第4章 弹性力学空间问题的有限单元法.
- 格式:doc
- 大小:278.50 KB
- 文档页数:4
《弹性力学问题的有限单元法》弹性力学问题的有限单元法(FiniteElementMethod,简称FEM)是一种经典的多学科跨领域的计算方法,它用于估算连续体结构中非线性材料力学性能,如强度、刚度和破坏。
有限单元法已成为工程和材料科学中最重要的数值计算方法,可用于解决各种复杂多学科优化和设计问题。
有限单元法的基本思想是把复杂的连续体结构划分成许多小的、较容易处理的有限元素,而不是像一般的解析方法那样求取整体的解析解。
基于有限元素重要的性质,即小元素经过一系列的连接后就可以构成整个结构的模型,有限单元法的本质是数值分析,也就是根据模型的物理知识,选择有效的数值化方法,用数值计算的方法求解所要求的结果,从而使这些数值计算结果符合实际结构物理知识。
有限单元法是一种有效计算弹性力学问题的方法,它可以用来求解任意形状的结构问题,无论是有边界条件还是无边界条件,无论是线性或者非线性的形状变化,有限单元法都能够有效地应用。
其优势在于以节省计算时间和消耗的成本,在特殊的材料条件下,它可以比较快速地获得弹性力学问题的有效精确解。
其精度依赖于计算模型元素的类型、形状和几何尺寸等,因此通常需要调节元素的类型、形状和尺寸,以满足计算需要。
在计算机技术的发展下,有限单元法的计算能力越来越强大,可以对更多的复杂问题进行分析,可以更有效地解决工程设计中的实际问题。
由于计算机可以模拟各种变形和应力的变化,因此有限单元法可以为工程设计和材料研究提供更可靠的结果。
有限单元法在工程应用中的实际作用是显而易见的。
它不仅可以用来计算弹性结构中的材料力学特性,还可以分析复杂结构的动态响应。
此外,有限单元法还可以用来计算弹性结构中的表面张力、刚度,以及各种材料的裂缝扩展。
通过有限单元法的应用,可以获得有效的数值结果,从而提高设计效果和工程安全性。
因此,有限单元法对于材料科学和工程设计都具有重要价值,今后还将发挥更多的功能。
有限单元法是多学科跨学科的计算方法,它可以用来有效地分析复杂形状结构的力学特性,计算出精确的结果,从而提高工程设计的效果和安全性。
第一章1、弹性力学的任务是什么弹性力学的任务是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。
2、弹性力学的基本假设是什么?为什么要采用这些假设?(1) 假设物体是连续的——物体内部由连续介质组成,物体中没有空隙,因此物体中的应力、应变、位移等量是连续的•可以用坐标的连续函数表示。
实际上,所有的物体均由分子构成,但分子的大小及分子间的距离与物体的尺寸相比是很微小的,故可以不考虑物体内的分个构造。
根据这个假设所得的结果与实验结果是符合的。
(2) 假设物体是匀质的和各向同性的一一物体内部各点与各方向上的介质相同,因此,物体各部分的物理性质是相同的。
这样,物体的弹性常数(弹性模量、泊松比)不随位置坐标和方向而变化。
钢材由微小结晶体组成,晶体本身是各向异性的、但由于晶体很微小而排列又不规则,按其材料的平均性质,可以认为钢材是各向同性的。
木材不是各向同性的。
(3) 假设物体是完全弹性的一一物体在外加因家(裁荷、温度变化等)的作用下发生变形,在外加固素去除后,物体完全恢复其原来形状而没有任何剩余变形。
同时还假定材料服从胡克定律,即应力与形变成正比。
(4) 假设物体的变形是很小的——在载荷或温度变化等的作用下,物体变形而产生的位移,与物体的尺寸相比,是很微小的。
在研究物体受力后的平衡状态时,可以不考虑物体尺寸的改变。
在研究物体的应变时,可以赂去应变的乘积,因此,在微小形变的情况下弹性理论中的微分方程将是线性的。
(5) 假设物体内无初应力一一认为物体是处于自然状态,即在载荷或温度变化等作用之前,物体内部没合应力。
也就是说,出弹性理论所求得的应力仅仅是由于载荷或温度变化等所产生的。
物体中初应力的性质及数值与物体形成的历史有关。
若物体中有韧应力存在,则由弹性理论所求得的应力加上初应力才是物体中的实际应力。
上面基本假设中•假设(4)是属于几何假设,其他假设是属于物理假设。
第一章绪 论学习指导在学习本章时,要求学生理解和掌握下面的主要内容:1、弹性力学的研究内容,及其研究对象和研究方法,认清他们与材料力学的区别;2、弹性力学的几个主要物理量的定义、量纲、正负方向及符号规定等,及其与材料力学相比的不同之处;3、弹性力学的几个基本假定,及其在建立弹性力学基本方程时的应用。
§1-1弹性力学的内容弹性体力学,简称弹性力学,弹性理论(Theory of Elasticity或Elasticity),研究弹性体由于受外力、边界约束或温度改变等原因而发生的应力、形变和位移。
这里指出了弹性力学的研究对象是弹性体;研究的目标是变形等效应,即应力、形变和位移;而引起变形等效应的原因主要是外力作用,边界约束作用(固定约束,弹性约束,边界上的强迫位移等)以及弹性体内温度改变的作用。
首先,我们来比较几门力学的研究对象。
理论力学一般不考虑物体内部的形变,把物体当成刚性体来分析其静止或运动状态。
材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。
结构力学研究杆系结构,如桁架、刚架或两者混合的构架等。
而弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。
因此,弹性力学的研究对象要广泛得多。
其次,从研究方法来看,弹性力学和材料力学既有相似之外,又有一定区别。
弹性力学研究问题,在弹性体区域内必须严格考虑静力学、几何学和物理学三方面条件,在边界上严格考虑受力条件或约束条件,由此建立微分方程和边界条件进行求解,得出较精确的解答。
而材料力学虽然也考虑这几方面的条件,但不是十分严格的。
例如,材料力学常引用近似的计算假设(如平面截面假设)来简化问题,使问题的求解大为简化;並在许多方面进行了近似的处理,如在梁中忽略了бy的作用,且平衡条件和边界条件也不是严格地滿足的。
一般地说,由于材料力学建立的是近似理论,因此得出的是近似的解答。
但是,对于细长的杆件结构而言,材料力学解答的精度是足够的,附合工程上的要求(例如误差在5%以下)。
弹性力学简介及其求解方法2010-08-27弹性力学简介及其求解方法弹性力学又称弹性理论,是固体力学的一个分支,是研究弹性体由于外力作用或温度改变等原因而发生的应力、应变和位移。
确定弹性体的各质点应力、应变和位移的目的就是确定构件设计中的强度和刚度指标,以此用来解决实际工程结构中的强度、刚度和稳定性问题。
材料力学、结构力学三门学科所研究的内容和目的相同,但是研究对象和研究方法不同。
材料力学研究对象是杆状构件,结构力学是在材料力学基础上研究由多杆构成的杆系结构的强度和刚度问题。
而对于一般弹性实体结构,如板与壳结构、挡土墙与堤坝、地基以及其他三维实体结构来说,相应的强度和刚度问题要用弹性理论的方法来解决。
在研究方法上,弹性力学和材料力学都从静力学、几何关系、物理方程三方面着手来进行分析,但不同点是材料力学常借助于直观和实验现象做一些假设。
在具体问题计算时材料力学与结构力学都利用解决单一变量的常微分方程,在数学上求解容易。
弹性力学需解决的是满足边界条件的高阶多变量偏微分方程,在数学上求解困难,一般弹性体问题很难得到解析解。
所以,与材料力学相比,弹性力学的研究对象更加广泛,研究方法更加严密,能解决更加复杂的实际问题,因此需要用较多的数学工具。
弹性力学问题可以归结为边值问题:在弹性体内必须满足基本方程,即平衡微分方程、几何方程和物理方程;在应力边界上应满足应力边界条件;在位移边界上应满足位移边界条件;在混合边界上应满足相应的应力边界和位移边界条件。
满足基本方程的解答叫做弹性力学解;既满足基本方程,又满足边界条件的解答叫做弹性力学问题的解。
在求解弹性力学问题时,通常已知的是物体的形状、尺寸、约束情况和外载荷以及材料的物理常数。
需要求解的是应力、应变和位移,它们都是物体内点的坐标的函数。
对于空间问题,一共有15个未知函数:3个位移分量、6个应变分量和6个应力分量。
可利用的独立方程也有15个,即3个平衡微分方程、6个几何方程和6个物理方程。
弹性力学及有限元分析1、 设试件两定点之间的长度为L 0,其截面积为F 0,加上拉力P 后,L 0 伸长了△L 。
我们把P/ F 0 称为拉伸应力(σ),△L/ L 0 称为拉伸应变(ε),于是有σ=P/ F 0 ,ε= △L/ L 0某种材料的拉伸应力和拉伸应变的比,称为该材料的杨氏模量或弹性模量(E),即 LF PL E ∆==00εσ,弹性模量E 表征了材料的物理性质。
2、 根据力学特性,固体通常分为韧性固体和脆性固体。
首先分析韧性材料,材料在受力变形过程中,明显地有四个特性点划分三各阶段。
a. 弹性阶段,这一阶段的明显特征是,当外力逐渐去掉时,变形也逐渐消失,物体能够恢复到原来的形状,物体的这种性质称为弹性,存在一个应力极限称为弹性极限。
随着外力的消失而消失的变形称为弹性变形;去掉外力后仍然保留的变形称为残余变形或永久变形。
弹性阶段另一个明显特征是,应力与应变保持线性关系。
设受力方向为x 方向,x xE εσ=,这就是简单拉伸时的虎克定律,弹性模量E 为常数,表示应力与应变成正比例。
通常把弹性极限和比例极限规定为一个值。
b. 塑性阶段,超过弹性极限后,材料开始失去弹性,进入塑性阶段,这时产生较大的永久变形,应力应变关系不再是线性的。
当曲线超过s 点(屈服极限)后,材料开始屈服,即在应力几乎不增加的情况下,应变会不断的增加,称s 点为屈服极限;当变形大到一定程度后,材料开始强化,要继续增加变形必须再增加外力,到达b 点后产生颈缩。
从弹性极限到b 的变形范围统称为塑性阶段,属于塑性力学的研究范畴。
c. 断裂阶段,试件产生颈缩后,开始失去抵抗外力的能力,最后发生断裂,相对于b点的应力称为强度极限。
脆性材料:它的拉伸曲线图没有明显的三个阶段之分,也没有明显的屈服应力点,材料亦不再满足虎克定律。
为了分析上的需要,往往以切线斜率作为弹性模量,即εσd d E =。
如果对脆性固体材料加载,应力应变曲线将沿着OA 上升,若到A 点后即行卸载,应力应变曲线并不沿着原来的途径回复到原点,而是沿着直线AB 下降,当全部载荷卸去之后,试件中尚残存一部分永久变形''ε。