牛顿第二定律(瞬时性)改动
- 格式:ppt
- 大小:2.10 MB
- 文档页数:18
瞬时性问题的分析方法及注意事项(1)(1)分析物体在某一时刻的瞬时加速度,关键是明确该时刻有没有力发生突变,分析物体的受力情况分析分析物体在某一时刻的瞬时加速度,关键是明确该时刻有没有力发生突变,分析物体的受力情况分析分析物体在某一时刻的瞬时加速度,关键是明确该时刻有没有力发生突变,分析物体的受力情况分析运运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下几种动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下几种模型模型:特性特性 模型模型 受外力时的形的形变量变量 力能力能 否突变否突变 产生拉力产生拉力 或支持力或支持力 质量质量 内部内部弹力弹力轻绳微小不计可以只有拉力没有支持力支持力 不计不计 处处相等处处相等 橡皮绳 较大 不能只有拉力没有支持力支持力轻弹簧 较大 不能既可有拉力也可有支持力可有支持力 轻杆 微小不计 可以既可有拉力也可有支持力可有支持力(2)(2)在求解瞬时性加速度问题时应注意:在求解瞬时性加速度问题时应注意:在求解瞬时性加速度问题时应注意:①物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行①物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析受力分析和运动分析。
②加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。
②加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。
【变式训练】1、如图所示,质量分别为m A 和 m B 两球用轻弹簧连接,两球用轻弹簧连接,A A 球用球用细线细线悬挂起来,两球均处于静止状态,如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬间加速度各是多少两球的瞬间加速度各是多少? ?2.如图所示,两小球悬挂在天花板上,.如图所示,两小球悬挂在天花板上,a a 、b 两小球用细线连接,上面是一轻质弹簧,两小球用细线连接,上面是一轻质弹簧,a a 、b 两球的质量分别为m,2m m,2m,在细线烧断瞬间,两球的加速度分别是,在细线烧断瞬间,两球的加速度分别是,在细线烧断瞬间,两球的加速度分别是 ( )) A.0;g B.-g;g C-2g;g D2g;03.如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、固定于杆上,小球处于静止状态.设拔去销钉M 瞬间.小球加速度的大小为12m/s 2,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是瞬间,小球的加速度可能是((取g=10m/s 2)( ) A .22m/s 2,竖直向上,竖直向上 B .22m/s 2,竖直向下,竖直向下 C .2m/s 2,竖直向上,竖直向上图3-2-4A .a 1=0,a 2=gB .a 1=g ,a 2=gC .a 1=0,a 2=m +MM g D. a 1=g ,a 2=m +MMg 6、如图所示,质量为m 的小球用水平弹簧系住,并用倾角为3030°的光滑木板°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度为(突然向下撤离的瞬间,小球的加速度为( ) A .0B .大小为,方向竖直向下,方向竖直向下C .大小为,方向水平向右,方向水平向右D .2m/s 2,竖直向下,竖直向下4、如图示,球A 、B 、C 质量分别为m 、2m 2m、、3m 3m,,A 与天花板间、与天花板间、B B 与C 之间用轻之间用轻弹簧弹簧相连,当该系统平衡后,突然将AB 间轻绳绕断,在绕断瞬间,间轻绳绕断,在绕断瞬间,A A 、B 、C 的加速度(以向下为正方向)分别为(的加速度(以向下为正方向)分别为( ) A .0、g 、g B .-.-5g 5g 5g、、2.5g 2.5g、、0 C .5g 5g、、2.5g 2.5g、、0 D .-.-g g 、2g 2g、、2g5、如图3-2-4所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。
对验证牛顿第二定律实验方案的改进郭海军在新人教版普通高中课程标准实验教科书物理必修1中,这个实验的位置是高中物理教材必修一第四章第二节《实验:探究加速度与力、质量的关系》。
很明显,新课改将这部分内容单列出来,体现了新课改下对探究性实验的重视。
在本节实验教学之前,课本先讲述了如何利用图像判断两个物理量之间是正比例关系还是反比例关系。
而这个技巧正是同学们以后在工作学习中非常实用的处理数据的技巧和方法。
接下来课本给同学们提出两个问题:1.怎么样测量或比较物体的加速度?2.怎样测量并提供物体所受的恒力?用这两个问题引导学生进行思考、设计。
这会引导学生在以后的实验及学习当中进行类似的思考和设计。
虽然在课本中除了列出来的两个参考案例外并没有明文告诉我们更多的方法和实验方案,但是有如下文字“如何......有很多可行的方法,下面案例中的方法可供选用,也可设计其他方法。
”这就是说,同学们可以天马行空地发挥自己的创造力和想象力,只要是能探究出来物体的加速度、受力和质量三者之间的关系,并且合理可行,那同学们的实验方案就可以用来做这个探究实验。
换言之,这个实验是开放性的,鼓励利用先进的实验仪器、鼓励有创新的实验设计。
现就对几种典型的创新实验总结如下:一、利用气垫导轨进行牛顿第二定律实验1、气垫导轨的原理:气垫导轨是一种比较新型的实验装置,如图所示,它替代了传统的木板(或导轨),通过鼓风机的作用,在轨道和滑片(起到传统的滑块的作用)之间形成了一层极薄的空气层,就像气垫船行驶在水面上一样,滑片就会飘在空气层的表面,这样便极大的减小了轨道对滑片的摩擦力,从而使得在实验过程中影响实验精度的摩擦力的干扰大大削弱,使得实验精确度得到极大程度的提高。
今年来随着国家对实验的重视程度提升,和各个学校的实验条件的优化,有相当一部分的学校已经能用气垫导轨代替传统的木板做实验了。
2、利用气垫导轨测量滑片的加速度:在导轨上设置两个间距为S的光电门,将滑片上面的挡光片的宽度我们标记为ΔL,让滑片依次通过两个光电门,将先后通过两个光电门的时间记为Δt1、Δt2,则我们可以按照以下的方法求出滑片的加速度:先求出滑片通过两个光电门的瞬时速度分别为v1=、v2=,然后利用可以求出来滑片在运动过程中的加速度大小。
瞬时加速度问题1.求解思路:求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两类”模型(1)刚性绳(轻杆或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.典型例题分析1、如图所示,质量为0.2 kg的物体A静止在竖直的轻弹簧上,质量为0.6 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压,现突然将细线剪断,则剪断后瞬间A.B间的作用力大小为(g取10 m/s2)()A.0.5 N B.2.5 N C.0 N D.1.5 N【解析】剪断细线前,A、B间无压力,则弹簧的弹力F=m A g=0.2×10=2 N,剪断细线的瞬间,对整体分析,N=m B g-m B a=0.6×10 N-0.6×7.5 N=1.5 N.故选D项【答案】D2、如图所示,天花板上固定有一光滑的定滑轮,绕过定滑轮且不可伸长的轻质细绳左端悬挂一质量为M的铁块;右端悬挂有两质量均为m的铁块,上下两铁块用轻质细线连接,中间夹一轻质弹簧处于压缩状态,此时细线上的张力为2mg,最初系统处于静止状态.某瞬间将细线烧断,则左端铁块的加速度大小为( )A.14gB.13gC.23gD.13g 【解析】 根据题意,烧断细线前轻绳上的张力为2mg ,可得到M =2m ,以右下端的铁块为研究对象,根据平衡条件可知,细线烧断前弹簧的弹力为mg ,细线烧断前的瞬间,铁块M 与右端上面的铁块m 间轻绳的故C 项正确.【答案】 C3、“儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳..质量为m 的小明如图所示静止悬挂时,两橡皮绳的拉力大小均恰为mg ,若此时小明右侧橡皮绳在腰间断裂,则小明此时( )A .加速度为零,速度为零B .加速度a =g ,沿原断裂橡皮绳的方向斜向下C .加速度a =g ,沿未断裂橡皮绳的方向斜向上D .加速度a =g ,方向竖直向下 解析 根据题述,腰间左右两侧的橡皮绳中弹力等于重力.若此时小明右侧橡皮绳在腰间断裂,则小明此时所受合力方向沿原断裂橡皮绳的方向斜向下,大小等于mg ,所以小明的加速度a =g ,沿原断裂橡皮绳的方向斜向下,B 项正确.答案B4、(多选)如图所示,A 、B 、C 三球质量分别为3m 、2m 、m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ=30°的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态.已知重力加速度为g.将细线烧断的瞬间,下列说法正确的是( )A .A 、B 两个小球的加速度均沿斜面向上,大小均为g 10B .B 球的加速度为g 2,方向沿斜面向下C .A 、B 之间杆的拉力大小为mgD .A 、B 之间杆的拉力大小为1.2mg解析A、B项,烧断细线前,以A、B、C组成的系统为研究对象,系统静止,处于平衡状态,合力为零,则弹簧的弹力为F=(3m+2m+m)gsinθ=6mgsinθ.以C为研究对象知,细线的拉力为mgsinθ.烧断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B组成的系统为研究对象,由牛顿第二定律得:F-(3m+2m)gsinθ=(3m+2m)a AB.答案AD5、如图所示,弹簧p和细绳q的上端固定在天花板上,下端用小钩勾住质量为m的小球C,弹簧、细绳和小钩的质量均忽略不计.静止时p、q与竖直方向的夹角均为60°.下列判断正确的有()A.若p和球突然脱钩,则脱钩后瞬间q对球的拉力大小为mgB.若p和球突然脱钩,则脱钩后瞬间球的加速度大小为gC.若q和球突然脱钩,则脱钩后瞬间p对球的拉力大小为mgD.若q和球突然脱钩,则脱钩后瞬间球的加速度大小为g6、(多选)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a 上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g,在剪断的瞬间,()A.a1=3g B.a1=0 C.Δl1=2Δl2D.Δl1=Δl2[审题突破](1)剪断前,S1的弹力为________,S2的弹力为________,a物块所受合力为________;(2)剪断瞬间,两弹簧弹力________,物块a所受合力为________.[解析]设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧还没有来得及改变,所以剪断细绳的瞬间a受到重力和弹簧S1的拉力F T1,剪断前对bc和弹簧S2组成的整体分析可知F T1=2mg,故a受到的合=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确、D错误.[答案]AC7.如图所示,物块1、2 间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为aA .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +M M gD .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g解析:选C.在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上1、四个质量均为m 的小球,分别用三条轻绳和一根轻弹簧连接,处于平衡状态,如图所示.现突然迅速剪断轻绳A1、B1,让小球下落,在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用a1、a2、a3和a4表示,则( )A .a 1=g ,a 2=g ,a 3=2g ,a 4=0B .a 1=0,a 2=2g ,a 3=0,a 4=2gC .a 1=g ,a 2=g ,a 3=g ,a 4=gD .a 1=0,a 2=2g ,a 3=g ,a 4=g2、(多选)在动摩擦因数μ=0.2的水平面上有一个质量为m =2 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零.当剪断轻绳的瞬间,取g =10 m/s 2,以下说法正确的是( )A .此时轻弹簧的弹力大小为20 NB .小球的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间小球的加速度为0答案ABD解析在剪断轻绳前,小球受重力、绳子的拉力以及弹簧的弹力处于平衡,根据共点力平衡得,弹簧的弹力:F=mgtan45°=20×1=20 N,故A项正确;在剪断轻绳的瞬间,弹簧的弹力仍然为20 N,小球此时受重力、支持力、弹簧弹力和摩擦力四个力作用;小球所受的最大静摩擦力为:f=μmg=0.2×20 N=4 N,根据牛顿第二定律得小球的加速度为:a=(F-f)/m=8 m/s2;合力方向向左,所以向左加速.故B项正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬间为零,此时小球所受的合力为零,则小球的加速度为零,故C项错误,D项正确.3、如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B.g C.g D.g。
牛顿第二定律——瞬时性问题分析【思维提升】1.力和加速度的瞬时对应性是高考的重点。
物体的受力情况应符合物体的运动状态,当外界因素发生变化(如撤力、变力、断绳等)时,需重新进行运动分析和受力分析,切忌想当然。
2.求解此类瞬时性问题,要注意以下四种理想模型的区别:【针对训练】1.如图所示,一木块在光滑水平面上受一恒力F 作用而运动,前方固定一个弹簧,当木块接触弹簧后( C ) A .将立即做变减速运动B .将立即做匀减速运动C .在一段时间内仍然做加速运动,速度继续增大D .当弹簧处于最大压缩量时,物体的加速度为零2.如图所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2。
重力加速度大小为g 。
则有( C )A .a 1=0,a 2=gB .a 1=g ,a 2=gC .a 1=0,a 2=m +MM gD .a 1=g ,a 2=m +MMg3.如图所示,质量分别为m 、2m 的球A 、B 由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀加速运动的电梯内,细线中的拉力为F ,此时突然剪断细线,在线断的瞬间,弹簧的弹力的大小和小球A 的加速度大小分别为( A )A .2F 3,2F 3m +gB .F 3,2F 3m +gC .2F 3,F3m +gD .F 3,F3m+g4.物块A 1、A 2、B 1、B 2的质量均为m ,A 1、A 2用刚性轻杆连接,B 1、B 2用轻质弹簧连接。
两个装置都放在水平的支托物上,处于平衡状态,如图所示。
今突然迅速地撤去支托物,让物块下落。
在除去支托物的瞬间,A 1、A 2受到的合力分别为f 1和f 2,B 1、B 2受到的合力分别为F 1和F 2。
则( B )A .f 1=0,f 2=2mg ,F 1=0,F 2=2mgB .f 1=mg ,f 2=mg ,F 1=0,F 2=2mgC .f 1=0,f 2=2mg ,F 1=mg ,F 2=mgD .f 1=mg ,f 2=mg ,F 1=mg ,F 2=mg5.如图所示一根轻质弹簧上端固定,下端挂一质量为m 0的平盘,盘中有一物体,质量为m 。
牛顿运动定律专题(二)※【模型解析】——瞬时性问题(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为()A.g,0B.g,g C.0,g D.2g,g例1题图例2题图例3题图例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是() A.a P=a Q=g B.a P=2g,a Q=0C.a P=g,a Q=2g D.a P=2g,a Q=g例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()A.a1=a2=a3=a4=0B. a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=m+MM g D.a1=g,a2=m+MM g,a3=0,a4=m+MM g例4.细绳拴一个质量为m 的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是( )A .小球静止时弹簧的弹力大小为35mg B .小球静止时细绳的拉力大小为35mg C .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g 【课后练习】1.如右图所示,在倾角为θ的光滑斜面上有两个用劲度系数为k 的轻质弹簧相连的物块A 、B ,质量均为m ,开始时两物块均处于静止状态.现下压A 再静止释放使A 开始运动,当物块B 刚要离开挡板时,A 的加速度的大小和方向为( )A .0B .2gsin θ,方向沿斜面向下C .2gsin θ,方向沿斜面向上D .gsin θ,方向沿斜面向下1题图 2题图 3题图2.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为3kg 的物体A ,处于静止状态。
用牛顿第二定律处理突变类问题(力的瞬时性)响水县第二中学张耀春牛顿第二定律的瞬时性可理解为:物体运动的加速度a与其所受的合外力F有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或之后的力无关,不等于零的合外力作用的物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;若合外力变为零,加速度也立即变为零(物体运动的加速度可以突变)。
中学物理中的“绳或线”、“轻杆” “弹簧”和“橡皮绳”,是理想化模型,轻绳、线和轻杆可以突变。
橡皮绳和轻弹簧不能突变【例1】(1)如图a所示,L1、L2是两根细绳,现将L2剪断,求剪断瞬间物体的加速度。
解析:剪短前物体受力平衡,L2剪断的瞬间,L1 张力发生突变,这时物体要形成左右摆动,物体的加速度只能沿垂直L1的方向,则:mgsinθ=ma ∴a=gsinθ,方向为垂直于L1斜向下。
(2)如图b所示L1改为轻弹簧,现将L2线剪断,求剪断瞬间物体的加速度大小。
解析:剪短前物体受力平衡,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.物体的合力沿着L2向右,mg tanθ=ma∴a=gtanθ方向沿着L2向右。
(变式)如图a所示,L1、L2是两根橡皮筋,(1)剪断AO瞬间,小球加速度大小。
(2)剪断BO瞬间,小球加速度大小。
解析:小球原来受力平衡,不管剪断哪一根,橡皮条的弹力不发生突变,剪断AO瞬间,小球加速度大小a=gtanθ,与例1的2是同一种情况。
剪断BO瞬间,AO的张力不变,那么小球的合力沿着BO方向斜向下,所以小球的加速度大小a=g/cosθ【例2】如图(a)所示,木块A、B用轻弹簧相连,放在悬挂的木箱C内,处于静止状态,它们的质量之比是1:2:3。
当剪断细绳的瞬间,各物体的加速度大小及其方向?解析:设A、B、C的质量为m、2m、3m。
在断绳的瞬间还未来得及伸长,所以在断绳的瞬间A受到的弹力为mg,所以此时A是平衡状态,所以a A=0,同理B受到的向下的弹力为mg,把B、C看成整体它们受到3个力作用,即C的重力3mg,B的重力2mg,还有B受到的弹力mg,所以B、C的加速度a B=a C=(3mg+2mg+mg)/(2m+3m)=1.2g答案:A的加速度为零;B、C加速度相同,大小均为1.2g,方向竖直向下【例3】如图所示,两根完全相同的弹簧,挂一质量为m的小球,小球与地面间有细线相连,处于静止状态,细线向下的拉力大小为2mg,若剪断细线的瞬间,小球的加速度()A.a=g方向向上B.a=g方向向下C.a=2g方向向上D.a=3g方向向下解析:两弹簧弹力之和为3mg,剪断细线的瞬间,小球所受合外力为2mg,其加速度是a=2g,竖直向上,选项C正确。
牛顿第二定律之瞬时性问题智慧物理【总结】一、瞬时性问题1.牛顿第二定律的表达式为:F 合= 。
加速度由物体所受 决定,。
加速度的方向与物体所受 的方向一致;当物体所受合外力发生突变时,加速度也随着发生 ,而物体运动的速度 发生突变。
2.两种模型的区别(1)轻绳、轻杆和接触面:不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,原有弹力立即消失或 ,即会发生突变。
(2)轻弹簧、蹦床和橡皮条:当轻弹簧两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生 ,所以在瞬时问题中,其弹力大小认为是 的,即此时弹簧弹力不突变。
二、解题思路1.分析瞬时变化前物体的受力情况;2.分析瞬时变化后哪些力变化或消失;3.求出变化后物体所受合力,根据牛顿第二定律列方程;4.求瞬时加速度。
【专题练习】一、填空题1.如图所示,A B 、两小球用细线连接,C D 、两小球用轻弹簧连接,双手分别提起A C 、两球,使四个小球均在空中处于静止状态,双手同时释放A C 、瞬间(空气阻力不计,重力加速度为g ),小球B 的加速度大小为____________,小球D 的加速度大小为____________。
2.如图所示,两系统均处于静止状态,绳和弹簧质量不计。
重力加速度为g ,则剪断OA 、OC 上端绳的瞬时,物体A 、B 、C 、D 的瞬时加速度分别为:a A=______a B=______ac =______a D=______3.如图甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;图甲中倾斜细线OA与图乙中弹簧的拉力之比为________(θ、重力加速度g已知).4.如图所示,质量为m的小球用一根细线和一根轻弹簧悬挂起来,小球静止时,细线水平,而弹簧与竖直成θ角。
牛顿第二定律的瞬时性问题根据牛顿第二定律的表达式F=ma,物体的加速度与物体所受的合外力总是同时产生、同时变化、同时消失,故物体的合外力与其加速度具有瞬时对应关系。
所以,合外力恒定时加速度恒定不变,合外力变化时加速度随之发生变化。
在某些情况下物体的合外力受力条件突然发生变化,要求分析物体加速度的变化,这类问题我们称为瞬时性问题。
一、瞬时性问题的解题步骤二、两种模型1、轻绳、轻杆和接触面这些物体产生弹力时没有明显的形变,剪断或脱离后,恢复形变不需要时间,弹力立即消失或改变,如果题目中没有特殊说明,我们均可认为轻绳、轻杆和接触面的弹力发生突变。
例题1:如图甲、乙所示,质量为m的两物体分别用长度均为L的细线悬挂在天花板上的A、B、C、D 四点,A、B及C、D两点间的距离也为L,甲图中物体通过一小段细线悬挂,而乙图中两根等长细线直接系在物体上,现在剪断悬挂在B、D两点的细线,则在剪断细线的瞬间,物体的加速度为()A. 甲图中物体的加速度为0,乙图中物体的加速度为gB. 甲图中物体的加速度为12g,乙图中物体的加速度为32g分析原状态受力情况,求出原状态下各力的大小和方向。
原状态当前状态加速度若原状态是平衡状态,则由平衡条件求解,若原状态处于加速状态,则由牛顿第二定律求解。
分析当前状态与原状态的间的差异,发生了哪些变化?分析当前状态的受力情况,确定合外力,由牛顿第二定律求解加速度。
C. 甲图中物体的加速度为g,乙图中物体的加速度为1 2 gD. 甲图中物体的加速度为32g,乙图中物体的加速度为0分析与解:甲图中细线剪断后,物体将做自由落体运动,直至细线被拉直,所以剪断的瞬间物体加速度为g;乙图中细线剪断后,物体将绕C点做圆周运动,其加速度垂直细线,所以加速度为12g。
答案:C例题2:(多选)如图所示,质量分别为M=10kg和m=5kg的两物体通过细线连接,已知物体M与水平面的摩擦因数为0.1,物体m与水平面的摩擦因数为0.2,用恒定的外力F=30N拉着两物体在水平面上做匀加速运动,某时刻,突然撤去外力F的瞬间,下列说法正确的是()A.两物体的加速度大小均为43m/s2B.细线的拉力为10NC.物体m的加速度为2m/s2D. 细线的拉力为零分析与解:撤去力F的瞬间,由于物体m所受摩擦力产生的加速度大于物体M所受摩擦力产生的加速度,所以两细线间没有拉力,两物体加速度不同,物体M的加速度为1 m/s2,物体m的加速度为2 m/s2.答案:CD例题3:(多选)如图所示,箱子内用两根细线将质量为m的小球悬挂在A、B两点,其中细线AO与水平方向成600角,细线BO水平,箱子做竖直向上的匀加速直线运动,加速度a=g,g为重力加速度。
《牛顿第二定律的瞬时性问题》——教学反思一、课题的准备阶段牛顿运动定律这一章节在高中物理中的地位举足轻重,在物理的教学公开课中,也经常被老师们选择其中的某一节内容作为上课主题。
教材中包含五个课题:牛顿第一定律、牛顿第二定律、牛顿第三定律、牛顿运动定律的应用、超重与失重。
其中牛顿第二定律定量的给出了物体的加速度与合外力、质量的关系,牛顿第二定律具有丰富的内涵,其具有五个性质:因果性、矢量性、瞬时性、独立性和相对性。
牛顿第二定律的每一个性质都可以用一个物理课时进行深入的研究。
结合成都七中和成都七中八一学校的高一物理教学进度,由成都市教科院组织了一次在成都七中八一学校的同课异构的展示课,课题确定为《牛顿第二定律的瞬时性》,上课时间11月21日,组上老师在一个月前推荐了我去上这次公开课,给我一次锻炼和展示的机会,同时我也借此课题作为学校分散献课的上课课题。
在七中老师中流行着这样一句话:不怕上公开课,就怕上公开课的准备过程。
因为每一次公开课都是一次重要的亮相,对老师个体来说,是个人教学能力的集中展示,对备课组和教研组来说,就是集体力量的集中展示。
为了把这节课上出新颖,上出高度,上出水平。
我做了充分的构思和准备,去学校的图书馆查阅相关资料,在网上也查阅了关于牛顿第二定律瞬时性问题的理论研究,在这节课的实验中,我也做了大胆的尝试,期间做了很多次改进和调整,这些都源于物理教研组的老师们给带来的启发和建议。
二、课题框架的搭建牛顿第二定律的瞬时性,指的是合外力与加速度瞬时一一对应关系,合外力不变,加速度不变;合外力渐变,加速度渐变;合外力突变,加速度突变。
由此我确定了三个教学内容和环节:一是合外力恒定,加速度恒定(问题1:地铁列车启动阶段的瞬时加速度问题为例)。
二是合外力渐变,加速度渐变,(问题2:“蹦极”过程中“人”的加速度变化问题)。
三是合外力突变,加速度突变(问题3:轻弹簧、轻绳模型中的瞬时加速度问题)。
针对这节课的内容,我请教了物理组的范波老师、谢英胜老师。
专题07 牛顿第二定律的瞬时性问题 【专题概述】 牛顿第二定律是高中物理学重要的组成部分,同时也是力学问题中的基石,它具有矢量性、瞬时性等特性,其中瞬时性是同学们理解的难点。
所谓瞬时性,就是物体的加速度与其所受的合外力有瞬时对应的关系,每一瞬时的加速度只取决于这一瞬时的合外力。
也就是物体一旦受到不为零的合外力的作用,物体立即产生加速度;当合外力的方向、大小改变时,物体的加速度方向、大小也立即发生相应的改变;当物体的合外力为零时,物体的加速度也立即为零。
由此可知,力和加速度之间是瞬时对应的。
以两个相对比的情形来说明一下如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m ,物块2、4质量为M ,两个系统均置于水平放置的光滑木板上,并处于静止状态。
现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4。
重力加速度大小为g ,则有( )A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=M m +M gD .a 1=g ,a 2=M m +M g ,a 3=0,a 4=M m +M g【答案】C如图所示,一质量为m 的物体系于长度分别为l 1、l 2 的两根细线上,l 1 的一端悬挂在天花板上,与竖直方向夹角为θ,l 2 水平拉直,物体处于平衡状态。
现将l 2 线剪断,求剪断瞬时物体的加速度。
(1)下面是某同学对该题的一种解法:解:设l1线上拉力为T1,l2线上拉力为T2,物体重力为mg,物体在三力作用下保持平衡T1cosθ=mg,T1sinθ=T2,T2=mgtanθ剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度。
因为mg tanθ=ma,所以加速度a=g tanθ,方向在T2反方向。
你认为这个结果正确吗?请对该解法作出评价并说明理由。