专题3.3 牛顿第二定律中的瞬时性问题(解析版)
- 格式:doc
- 大小:901.15 KB
- 文档页数:14
牛顿运动定律专题(二)※【模型解析】——瞬时性问题(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为( ) A.g,0 B.g,g C.0,g D.2g,g例1题图例2题图例3题图例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是( )A.a P=a Q=g B.a P=2g,a Q=0C.a P=g,a Q=2g D.a P=2g,a Q=g例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有( )A.a1=a2=a3=a4=0B. a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=g D.a1=g,a2=g,a3=0,a4=g例4.细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是(已知cos 53°=0.6,sin 53°=0.8)( )大智者必谦和,大善者比宽容。
A.小球静止时弹簧的弹力大小为mgB.小球静止时细绳的拉力大小为mgC.细线烧断瞬间小球的加速度立即为gD.细线烧断瞬间小球的加速度立即为g【课后练习】1.如图所示,质量相同的两物块A、B用劲度系数为K的轻弹簧连接,静止于光滑水平面上,开始时弹簧处于自然状态。
牛顿第二定律的瞬时性问题【专题概述】 牛顿第二定律是高中物理学重要的组成部分,同时也是力学问题中的基石,它具有矢量性、瞬时性等特性,其中瞬时性是同学们理解的难点。
所谓瞬时性,就是物体的加速度与其所受的合外力有瞬时对应的关系,每一瞬时的加速度只取决于这一瞬时的合外力。
也就是物体一旦受到不为零的合外力的作用,物体立即产生加速度;当合外力的方向、大小改变时,物体的加速度方向、大小也立即发生相应的改变;当物体的合外力为零时,物体的加速度也立即为零。
由此可知,力和加速度之间是瞬时对应的。
以两个相对比的情形来说明一下如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m ,物块2、4质量为M ,两个系统均置于水平放置的光滑木板上,并处于静止状态。
现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4。
重力加速度大小为g ,则有()A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=g M M m +D .a 1=g ,a 2=g M M m +,a 3=0,a 4=g MM m + 【答案】C如图所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平衡状态。
现将l 2线剪断,求剪断瞬时物体的加速度。
(1)下面是某同学对该题的一种解法:解:设l 1线上拉力为T 1,l 2线上拉力为T 2,物体重力为mg ,物体在三力作用下保持平衡T 1cos θ=mg ,T 1sin θ=T 2,T 2=mgtanθ剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度。
因为mg tan θ=ma ,所以加速度a =g tan θ,方向在T 2反方向。
你认为这个结果正确吗?请对该解法作出评价并说明理由。
3.3 牛顿第二定律的瞬时性及应用【考点聚焦】一、牛顿第二定律的瞬时性牛顿第二定律的瞬时性是指物体的加速度与力同时产生、同时变化、同时消失。
它反映了运动和力之间的瞬时对应关系。
二、三种介质模型1、轻质绳(1)轻:绳子质量为零,根据牛顿第二定律可知,绳受到的合力为零,故同一根绳两端或其中间各处的张力大小相等。
(2)软:绳子是柔软的,表明绳子只能受拉力不能受压力,绳子所受拉力沿着绳长方向。
(3)不可伸长:绳子受拉力时形变微小可视为零,因此绳子的拉力可以突变。
2、轻质杆(1)轻:杆子质量为零,根据牛顿第二定律可知,杆受到的合力为零,故同一根杆在只有两端受力的情况下(二力杆)两端或其中间各处的弹力大小相等。
(2)刚性:杆子是刚性的,表明杆子既能受拉力也能受压力,但拉力或压力的方向不一定沿着杆子(只有二力轻杆拉力或压力才沿杆)。
(3)不可伸长:杆子受拉力或压力时形变微小可视为零,因此杆子的弹力可以突变。
3、轻质弹簧(1)轻:弹簧质量为零,根据牛顿第二定律可知,弹簧受到的合力为零,故同一弹簧两端或其中间各处的弹力大小相等。
(2)可伸可缩:弹簧既能受拉力也能受压力。
(3)形变明显:弹簧受拉力或受压力时形变明显,弹力要发生改变需要时间,因此弹力不能突变;但突然剪断弹簧或撤去约束时弹力立即消失。
【方法技巧】四、整体法和隔离法的选用在应用牛顿第二定律分析连结体瞬时性问题时,常需要判断连结体中各物体的加速度是否相同,从而确定能否运用整体法。
(1)若两连结体通过弹簧连接,撤去外力后的瞬间由于加速度不同(可通过受力分析判断各物体的加速度),一般不能运用整体法。
(2)若两连结体通过杆子或绳子连接,由于杆子和绳子(伸直)不可伸长,被连接的两物体的运动情况相同,加速度相同,一般可以运用整体法。
【典例剖析】【例1】(弹簧弹力与绳子拉力的对比)如图3—3—1所示,一质量为m的物体系于长度为l1的轻质弹簧和长度为l2的细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.(1)现将细线l 2剪断,求剪断瞬时物体的加速度;(2)若将图3—3—1中的轻弹簧l 1改为长度相同、质量不计的细线,如图3—3—2所示,其他条件不变。
动力学中的九类常见问题瞬时性问题【模型解读】用牛顿第二定律求解瞬时加速度两种基本模型刚性绳模型(细钢丝、细线、轻杆等)此类形变属于微小形变,其发生和变化过程时间极短,在物体的受力情况改变(如某个力消失)的瞬间,其形变可随之突变,弹力可以突变轻弹簧模型(轻弹簧、橡皮绳、弹性绳等)此类形变属于明显形变,其发生改变需要一段的时间,在瞬时问题中,其弹力的大小不能突变,可看成是不变的【方法归纳】解决瞬时性问题的基本思路(1)分析原状态(给定状态)下物体的受力情况,求出各力大小(①若物体处于平衡状态,则利用平衡条件;②若处于加速状态,则利用牛顿第二定律)。
(2)分析当状态变化时(剪断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失)。
(3)求物体在状态变化后所受的合力,利用牛顿第二定律,求出瞬时加速度。
【典例精析】1(2024辽宁部分重点高中3月联考)物体a 与b 通过轻弹簧连接,b 、c 、d 三个物体用不可伸长的轻线通过定滑轮连接,如图所示,系统处于静止状态,a 恰好和地面无挤压。
已知a 、c 、d 的质量均为m ,弹簧的劲度系数为k 。
物体在运动过程中不会与滑轮相碰,不计一切阻力,重力加速度为g 。
下列说法正确的是()A.将c 与d 间的线剪断,此时c 的瞬时加速度为0B.将c 与d 间的线剪断,此时b 的瞬时加速度为0C.将c 与d 间的线剪断,此时bc 间绳子的拉力为1.5mgD.将c 与d 间的线剪断,b 下降2mgk时的速度最大【名师解析】剪断c与d间的线之前,整个系统处于静止状态,根据题意可知弹簧对b的作用力方向向下,大小为F=mg,以cd为研究对象,c与b间的线对cd的拉力为F1=2mg,设物体质量b为M,以b为研究对象,则有F1-F=Mg,解得M=m,将c与d间的线剪断瞬间,cd间绳子的拉力突变为0,弹簧对b的作用力不变,b与c的加速度a大小相等,设此时bc间绳子的拉力为T,以c为研究对象,由牛顿第二定律有T-mg=ma,以bc整体为研究对象,由牛顿第二定律有mg=2ma,代入数据解得a=0.5g,T=1.5mg,A、B 项错误,C项正确;由上分析可知,剪断线后,b往下运动,当b速度最大时,bc加速度均为零,设此时弹簧弹力为F2,以bc整体为研究对象,由平衡条件可得F2-mg+mg=0,解得F2=0,即当b速度最大时,弹簧的弹力为零,b下降的距离等于弹簧长度的变化量,根据胡克定律可得弹簧变化量为Δx=F-F2k=mgk,D项错误。
瞬时性问题的分析方法及注意事项(1)(1)分析物体在某一时刻的瞬时加速度,关键是明确该时刻有没有力发生突变,分析物体的受力情况分析分析物体在某一时刻的瞬时加速度,关键是明确该时刻有没有力发生突变,分析物体的受力情况分析分析物体在某一时刻的瞬时加速度,关键是明确该时刻有没有力发生突变,分析物体的受力情况分析运运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下几种动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下几种模型模型:特性特性 模型模型 受外力时的形的形变量变量 力能力能 否突变否突变 产生拉力产生拉力 或支持力或支持力 质量质量 内部内部弹力弹力轻绳微小不计可以只有拉力没有支持力支持力 不计不计 处处相等处处相等 橡皮绳 较大 不能只有拉力没有支持力支持力轻弹簧 较大 不能既可有拉力也可有支持力可有支持力 轻杆 微小不计 可以既可有拉力也可有支持力可有支持力(2)(2)在求解瞬时性加速度问题时应注意:在求解瞬时性加速度问题时应注意:在求解瞬时性加速度问题时应注意:①物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行①物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析受力分析和运动分析。
②加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。
②加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。
【变式训练】1、如图所示,质量分别为m A 和 m B 两球用轻弹簧连接,两球用轻弹簧连接,A A 球用球用细线细线悬挂起来,两球均处于静止状态,如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬间加速度各是多少两球的瞬间加速度各是多少? ?2.如图所示,两小球悬挂在天花板上,.如图所示,两小球悬挂在天花板上,a a 、b 两小球用细线连接,上面是一轻质弹簧,两小球用细线连接,上面是一轻质弹簧,a a 、b 两球的质量分别为m,2m m,2m,在细线烧断瞬间,两球的加速度分别是,在细线烧断瞬间,两球的加速度分别是,在细线烧断瞬间,两球的加速度分别是 ( )) A.0;g B.-g;g C-2g;g D2g;03.如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、固定于杆上,小球处于静止状态.设拔去销钉M 瞬间.小球加速度的大小为12m/s 2,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是瞬间,小球的加速度可能是((取g=10m/s 2)( ) A .22m/s 2,竖直向上,竖直向上 B .22m/s 2,竖直向下,竖直向下 C .2m/s 2,竖直向上,竖直向上图3-2-4A .a 1=0,a 2=gB .a 1=g ,a 2=gC .a 1=0,a 2=m +MM g D. a 1=g ,a 2=m +MMg 6、如图所示,质量为m 的小球用水平弹簧系住,并用倾角为3030°的光滑木板°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度为(突然向下撤离的瞬间,小球的加速度为( ) A .0B .大小为,方向竖直向下,方向竖直向下C .大小为,方向水平向右,方向水平向右D .2m/s 2,竖直向下,竖直向下4、如图示,球A 、B 、C 质量分别为m 、2m 2m、、3m 3m,,A 与天花板间、与天花板间、B B 与C 之间用轻之间用轻弹簧弹簧相连,当该系统平衡后,突然将AB 间轻绳绕断,在绕断瞬间,间轻绳绕断,在绕断瞬间,A A 、B 、C 的加速度(以向下为正方向)分别为(的加速度(以向下为正方向)分别为( ) A .0、g 、g B .-.-5g 5g 5g、、2.5g 2.5g、、0 C .5g 5g、、2.5g 2.5g、、0 D .-.-g g 、2g 2g、、2g5、如图3-2-4所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。
牛顿三大定律、牛顿第二定律的瞬时性问题特训目标特训内容目标1牛顿第一定律(1T -4T )目标2牛顿第三定律(5T -8T )目标3牛顿第二定律(9T -12T )目标4牛顿第二定律瞬时性的问题(13T -16T )目标5应用牛顿第二定律分析动态过程(17T -20T )【特训典例】一、牛顿第一定律1甲瓶子盛满水,在密封塞上用细绳悬挂一个铁球,乙瓶子盛满水,在密封塞上用等长细绳悬挂与小铁球体积相同的小泡沫塑料球,且将乙瓶子倒置,如图所示,甲、乙两个瓶子均固定在小车上。
当小车突然向前运动时,则两球的存在状态为()A. B.C. D.【答案】A【详解】对A 选项所示情况,可设想一个与金属小球等体积的水球。
金属球位置的变化,必然代替这个水球的位置。
而同体积的水球和金属球,金属球的质量大,惯性大,运动状态不容易改变,故相对水球来说滞后。
同理,由于同体积水球的质量大于泡沫塑料球的质量,水球惯性大,相对泡沫塑料球来说水球滞后,泡沫塑料球相对水球在前,故A 正确,BCD 错误。
故选A 。
2如图所示,滑冰运动员用力将冰刀后蹬,可以向前滑行;停止用力,会逐渐停下,且滑行的速度越大,停下所需时间越长,滑的越远。
有四位同学对此过程发表了自己的看法,你认为正确的是()A.运动员的运动需要力来维持B.停止用力,运动员停下来是具有惯性的表现C.停止用力,运动员停下来是由于摩擦力的作用D.速度越大,停下所需时间越长,说明惯性的大小和速度有关【答案】C【详解】A.力是改变物体运动状态的原因,不是维持物体运动的,故A错误;BC.停止用力,运动员停下来是由于摩擦力的作用,而继续运动是因为惯性,故B错误,C正确;D.摩擦力一定时,根据运动学公式可知,速度越大,停下所需时间越长,但惯性与自身的质量有关,与速度无关,故D错误。
故选C。
3墨子是春秋战国时期著名的思想家,他的著作《墨经》中写道:“力,刑之所以奋也。
”“刑”同“形”,即物体:“奋”,意思是“(物体)动也”,即开始运动或者运动加快。
牛顿运动定律专题(二)※【模型解析】——瞬时性问题(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为()A.g,0B.g,g C.0,g D.2g,g例1题图例2题图例3题图例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是() A.a P=a Q=g B.a P=2g,a Q=0C.a P=g,a Q=2g D.a P=2g,a Q=g例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()A.a1=a2=a3=a4=0B. a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=m+MM g D.a1=g,a2=m+MM g,a3=0,a4=m+MM g例4.细绳拴一个质量为m 的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是( )A .小球静止时弹簧的弹力大小为35mg B .小球静止时细绳的拉力大小为35mg C .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g 【课后练习】1.如右图所示,在倾角为θ的光滑斜面上有两个用劲度系数为k 的轻质弹簧相连的物块A 、B ,质量均为m ,开始时两物块均处于静止状态.现下压A 再静止释放使A 开始运动,当物块B 刚要离开挡板时,A 的加速度的大小和方向为( )A .0B .2gsin θ,方向沿斜面向下C .2gsin θ,方向沿斜面向上D .gsin θ,方向沿斜面向下1题图 2题图 3题图2.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为3kg 的物体A ,处于静止状态。
牛顿第二定律之 瞬时加速度专题 物体的加速度与合力存在瞬时对应关系,所以分析物体在某一时刻的瞬时加速度,关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度,解决此类问题时,要注意两类模型的特点:(1)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,恢复形变几乎不需要时间,故认为弹力立即改变或消失.(2)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,恢复形变需要较长时间,在瞬时问题中,其弹力往往可以看成是不变的.加速度和力具有瞬时对应关系,即同时产生、同时变化、同时消失,分析物体在某一时刻的瞬时加速度,关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度. 分析瞬时变化问题的一般思路:(1)分析瞬时变化前物体的受力情况(主要是分析瞬时变化前物体受到弹簧(或橡皮绳)的弹力),求出每个力的大小.(2)分析瞬时变化后每个力的变化情况.(3)由每个力的变化确定变化后瞬间的合力,由牛顿第二定律求瞬时加速度.例1 如图所示,质量分别为m 和2m 的A 和B 两球用轻弹簧连接,A 球用细线悬挂起来,两球均处于静止状态,如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬时加速度a A 、a B 的大小分别是( )A .a A =0,aB =0 B .a A =g ,a B =gC .a A =3g ,a B =gD .a A =3g ,a B =0(变式练习1).如图所示,质量相等的A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为( )A.都等于2gB.0和2gC.g 和0D.0和g(变式练习2)(瞬时加速度问题)如图所示,a 、b 两小球悬挂在天花板上,两球用细线连接,上面是一轻质弹簧,a 、b 两球的质量分别为m 和2m ,在细线烧断瞬间,a 、b 两球的加速度为(取向下为正方向)( )A .0,gB .-g ,gC .-2g ,gD .2g,0例2 如图所示,质量为m 的小球被水平绳AO 和与竖直方向成θ角的轻弹簧系着处于静止状态,现将绳AO 烧断,在绳AO 烧断的瞬间,下列说法正确的是( )A .弹簧的拉力F =mg cos θB .弹簧的拉力F =mg sin θC .小球的加速度为零D .小球的加速度a =gtan θ(变式练习3)如图所示,质量为m 的小球用水平轻质弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为(重力加速度为g )( )A .0B .233gC .gD .33g例3 如图所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( )A.a 1=0,a 2=gB.a 1=g ,a 2=gC.a 1=0,a 2=gD.a 1=g ,a 2=g(变式练习4)如图所示,A 、B 两木块间连一轻杆,A 、B 质量相等,一起静止地放在一块光滑木板上,若将此木板突然抽去,在此瞬间,A 、B 两木块的加速度分别是( )A.a A =0,a B =2gB.a A =g ,a B =gC.a A =0,a B =0D.a A =g ,a B =2g例4(瞬时加速度问题)如图所示,在光滑的水平面上,质量分别为m 1和m 2的木块A 和B 之间用轻弹簧相连,在拉力F 作用下,以加速度a 做匀加速直线运动(取水平向右为正方向),某时刻突然撤去拉力F ,此瞬间A 和B 的加速度为a 1和a 2,则( )A .a 1=a 2=0B .a 1=a ,a 2=0C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2a D .a 1=a ,a 2=-m 1m 2a课堂作业1.在倾角为θ的光滑斜面上放一球,球被竖直板挡住,如图所示,在拿开挡板后,小球的加速度为( )A. g sin θ,沿斜面向下B.g cos θ,沿斜面向下B. C.g tan θ,水平向左 D.,水平向左 2.三个质量相同的物块A ,B ,C ,用两个轻弹簧和一根轻线相连,如图所示,挂在天花板上,处于静止状态,在将A,B间细线剪断的瞬间,A,B,C的加速度分别为多大?(取向下为正,重力加速度为g)3.(多选)质量均为m的A,B两球之间系着一个不计质量的轻弹簧并放在光滑水平台面上,A球紧靠墙壁,如图所示,今用水平力F推B球使其向左压弹簧,平衡后,突然将力F撤去的瞬间( BD )A.A的加速度大小为B.A的加速度大小为零C.B的加速度大小为D.B的加速度大小为4.(多选)如图所示,竖直放置在水平面上的轻弹簧上,放着质量为2 kg的物体A,处于静止状态.若将一个质量为3 kg的物体B轻放在A上,在轻放瞬间(g取10 m/s2)( CD )A.B的加速度为0B.B对A的压力大小为30 NC.B的加速度为6 m/s2D.B对A的压力大小为12 N5.如图所示,弹簧的一端固定在天花板上,另一端连一质量m=2 kg的秤盘,盘内放一个质量M=1 kg的物体,秤盘在竖直向下的拉力F作用下保持静止,F=30 N,在突然撤去外力F的瞬间,物体对秤盘的压力为(g=10 m/s2)( C )A.10 NB.15 NC.20 ND.40 N6.(多选)(难)如图所示,在动摩擦因数μ=0.2的水平面上,质量m=2 kg的物块与水平轻弹簧相连,物块在与水平方向成θ=45°角的拉力F作用下处于静止状态,此时水平面对物块的弹力恰好为零.g取10 m/s2,以下说法正确的是( AB )A.此时轻弹簧的弹力大小为20 NB.当撤去拉力F的瞬间,物块的加速度大小为8 m/s2,方向向左C.若剪断弹簧,则剪断的瞬间物块的加速度大小为8 m/s2,方向向右D.若剪断弹簧,则剪断的瞬间物块的加速度为0【教学反思】例1 D解析 分析B 球原来受力如图甲所示,F ′=2mg剪断细线后弹簧形变不会瞬间改变,故B 球受力不变,a B =0.分析A 球原来受力如图乙所示,F T =F +mg ,F ′=F ,故F T =3mg .剪断细线,F T 变为0,F 大小不变,A 球受力如图丙所示由牛顿第二定律得:F +mg =ma A ,解得a A =3g .(变式练习1)D(变式练习2)C例2 AD(变式练习3)B例3 D(变式练习4)B 【解析】由题意知,当刚抽去木板时,A 、B 和杆将作为一个整体,只受重力,根据牛顿第二定律得a A =a B =g ,故选项B 正确.例4 D 解析 两木块在光滑的水平面上一起以加速度a 向右匀加速运动时,弹簧的弹力F 弹=m 1a ,在力F 撤去的瞬间,弹簧的弹力来不及改变,大小仍为m 1a ,因此对A 来讲,加速度此时仍为a ,对B :取向右为正方向,-m 1a =m 2a 2,a 2=-m 1m 2a ,所以D 正确【答案】D。
牛顿第二定律的瞬时性问题一、瞬时性问题的解题步骤二、两种模型三、典型例题解析例1、如图所示,细绳1 挂着匣子C, 匣内又用绳2挂着A球,在A的下方又用轻弹簧挂着B 球。
已知 A、B、C 三个物体的质量均为m ,原来都处于静止状态,重力加速度为g。
在细绳1被烧断后的瞬间,以下说法正确的是( )。
A.A、B、C的加速度都为gB.C的加速度为3gC.A的加速度为2gD.细绳2上张力大小为0.5mg【答案】D【解析】绳1被烧断后的瞬间,弹簧上弹力大小仍为mg,故此时B的加速度为0。
此时A、C 的加速度相同,即a A= a C,设此时绳2上张力大小为 F。
由牛顿第二定律,对A、C整体有3mg =2ma A,对C有 mg +F = ma C,解得a A = a C =1.5g,F = 0.5 mg,D项正确。
例2、(多选)光滑斜面上,当系统静止时,挡板C与斜面垂直,轻弹簧、轻杆均与斜面平行,A、B质量相等。
在突然撤去挡板的瞬间,下列说法正确的是( )A.两图中两球的加速度均为gsinθB.两图中A球的加速度均为零C.图1中B球的加速度为2gsinθD.图2中B球的加速度为gsinθ【答案】CD【解析】撤去挡板前,对整体分析,挡板对B球的弹力大小都为2mgsin θ。
因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间:图1中A球所受合力为零,加速度为零,B球所受合力为2mgsin θ,加速度为2gsin θ;图2中杆的弹力突变为零,A、B两球所受合力均为mgsin θ,加速度均为gsin θ,故C、D两项正确,A、B两项错误。
例3、(多选)在动摩擦因数μ=0.2的水平面上有一个质量m=2 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止状态,且水平面对小球的弹力恰好为零。
在剪断轻绳的瞬间,取g=10 m/s2,下列说法正确的是( )。
A.此时轻弹簧的弹力大小为20 NB.小球的加速度大小为8 m/s2,方向向左C.若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s2,方向向右D.若剪断弹簧,则剪断的瞬间小球的加速度为零【答案】ABD【解析】未剪断轻绳时,水平面对小球的弹力为零,小球受到重力mg、轻绳的拉力F T和弹簧的弹力F作用而处于平衡状态。
牛顿运动定律的应用之瞬时性问题加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失。
分析物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下几种模型:模型受外力时的形变量力能否突变产生拉力或压力轻绳微小不计可以只有拉力没有压力轻橡皮绳较大不能只有拉力没有压力轻弹簧较大不能既可有拉力也可有压力轻杆微小不计可以既可有拉力也可有支持力【规律方法】抓住“两关键”、遵循“四步骤”(1)分析瞬时加速度的“两个关键”:①分析瞬时前、后的受力情况和运动状态。
②明确绳或线类、弹簧或橡皮条类模型的特点。
(2)“四个步骤”:第一步:分析原来物体的受力情况。
第二步:分析物体在突变时的受力情况。
第三步:由牛顿第二定律列方程。
学,科网第四步:求出瞬时加速度,并讨论其合理性。
【典例1】两个质量均为m的小球,用两条轻绳连接,处于平衡状态,如图所示。
现突然迅速剪断轻绳OA,让小球下落,在剪断轻绳的瞬间,设小球A、B的加速度分别用a1和a2表示,则()A.a1=g,a2=gB.a1=0,a2=2gC.a1=g,a2=0D.a1=2g,a2=0【答案】 A【解析】 由于绳子张力可以突变,故剪断OA 后小球A 、B 只受重力,其加速度a 1=a 2=g 。
故选项A 正确。
【典例2】如图所示,光滑水平面上,A 、B 两物体用轻弹簧连接在一起,A 、B 的质量分别为m 1、m 2,在拉力F 作用下,A 、B 共同做匀加速直线运动,加速度大小为a ,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度大小为a 1和a 2,则( ).A .a 1=0,a 2=0B .a 1=a ,a 2=m 2m 1+m 2aC .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2aD .a 1=a ,a 2=m 1m 2a【答案】 D【典例3】用细绳拴一个质量为m 的小球,小球将一固定在墙上的水平轻质弹簧压缩了x (小球与弹簧不拴连),如图所示.将细绳剪断后( ).A .小球立即获得kxm的加速度B .小球在细绳剪断瞬间起开始做平抛运动C .小球落地的时间等于2h gD .小球落地的速度大于2gh 【答案】 CD【解析】 细绳剪断瞬间,小球受竖直方向的重力和水平方向的弹力作用,选项A 、B 均错;水平方向的弹力不影响竖直方向的自由落体运动,故落地时间由高度决定,选项C 正确;重力和弹力均做正功,选项D 正确.【典例4】如图所示,A 、B 、C 三球质量均为m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态,细线被烧断的瞬间,下列说法中正确的是( )A. A 球的受力情况未变,加速度为零B. C 球的加速度沿斜面向下,大小为gC. A 、B 之间杆的拉力大小为2mg s in θD. A 、B 两个小球的加速度均沿斜面向上,大小均为12g s in θ【答案】D【跟踪短训】1.(多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的弹簧,则当木块接触弹簧后( ).A .木块立即做减速运动B .木块在一段时间内速度仍可增大C .当F 等于弹簧弹力时,木块速度最大D .弹簧压缩量最大时,木块加速度为零 【答案】 BC【解析】 木块在光滑水平面上做匀加速运动,与弹簧接触后,当F >F 弹时,随弹簧形变量的增大,向左的弹力F 弹逐渐增大,木块做加速度减小的加速运动;当弹力和F 相等时,木块速度最大,之后木块做减速运动,弹簧压缩量最大时,木块加速度向左不为零,故选项B 、C 正确.2.(多选)质量均为m 的A 、B 两个小球之间系一个质量不计的弹簧,放在光滑的台面上.A 紧靠墙壁,如图所示,今用恒力F 将B 球向左挤压弹簧,达到平衡时,突然将力F 撤去,此瞬间( ).A .A 球的加速度为F2mB .A 球的加速度为零C .B 球的加速度为F2mD .B 球的加速度为Fm【答案】 BD【解析】 恒力F 作用时,A 和B 都平衡,它们的合力都为零,且弹簧弹力为F .突然将力F 撤去,对A 来说水平方向依然受弹簧弹力和墙壁的弹力,二力平衡,所以A 球的合力为零,加速度为零,A 项错,B项对.而B球在水平方向只受水平向右的弹簧的弹力作用,加速度a=Fm,故C项错,D项对.3. 如图所示,在动摩擦因数μ=0.2的水平面上有一个质量m=1 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,此时小球处于静止状态,且水平面对小球的弹力恰好为零。
衔接点28牛顿第二定律瞬时问题和连接体问题课程标准高中物理新知识、新模型知识点一变力作用下加速度和速度的分析1.加速度与合力的关系由牛顿第二定律F=ma,加速度a与合力F具有瞬时对应关系,对于同一物体,合力增大,加速度增大,合力减小,加速度减小;合力方向变化,加速度方向也随之变化.2.速度与加速度(合力)的关系速度与加速度(合力)方向相同,物体做加速运动;速度与加速度(合力)方向相反,物体做减速运动.知识点二牛顿第二定律的瞬时性问题1.两种模型的特点(1)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,形变恢复几乎不需要时间,故认为弹力可以立即改变或消失.(2)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,在弹簧(或橡皮绳)的自由端连接有物体时其弹力的大小不能突变,往往可以看成是瞬间不变的.2.解决此类问题的基本思路(1)分析原状态(给定状态)下物体的受力情况,明确各力大小.(2)分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳中的弹力、发生在被撤去物体接触面上的弹力都立即消失).(3)求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度.知识点三连接体1.连接体两个或两个以上相互作用的物体组成的具有相同运动状态的整体叫连接体.如几个物体叠放在一起,或并排放在一起,或用绳子、细杆等连在一起,在求解连接体问题时常用的方法为整体法与隔离法.2.连接体问题的解题方法(1)整体法:把整个连接体系统看作一个研究对象,分析整体所受的外力,运用牛顿第二定律列方程求解.其优点在于它不涉及系统内各物体之间的相互作用力.(2)隔离法:把系统中某一物体(或一部分)隔离出来作为一个单独的研究对象,进行受力分析,列方程求解.其优点在于将系统内物体间相互作用的内力转化为研究对象所受的外力,容易看清单个物体(或一部分)的受力情况或单个过程的运动情形.初、高中物理衔接点1. “串接式”连接体中弹力的“分配协议”如图所示,对于一起做加速运动的物体系统,m1和m2间的弹力F12或中间绳的拉力F T的大小遵守以下力的“分配协议”:(1)若外力F作用于m1上,则F12=F T=m2·Fm1+m2;(2)若外力F作用于m2上,则F12=F T=m1·Fm1+m2.注意:①此“协议”与有无摩擦无关(若有摩擦,两物体与接触面间的动摩擦因数必须相同);②此“协议”与两物体间有无连接物、何种连接物(轻绳、轻杆、轻弹簧)无关;③物体系统处于水平面、斜面或竖直方向上一起加速运动时此“协议”都成立.例题1.如图所示,质量为m的小球被水平绳AO和与竖直方向成θ角的轻弹簧系着处于静止状态,现将绳AO烧断,在烧断绳AO的瞬间,下列说法正确的是(重力加速度为g)()A .弹簧的拉力F =mgcos θB .弹簧的拉力F =mg sin θC .小球的加速度为零D .小球的加速度a =g sin θ 答案 A解析 烧断绳AO 之前,对小球受力分析,小球受3个力,如图所示,此时弹簧拉力F =mgcos θ,绳AO 的张力F T =mg tan θ,烧断绳AO 的瞬间,绳的张力消失,但由于轻弹簧形变的恢复需要时间,故烧断绳AO 瞬间弹簧的拉力不变,A 正确,B 错误.烧断绳AO 的瞬间,小球受到的合力与烧断绳AO 前绳子的拉力等大反向,即F 合=mg tan θ,则小球的加速度a =g tan θ,C 、D 错误.例题2. 如图所示,一个小球从竖直立在地面上的轻弹簧正上方某处自由下落,不计空气阻力,在小球与弹簧开始接触到弹簧被压缩到最短的过程中,小球的速度和加速度的变化情况是( )A .加速度越来越大,速度越来越小B .加速度和速度都是先增大后减小C .速度先增大后减小,加速度方向先向下后向上D .速度一直减小,加速度大小先减小后增大 答案 C解析 在接触的第一个阶段mg >kx ,F 合=mg -kx ,合力方向竖直向下,小球向下运动,x 逐渐增大,所以F 合逐渐减小,由a =F 合m 得,a =mg -kxm ,方向竖直向下,且逐渐减小,又因为这一阶段a 与v 都竖直向下,所以v 逐渐增大.当mg =kx 时,F 合=0,a =0,此时速度达到最大,之后,小球继续向下运动,mg <kx ,合力F 合=kx -mg ,方向竖直向上,小球向下运动,x 继续增大,F 合增大,a =kx -mgm ,方向竖直向上,随x 的增大而增大,此时a 与v 方向相反,所以v 逐渐减小.综上所述,小球向下压缩弹簧的过程中,F 合的方向先向下后向上,大小先减小后增大;a 的方向先向下后向上,大小先减小后增大;v 的方向向下,大小先增大后减小.故C 正确.例题3. 如图所示,两个质量相同的物体A 和B 紧靠在一起,放在光滑的水平面上,如果它们分别受到水平推力F 1和F 2,而且F 1>F 2,则A 对B 的作用力大小为( ) A .F 1 B .F 2 C.F 1+F 22 D.F 1-F 22答案 C解析 选取A 和B 整体为研究对象,共同加速度a =F 1-F 22m .再选取物体B 为研究对象,受力分析如图所示,根据牛顿第二定律得F N -F 2=ma ,得F N =F 2+ma =F 2+m F 1-F 22m =F 1+F 22,故C 正确.例题4. 如图所示,物体A 重20 N ,物体B 重5 N ,不计一切摩擦和绳的重力,当两物体由静止释放后,物体A 的加速度与绳子上的张力分别为(g 取10 m/s 2)( )A .6 m/s 2,8 NB .10 m/s 2,8 NC .8 m/s 2,6 ND .6 m/s 2,9N答案 A解析 静止释放后,物体A 将加速下降,物体B 将加速上升,二者加速度大小相等,由牛顿第二定律,对A 有m A g -F T =m A a ,对B 有F T -m B g =m B a ,代入数据解得a =6 m/s 2,F T =8 N ,A 正确.一、单选题1.一个做直线运动的物体受到的合外力的方向与物体运动的方向相同,当合外力减小时,物体运动的加速度和速度的变化是( ) A .加速度增大,速度增大 B .加速度减小,速度减小 C .加速度增大,速度减小 D .加速度减小,速度增大 答案 D解析 当合外力减小时,根据牛顿第二定律a =Fm 知,加速度减小,因为合外力的方向与速度方向相同,则加速度方向与速度方向相同,故速度增大,D 正确.2.如图所示,静止在光滑水平面上的物体A 一端连接处于自然状态的轻质弹簧,现对物体施加一水平恒力F ,在弹簧被压缩到最短这一过程中,物体的速度和加速度大小的变化情况是( )A .速度增大,加速度增大B .速度增大,加速度减小C .速度先增大后减小,加速度大小先增大后减小D .速度先增大后减小,加速度大小先减小后增大 答案 D解析 开始阶段,恒力F 大于弹簧的弹力,物体向左做加速运动,弹簧弹力逐渐增大,加速度大小逐渐减小,当弹簧弹力大于F 时,加速度方向向右,且逐渐增大,即物体先做加速度大小逐渐减小的加速运动,然后做加速度大小逐渐增大的减速运动,选项D 正确.3.如图所示,质量为m 的小球用水平轻质弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.在木板AB 突然撤离的瞬间,小球的加速度大小为(重力加速度为g )( )A .0 B.233g C .g D.33g答案 B解析 未撤离木板时,小球受重力mg 、弹簧的拉力F T 和木板的弹力F N 的作用处于静止状态,通过受力分析可知,木板对小球的弹力大小为233mg .在撤离木板的瞬间,弹簧的拉力F T 大小和方向均没有发生变化,而小球的重力是恒力,故此时小球受到重力mg 、弹簧的拉力F T ,撤离木板瞬间,小球所受合力与撤离木板前木板对小球的弹力大小相等、方向相反,故小球的加速度大小为233g ,故选B.4.如图所示,物体A 和B 恰好做匀速运动,已知m A >m B ,不计滑轮及绳子的质量,A 、B 与桌面间的动摩擦因数相同,重力加速度为g .若将A 与B 互换位置,则( )A .物体A 与B 仍做匀速运动B .物体A 与B 做加速运动,加速度a =m A +m Bm A gC .物体A 与B 做加速运动,加速度a =m A gm A +m BD .绳子中张力不变解析 开始时A 、B 匀速运动,绳子的张力等于m B g ,且满足m B g =μm A g ,解得μ=m Bm A ,物体A 与B 互换位置后,对A 有m A g -F T =m A a ,对B 有F T -μm B g =m B a ,联立解得F T =m B g ,a =m A -m Bm Ag ,D 正确.5.如图所示,并排放在光滑水平面上的两物体的质量分别为m 1和m 2,且m 1=2m 2.当用水平推力F 向右推m 1时,两物体间的相互作用力的大小为F N ,则( )A .F N =FB .F N =12FC .F N =13FD .F N =23F答案 C解析 当用F 向右推m 1时,对m 1和m 2整体,由牛顿第二定律可得F =(m 1+m 2)a ;对m 2有F N =m 2a =m 2m 1+m 2F ;因m 1=2m 2,得F N =F3.故选项C 正确.6.五个质量相等的物体置于光滑水平面上,如图所示,现对左侧第1个物体施加大小为F 、方向水平向右的恒力,则第2个物体对第3个物体的作用力等于( )A.15FB.25FC.35FD.45F 答案 C解析 设各物体的质量均为m ,对整体运用牛顿第二定律得a =F5m ,对3、4、5组成的整体应用牛顿第二定律得F N =3ma ,解得F N =35F .故选C.7.如图所示,在光滑的水平桌面上有一物体A ,通过绳子与物体B 相连,假设绳子的质量以及绳子与轻质定滑轮之间的摩擦均不计,绳子不可伸长且与A 相连的绳水平,重力加速度为g .如果m B =3m A ,则绳子对物体A 的拉力大小为( )A .mB g B.34m A gC .3m A gD.34m B g解析 对A 、B 整体进行受力分析,根据牛顿第二定律可得m B g =(m A +m B )a ,对物体A ,设绳的拉力为F ,由牛顿第二定律得,F =m A a ,解得F =34m A g ,B 正确.8.如图所示,质量为M 、中间为半球形的光滑凹槽放置于光滑水平地面上,光滑凹槽内有一质量为m 的小铁球,现用一水平向右的推力F 推动凹槽,小铁球与光滑凹槽相对静止时,凹槽球心和小铁球的连线与竖直方向成α角.重力加速度为g ,则下列说法正确的是( )A .小铁球受到的合外力方向水平向左B .F =(M +m )g tan αC .系统的加速度为a =g sin αD .F =mg tan α 答案 B解析 对小铁球受力分析得F 合=mg tan α=ma 且合外力方向水平向右,故小铁球的加速度为g tan α,因为小铁球与凹槽相对静止,故系统的加速度也为g tan α,A 、C 错误;对系统受力分析得F =(M +m )a =(M +m )g tan α,故B 正确,D 错误.二、多选题9.质量均为m 的A 、B 两球之间系着一个质量不计的水平轻弹簧并放在光滑水平台面上,A 球紧靠墙壁,如图所示,今用水平力F 推B 球使其向左压弹簧,平衡后,突然撤去力F 的瞬间( )A .A 的加速度大小为F2mB .A 的加速度大小为零C .B 的加速度大小为F2mD .B 的加速度大小为Fm答案 BD解析 在撤去力F 的瞬间,A 球受力情况不变,仍静止,A 的加速度为零,选项A 错,B 对;在撤去力F 的瞬间,弹簧的弹力还没来得及发生变化,故B 的加速度大小为Fm,选项C 错,D 对.10.如图所示,A 、B 、C 是三个质量相同的小球,A 、B 之间用轻弹簧连接,B 、C 之间用细绳连接,A 通过细绳悬挂在天花板上,整个系统保持静止,重力加速度为g .则剪断OA 间细绳的瞬间( )A .小球A 的加速度大小为2gB .小球A 的加速度大小为3gC .小球C 的加速度大小为0D .小球C 的加速度大小为g 答案 BC解析 设三个小球质量均为m ,剪断OA 间细绳前,弹簧弹力F =2mg ,剪断OA 间细绳瞬间,弹簧弹力F =2mg 不变,对A 分析,F +mg =ma ,解得A 的加速度a =3g ;对BC 整体分析,F -2mg =2ma ,解得BC 整体加速度a =0,B 、C 正确.11.如图所示,一质量为2kg M =、倾角为=37θ︒的斜面体放在光滑水平地面上。
专题3.1牛顿运动定律的瞬时性问题【考纲解读与考频分析】在牛顿运动定律应用中经常出现瞬时性问题,瞬时性问题成为高考命题热点。
【高频考点定位】:瞬时性问题考点一:瞬时性问题【3年真题链接】1. (2019年4月浙江选考)如图所示,A、B、C为三个实心小球,A为铁球,B、C为木球。
A、B两球分别连在两根弹簧上,C球连接在细线一端,弹簧和细线的下端固定在装水的杯子底部,该水杯置于用绳子悬挂的静止吊篮内。
若将挂吊篮的绳子剪断,则剪断的瞬间相对于杯底(不计空气阻力,ρ木<ρ水<ρ铁)()A. A球将向上运动,B、C球将向下运动B. A、B球将向上运动,C球不动C. A球将向下运动,B球将向上运动,C球不动D. A球将向上运动,B球将向下运动,C球不动【参考答案】D【名师解析】开始时A球下的弹簧被压缩,弹力向上;B球下的弹簧被拉长,弹力向下;将挂吊篮的绳子剪断的瞬时,系统的加速度为g,为完全失重状态,此时水对球的浮力为零,小球的重力也可视为零,则A球将在弹力作用下向上运动,B球将在弹力作用下向下运动,C球不动;故选D.2.(2010全国理综1)如图6-4,轻弹簧上端与一质量为m的木块1相连,下端与另一质量为M的木块2相连,整个系统置于水平放置的光滑木坂上,并处于静止状态。
现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a1、a2重力加速度大小为g。
则有()A.a1=0,a2=g B.a1=g,a2=gC .a 1=0, a 2=M M m +gD .a 1=g ,a 2=MM m +g【参考答案】C【名师解析】 抽出木板前,木块1在重力mg 与弹簧弹力F 作用下处于平衡状态,F=mg ;质量为M 的木块2受到木板的支持力F ’=Mg+F 。
在抽出木板的瞬时,弹簧中弹力并未改变,木块1受重力和弹簧向上的弹力作用,mg=F ,a 1=0。
木块2受重力和弹簧向下的弹力作用,根据牛顿第二定律a 2=M Mg F +=MM m +g ,所以选项C 正确。
3. (2014北京理综高考题)应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入。
例如平伸手掌托起物体,由静止开始向上运动,直至将物体抛出。
对此现象分析正确的是( )A .受托物体向上运动的过程中,物体始终处于超重状态;B .受托物体向上运动的过程中,物体始终处于失重状态;C .在物体离开手的瞬间,物体的加速度大于重力加速度;D .在物体离开手的瞬间,手的加速度大于重力加速度;【参考答案】D【名师解析】受托物体由静止开始向上运动,一定先做加速运动,物体处于超重状态;而后可能匀速上升,也可能减速上升(失重状态),选项AB 错误。
在物体离开手的瞬间,二者分离,物体只受重力,物体的加速度一定等于重力加速度;要使手和物体分离,手向下的加速度一定大于物体向下的加速度(重力加速度),即手的加速度大于重力加速度,选项C 错误D 正确。
【2年模拟再现】1.(6分)(2019江西南昌二模)如图所示,细线AB 和BC 连接着一质量为m 的物体P ,其中绳子的A 端固定,C 端通过小定滑轮连接着一质量也为m 的另一个物体Q ,开始时,用手抓住物体Q ,使物体P 、Q图6-4均静止,此时AB 和BC 两绳中拉力大小分别为T 1,T 2把手放开瞬间,AB 和BC 两绳中拉力大小分别为T 1′、T 2′.已知ABC 处于同一竖直平面内,绳子间连接的夹角如图。
则( )A .T 1:T 1'=1:1B .T 1:T 2=1:2C .T 2:T 2'=2:3D .T 1′:T 2'=:1【参考答案】AC 【名师解析】根据共点力的平衡,可以得出拉力的大小;在放手的瞬间要考虑瞬时加速度问题,根据牛顿第二定律可以求出放手后拉力的大小。
用手抓住物体Q 时,以悬点为研究对象,悬点受力平衡,有:T 1=mgcos30°…①,T 2=mgsin30°…②把手放开瞬间,设Q 加速度为a ,则P 在瞬间沿BC 加速度也为a ,根据牛顿第二定律,有:对Q :mg ﹣T'2=ma …③对P ,在BC 方向:T'2﹣mgcos60°=ma …④在AB 方向:T'1=mgsin60°…⑤联立①②③④⑤得:T 1:T 1'=1:1,T 2:T 2'=2:3,选项AC 正确。
【点评】本题考查共点力的平衡,关键要注意在放手瞬间,在BC 方向有加速度,而在AB 方向受力平衡。
2.(2018贵州联考)如图所示,质量分别为M A 和M B 的A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为( )A .都等于2gB .2g 和0 C .2g M M M B B A⋅+和0 D .0和2g M M M B B A ⋅+ 【参考答案】D【名师解析】在线被剪断前,A 处于平衡状态,弹簧的拉力等于A 的重力沿斜面的分力,即F=M A g sin30°。
在线被剪断瞬间,绳子拉力立即减为零,而弹簧的伸长量没有来得及变化,弹力不变,故A 的加速度为零。
对B ,在沿斜面方向,B 受到沿斜面向下的弹力和重力沿斜面的分力,由F+M B g sin30°=M B a B ,解得:a B =2g M M M B B A ⋅+,选项D 正确。
3. (2019开封联考)如图所示,两轻质弹簧a 、b 悬挂一小铁球处于平衡状态,a 弹簧与竖直方向成30°角,b 弹簧水平,a 、b 两弹簧的劲度系数分别为k 1、k 2,重力加速度为g ,则( )A .a 、b 两弹簧的伸长量之比为k 2k 1B .a 、b 两弹簧的伸长量之比为2k 2k 1C .若弹簧b 的左端松脱,则松脱瞬间小球的加速度为g 2D .若弹簧b 的左端松脱,则松脱瞬间小球的加速度为3g【参照答案】 B【名师解析】 本题可用正交分解法求解,将弹簧a 的弹力沿水平和竖直方向分解,如图所示,则T a cos 30°=mg ,T a sin 30 °=T b ,结合胡克定律可求得a 、b 两弹簧的伸长量之比为2k 2k 1,结合牛顿第二定律可求得松脱瞬间小球的加速度为33g .,选项B 正确ACD 错误。
【考点定位】:此题考查正交分解法、弹簧、牛顿运动定律的瞬时作用及其相关知识。
4. (2019洛阳联考)在动摩擦因数μ=0.2的水平面上有一个质量为m=2kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零.当剪断轻绳的瞬间,取g=10m/s 2,以下说法正确的是( )A .此时轻弹簧的弹力大小为20 NB .小球的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间小球的加速度为0【参照答案】 ABD【名师解析】在剪断轻绳前,小球受重力、绳子的拉力以及弹簧的弹力处于平衡,根据共点力平衡得,弹簧的弹力:F=mgtan45°=20×1=20N ,故A 正确;在剪断轻绳的瞬间,弹簧的弹力仍然为20N ,小球此时受重力、支持力、弹簧弹力和摩擦力四个力作用;小球所受的最大静摩擦力为:f=μmg=0.2×20N=4N ,根据牛顿第二定律得小球的加速度为:a=( F-f)/m ==8m/s 2;合力方向向左,所以向左加速.故B 正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬间为零,此时小球所受的合力为零,则小球的加速度为零,故C 错误,D 正确.预测考点一:瞬时性问题【2年模拟再现】1.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M ,两个系统均置于水平放置的光滑木板上,并处于静止状态。
现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4。
重力加速度大小为g ,则有( )A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +M M g D .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g 【参考答案】: C【名师解析】: 在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对3向上的弹力大小和对物块4向下的弹力大小仍为mg ,因此物块3满足mg =F ,a 3=0;由牛顿第二定律得物块4满足a 4=F +Mg M =M +m Mg ,所以C 正确。
2.(2019河南名校联考)如图所示,质量为m 的光滑小球A 被一轻质弹簧系住,弹簧另一端固定于水平天花板上,小球下方被一梯形斜面B 托起保持静止不动,弹簧恰好与梯形斜面平行,已知弹簧与天花板夹角为30°,重力加速度g取10 m/s2,若突然向下撤去梯形斜面,则小球的瞬时加速度为( )A.0 B.大小为10 m/s2,方向竖直向下C.大小为5 3 m/s2,方向斜向右下方 D.大小为5 m/s2,方向斜向右下方【参考答案】: C【名师解析】:小球原来受到重力、弹簧的弹力和斜面的支持力,斜面的支持力大小为F N=mg cos 30°;突然向下撤去梯形斜面,弹簧的弹力来不及变化,重力也不变,支持力消失,所以此瞬间小球的合力与原来的支持力F N大小相等、方向相反,由牛顿第二定律得:mg cos 30°=ma,解得a=5 3 m/s2,方向斜向右下方,选项C正确。
3.(6分)(2019湖北武汉武昌5月调研)如图所示,一根竖直轻质弹簧下端固定,上端托一质量为0.3kg 的水平盘,盘中有一质量为1.7kg物体。
当盘静止时,弹簧的长度比其自然长度缩短4cm。
缓慢地竖直向下压物体,使弹簧再缩短2cm后停止,然后立即松手放开。
设弹簧总处在弹性限度以内(g取10m/s2),则刚松开手时盘对物体的支持力大小为()A.30N B.25.5N C.20N D.17N【参考答案】B【命题意图】本题考查以弹簧叠加体为情景,考查受力分析、胡克定律、平衡条件、牛顿运动定律及其相关知识点。
【解题思路】:x1=4cm=0.04m,x2=2cm=0.02m,当盘静止时,由胡克定律得(m+m0)g=kx1,解得:k=500N/m;弹簧再缩短x2=2cm=0.02m停止,松手放开时整体的合力为:F=kx2=10N由牛顿第二定律,F=(m+m0)a解得此时整体的加速度大小为a=5m/s2,隔离物体分析受力,设刚松开手时盘对物体的支持力大小为F N,根据牛顿第二定律可得:F N﹣mg=ma,解得:F N=25.5N,选项B正确,ACD错误。