钱的256,是乙所有钱的53,当他们各自买了电影票后,甲剩下的钱比乙剩下的钱多3元,甲、乙两人电影票前各有多少钱?。
应用题中的不变量一、部份量不变例1、育红小学六年级图书角原先有科技书与文艺书本数比是5∶6,借出10本科技书后,科技书与文艺书本数比是3∶4。
科技书原先有多少本?解法一:此题文艺书本数不变。
由原先有科技书是文艺书本数的56,此刻科技书是文艺书本数的34,那么文艺书本数是10÷(56-34)本,得科技书原先有的本数。
10÷(56-34)×56=10÷112×56=100(本)解法二:此题文艺书本数不变。
由科技书与文艺书本数比。
原先 5∶6=10∶12此刻 3∶4=9∶12那么文艺书本数的份数12不变,得科技书原先有的本数。
10÷(10-9)×10=100(本)例二、小军原有的钱数是小明的3/4,小军用去100元后,这时小军的钱数是两人总钱数的5/17。
小军原先有多少元钱?[思路点拔]:题中小军的钱数减少了,总钱数也减少了,但小明的钱数没有变,因此,咱们能够把小明的钱数看做单位“1”。
这时“小军用去100元后,这时小军的钱数是两人总钱数的5/17”就转化为“小军用去100后,这时小军的钱数是小明的5/(17-5),即5/12”,再依照题中前两个条件可知,100元相当于小明的钱数的3/4-5/12=1/3。
因此小明的钱数是100÷1/3=300(元),小军原有钱数是300×3/4=400(元)例3、唐洋小学六(4)班男生人数占班级总人数的9/16,后来又转走了4名男生,这时男生人数占班级总人数的8/15,求六(4)班原先有学生多少名?[思路点拔]:从男生转走了4名看出,男生人数和班级总人数都发生了转变,但女生人数没有变。
因此能够把女生人数那个不变量看做单位“1”,原先男生人数占班级总人数的9/16,女生人数就占班级总人数的1-9/16=7/16,原先男生人数是女生人数的9/16÷7/16=9/7;此刻男生人数占总人数的8/15,女生人数就占班级总人数的1-8/15=7/15,此刻男生人数是女生人数的8/15÷7/15=8/7,男生人数减少了4名,分率减少了9/7-8/7=1/7,据此求出女生人数为4÷1/7=28(名),六(4)班原有学生人数是28÷7/16=64(名)例4、有含糖率为7%的糖水600克,要使含糖率变成10%,需再加入多少克糖?[思路点拔]:糖水600克中有水:600*(1-7%)=558克,因此,此刻糖水总量是:558/(1-10%)=620克那么要加糖:620-600=20克例五、鸡栏里有公鸡和母鸡共80只,其中公鸡,后来又买回假设干只公鸡后,母鸡占总只数的,问又买回多少只公鸡?[思路点拔]:第一,找准不变量:母鸡只数,能够直接计算出来,算出其只数80×(1-)=44只。
分数百分数应用题难题总结
抓住不变量解应用题(一)
1、某学校有男教师48人,占全校教师人数的80%,调入几名女教师后,女教师占全校教师人数的25%,调入女教师多少人?
2、学校阅览室有36名学生看书,其中女生占
94,后来又有几名女生来看书,这时女生人数占所有看书人数的19
9。
问:后来又有几名女生来看书?
3、现有含糖10%的糖水50千克,要将它的含糖率提高到20%,需要加糖多少千克?
4、一批葡萄运进仓库时的质量是100千克,测得含水量为99%,过一段时间,测得含水量为 98%,这时葡萄的质量是多少千克?
5、某校原有科技书和文艺书共630本,其中科技书占20%,后来又买进一些科技书,这时科技书占总数的30%,求又进进科技书多少本?
抓住不变量解应用题(二)
1、育英小学原来男、女生人数的比是7:5,后来又转来12名女同学,这时男、女生人数的比是9:7.学校现有女生多少人?
2、某车间男工人数是女工人数的2倍,若调走21个男工,那么女工人数是男工人数的2倍。
这个车间的女工有多少人?
3、甲、乙两种电话的价格之比是7:3,如果他们的价格分别上涨70元后,价格之比 是7:4。
这两种商品原来的价格各是多少元?
4、盒里装着各色圆珠笔,其中红色占
41,后来又往盒里放了8支红色圆珠笔,这时红色圆珠笔占总数的12
5,则原有红色圆珠笔多少支?
5、小强和小明各有图书若干本。
已知小强的图书本数占两人图书总数的60%,当小强借给小明20本后,小强和小明图书本数的比是2:3.两人一共有图书多少本?。