牛顿第二定律的瞬时性问题
- 格式:pptx
- 大小:435.96 KB
- 文档页数:17
专题10 牛顿第二定律的瞬时性问题加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,牛顿第二定律的瞬时性问题具体可简化为以下两种模型:1.轻绳、轻杆和接触面:不发生明显形变就能产生弹力,在瞬时性问题中其弹力可以突变.这类问题一般要结合物体在状态突变后的运动来分析状态突变瞬间的加速度,因为状态突变瞬间是状态突变之后运动的初状态。
时性问题中,弹簧的弹力瞬间突变为零。
1.如图所示,在图1、2、3中的小球a、b和c完全相同,轻弹簧S1和S2完全相同,连接的轻绳l1和l2也完全相同,通过轻弹簧或轻绳悬挂于固定点O,整个系统处于静止状态。
现将图1中的轻绳l1剪断、图2中的轻弹簧S1剪断、图3中的轻绳l2剪断,将图1中的小球a的加速度大小记为a1,将图2中的小球b的加速度大小记为a2,将图3中的小球c的加速度大小记为a3,重力加速度大小为g。
则在剪断瞬间()A.a1=3g,a2=2g,a3=g B.a1=2g,a2=2g,a3=0C.a1=2g,a2=g,a3=g D.a1=2g,a2=g,a3=0【答案】D【解析】图1中,对三个小球体整体分析有F1=3mg剪断图1中的轻绳l1时,弹簧S1不能发生突变,弹力与剪断前相同,对小球体a分析有F1−mg=ma1解得a1=2g剪断图2中的轻弹簧S1,弹簧弹力突变为0,对小球体b、c分析有2mg=2ma2解得a2=g此时轻绳l2弹力为0。
剪断图3中的轻绳l2时,弹簧S1不能发生突变,弹力与剪断前相同,即此时小球体c受力仍然平衡,图3中的小球c的加速度大小记为a3=0综合上述可知a1=2g,a2=g,a3=0故选D。
2.物块A1、A2的质量均为m,B1、B2的质量均为2m,A1、A2用一轻杆连接,B1、B2用轻质弹簧连接。
两个装置都放在水平的支托物M上,处于平衡状态,如图所示。
今突然迅速地撤去支托物M,在除去支托物的瞬间,A1、A2加速度分别为a1和a2,B1、B2的加速度分别为a1′和a2′,则()A.a1=0,a2=2g,a1′=0,a2′=2g B.a1=0,a2=2g,a1′=g,a2′=2gC.a1=g,a2=g,a1′=0,a2′=2g D.a1=g,a2=g,a1′=g,a2′=g【答案】C【解析】A1、A2用一轻杆连接,它们的加速度始终相等,在除去支托物的瞬间,由它们组成的系统只受重力的作用,根据牛顿第二定律可知,它们的加速度a1=a2=g因为在除去支托物的瞬间,弹簧上的弹力不能突然消失(主要是弹簧不能突然恢复原长),所以B1的受力不变,加速度仍为零,即a1′=0而B2受到的竖直向上的支持力突然消失,受到的竖直向下的重力2mg和弹簧弹力2mg不变,加速度大小a2′=2g 综上分析,选项C正确,ABD错误。
牛顿第二定律的理解与应用(瞬时性)瞬时性: A 与F 合是瞬时对应关系,a 随F 合(≠0)同时产生,同时变化,同时消失。
注意:(1)F 合与a 虽然存在因果关系,但不存在先后关系(2)就a 的决定因素看,a 由F 合及m 决定,而与v 无关【例题一】、A 、B 的质量分别为m A 和m B ,剪断细线瞬间,两物块的加速度的大小和方向分别如何?【例题二】、弹簧与竖直方向成370角,剪断细线瞬间,小球的加速度的大小和方向分别如何?【例题三】、如图,桌面上竖直固定一弹簧,一小球由弹簧正上方某处由静止释放后下落,恰落在弹簧上并压缩弹簧。
试分析从小球开始下落到把弹簧压缩到最短的全过程中,小球的加速度和速度的方向和大小的变化情况。
【例题四】、如图,小车A 拖着小车B 做匀加速运动,某时刻小车A 突然停止,则小车B 的运动是:A 、小车B 立即停止B、小车B立即向前做匀减速运动C、小车先向前做匀加速运动,后向前做匀减速运动D、小车先向前做加速运动,但加速度减小,后向前做减速运动,加速度增大练习:1、被运动员推出的铅球在空中运动时(不计空气阻力),速度的大小和方向不停,但加速度,加速度的大小为,方向为。
2、竖直向上抛出后的小球在上升到最高点后又下落的整个运动过程中:A、若不计空气阻力,则在最高点时的加速度为零,上升与下落时的加速度为gB、若不计空气阻力,则全程加速度为都为gC、计空气阻力,则上升过程加速度比g大,最高点加速度为g,下落加速度比g小D、计空气阻力,则上升与下落时的加速度都小于g,在最高点的加速度为g3、A、B的质量分别为m A和m B两物块的加速度的大小和方向分别如何?4、弹簧与竖直方向成370角,小球的加速度的大小和方向分别如何?5、 “蹦极”运动是一项冒险者的游戏。
在很高的地方用弹性良好的橡皮条捆住人的双脚,橡皮条的另一端固定。
然后冒险者从高处跳下。
则在下落的过程中A 、橡皮条绷紧的瞬间,人向下的速度为最大B 、橡皮条绷紧的瞬间人具有向上的加速度C 、加速度为零时速度最大D 、加速度减小时速度增大6、如图,光滑水平面上小车A 起初静止,小车B 向右做匀速运动,则:A 、小车B 撞到A 左端弹簧立即停止B 、小车B 撞到A 左端弹簧后,A 立即做匀加速运动C 、当弹簧最短时,两车速度相等时D 、当弹簧最短时,两车的加速度都达到最大。
-牛顿运动定律的应用牛顿第二定律的应用之瞬时性问题牛顿第二定律的“瞬时性”指:物体的加速度与物体所受合外力的瞬时对应关系分析物体的瞬时问题,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意两种基本模型的建立。
刚性绳(或接触面):1.认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要考虑形变恢复时间。
一般题目所给细线和接触面在不加特殊说明时,均可按此模型处理。
2. 弹簧(或橡皮绳):此类物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变【名师点睛】即为该时刻物体所受a为某一瞬时的加速度,FF1. 物体的加速度a与物体所受合外力瞬时对应。
合合的合力。
物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动2.看变分析。
求物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及其变化。
先看不变量,再化量;加速度与合外力瞬时一一对应。
轻绳(线、弹簧、橡皮绳)即其质量和重力均可视为等于零,同一根绳(线、弹簧、橡皮绳)的两3.端及其中间各点的弹力大小相等。
绳(线、橡皮绳)只能发生拉伸形变,只能产生拉力;而轻弹簧既能发生拉伸形变,又能产生压4. 轻缩形变,所以轻弹簧既能承受拉力,也能承受压力。
无论轻绳(线)所受拉力多大,轻绳(线)的长度不变,即轻绳(线)发生的是微小形变,因此轻5.绳(线)中的张力可以突变。
由于弹簧和橡皮绳受力时,发生的是明显形变,所以弹簧和橡皮绳中的弹力不能发生突变。
两者之间的弹力为零,注意弹簧轻弹簧的弹力不能突变;两物体相互分离的瞬间,6. 涉及弹簧问题时,但注意该时刻它们的速度和加速度仍相等。
7. 加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。
AB m 的小球之间用一根轻弹簧(即不计其质量)连接,并两个质量均为【典例1】如图所示,用、AB 两球的加、球均保持静止。
牛顿第二定律应用(瞬时性问题)方法突破 分析物体在某一时刻的瞬时加速度,关键是分析物体在瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度.此类问题应注意两种模型的建立.(1)中学物理中的“线”和“绳”是理想化模型,具有以下几个特性:①轻:其质量和重力均可视为等于零,且一根绳(或线)中各点的张力大小相等,其方向总是沿绳且背离受力物体的方向.②不可伸长:即无论绳受力多大,绳的长度不变,由此特点可知,绳中的张力可以突变.刚性杆、绳(线)和接触面都可以认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要形变恢复时间,一般题目中所给杆、细线和接触面在不加特殊说明时,均可按此模型来处理.(2)中学物理中的“弹簧”和“橡皮绳”也是理想化模型,具有以下几个特性:①轻:其质量和重力均可视为等于零,同一弹簧两端及其中间各点的弹力大小相等.②弹簧既能承受拉力,也能承受压力;橡皮绳只能承受拉力,不能承受压力.③由于弹簧和橡皮绳受力时,恢复形变需要一段时间,所以弹簧和橡皮绳中的力不能突变.【例题1】如图所示,将质量均为m 的小球A 、B 用绳(不可伸长)和弹簧(轻质)连结后,悬挂在天花板上.若分别剪断绳上的P 处或剪断弹簧上的Q 处,下列对A 、B 加速度的判断正确的是( )A.剪断P 处瞬间,A 的加速度为零,B 的加速度为gB.剪断P 处瞬间,A 的加速度为2g ,B 的加速度为零C.剪断Q 处瞬间,A 的加速度为零,B 的加速度为零D.剪断Q 处瞬间,A 的加速度为2g ,B 的加速度为g【例题2】 在如图所示的装置中,小球m 用两根绳子拉着,绳子OA 水平,若将绳子OA 剪断,问剪断瞬间小球m 的加速度大小?方向如何?【例题3】如图所示,底板光滑的小车上用两个量程为20N , 完全相同的弹簧秤甲和乙系住一个质量为1kg 的物块,在水平地面上,当小车做匀速直线运动时,两弹簧秤的示数均为10N ,当小车做匀加速直线运动时,弹簧秤甲的示数变为8N 。
牛顿第二定律之瞬时性问题智慧物理【总结】一、瞬时性问题1.牛顿第二定律的表达式为:F 合= 。
加速度由物体所受 决定,。
加速度的方向与物体所受 的方向一致;当物体所受合外力发生突变时,加速度也随着发生 ,而物体运动的速度 发生突变。
2.两种模型的区别(1)轻绳、轻杆和接触面:不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,原有弹力立即消失或 ,即会发生突变。
(2)轻弹簧、蹦床和橡皮条:当轻弹簧两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生 ,所以在瞬时问题中,其弹力大小认为是 的,即此时弹簧弹力不突变。
二、解题思路1.分析瞬时变化前物体的受力情况;2.分析瞬时变化后哪些力变化或消失;3.求出变化后物体所受合力,根据牛顿第二定律列方程;4.求瞬时加速度。
【专题练习】一、填空题1.如图所示,A B 、两小球用细线连接,C D 、两小球用轻弹簧连接,双手分别提起A C 、两球,使四个小球均在空中处于静止状态,双手同时释放A C 、瞬间(空气阻力不计,重力加速度为g ),小球B 的加速度大小为____________,小球D 的加速度大小为____________。
2.如图所示,两系统均处于静止状态,绳和弹簧质量不计。
重力加速度为g ,则剪断OA 、OC 上端绳的瞬时,物体A 、B 、C 、D 的瞬时加速度分别为:a A=______a B=______ac =______a D=______3.如图甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;图甲中倾斜细线OA与图乙中弹簧的拉力之比为________(θ、重力加速度g已知).4.如图所示,质量为m的小球用一根细线和一根轻弹簧悬挂起来,小球静止时,细线水平,而弹簧与竖直成θ角。
牛顿第二定律瞬时性问题一、牛顿第二定律瞬时性问题的两种模型二、分析瞬时问题的“两个关键”与“四个步骤”三、典型例题典例1、如图所示,物体A、B质量均为m,中间有一轻质弹簧相连,A用绳悬于O点,当突然剪断OA绳时,关于A物体的加速度,下列说法正确的是( )A.0B.gC.2gD.无法确定典例2、如图所示,一质量为m的小球处于平衡状态。
现将线L2剪断,则剪断L2的瞬间小球的加速度( )A.甲图小球加速度为a=gsin θ,垂直L1斜向下方B.乙图小球加速度为a=gsin θ,垂直L1斜向下方C.甲图小球加速度为a=gtan θ,水平向右D.乙图小球加速度为a=gtan θ,水平向左思考:如图所示,一个质量为m的小球通过水平弹簧和细线悬挂保持静止,弹簧的劲度系数为k,此时弹簧伸长了x,细线与竖直方向成θ角,当细线剪断瞬间,下列说法正确的是( ) A.小球的加速度大小为g,方向竖直向下B.小球的加速度大小为,方向水平向左C.小球的加速度大小为,方向沿原细线方向指向左下方D.不能确定小球的加速度典例3、如图,轻弹簧上端与一质量为m的木块1相连,下端与另一质量为M的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。
现将木板沿水平方向突然抽出,设抽出后瞬间,木块1、2的加速度大小分别为a1、a2。
重力加速度大小为g。
则有: ( )A、 a1=g, a2=gB、 a1=0, a2=gC、 a1=0, a2=( m +M)g/ MD、a1=g, a2= ( m +M)g/ M典例4、如图所示,质量分别为m、2m的小球A、B,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F。
此时突然剪断细线,在线断的瞬间,弹簧弹力的大小和小球A加速度的大小分别为( )A.+gB.+gC.+gD.+g典例5、如图所示,A、B两小球分别连在轻绳两端,B球另一端用弹簧固定在倾角为30°的光滑斜面上。
牛顿第二定律的瞬时性问题根据牛顿第二定律的表达式F=ma,物体的加速度与物体所受的合外力总是同时产生、同时变化、同时消失,故物体的合外力与其加速度具有瞬时对应关系。
所以,合外力恒定时加速度恒定不变,合外力变化时加速度随之发生变化。
在某些情况下物体的合外力受力条件突然发生变化,要求分析物体加速度的变化,这类问题我们称为瞬时性问题。
一、瞬时性问题的解题步骤二、两种模型1、轻绳、轻杆和接触面这些物体产生弹力时没有明显的形变,剪断或脱离后,恢复形变不需要时间,弹力立即消失或改变,如果题目中没有特殊说明,我们均可认为轻绳、轻杆和接触面的弹力发生突变。
例题1:如图甲、乙所示,质量为m的两物体分别用长度均为L的细线悬挂在天花板上的A、B、C、D 四点,A、B及C、D两点间的距离也为L,甲图中物体通过一小段细线悬挂,而乙图中两根等长细线直接系在物体上,现在剪断悬挂在B、D两点的细线,则在剪断细线的瞬间,物体的加速度为()A. 甲图中物体的加速度为0,乙图中物体的加速度为gB. 甲图中物体的加速度为12g,乙图中物体的加速度为32g分析原状态受力情况,求出原状态下各力的大小和方向。
原状态当前状态加速度若原状态是平衡状态,则由平衡条件求解,若原状态处于加速状态,则由牛顿第二定律求解。
分析当前状态与原状态的间的差异,发生了哪些变化?分析当前状态的受力情况,确定合外力,由牛顿第二定律求解加速度。
C. 甲图中物体的加速度为g,乙图中物体的加速度为1 2 gD. 甲图中物体的加速度为32g,乙图中物体的加速度为0分析与解:甲图中细线剪断后,物体将做自由落体运动,直至细线被拉直,所以剪断的瞬间物体加速度为g;乙图中细线剪断后,物体将绕C点做圆周运动,其加速度垂直细线,所以加速度为12g。
答案:C例题2:(多选)如图所示,质量分别为M=10kg和m=5kg的两物体通过细线连接,已知物体M与水平面的摩擦因数为0.1,物体m与水平面的摩擦因数为0.2,用恒定的外力F=30N拉着两物体在水平面上做匀加速运动,某时刻,突然撤去外力F的瞬间,下列说法正确的是()A.两物体的加速度大小均为43m/s2B.细线的拉力为10NC.物体m的加速度为2m/s2D. 细线的拉力为零分析与解:撤去力F的瞬间,由于物体m所受摩擦力产生的加速度大于物体M所受摩擦力产生的加速度,所以两细线间没有拉力,两物体加速度不同,物体M的加速度为1 m/s2,物体m的加速度为2 m/s2.答案:CD例题3:(多选)如图所示,箱子内用两根细线将质量为m的小球悬挂在A、B两点,其中细线AO与水平方向成600角,细线BO水平,箱子做竖直向上的匀加速直线运动,加速度a=g,g为重力加速度。
牛顿运动定律专题(二※【模型解析】——瞬时性问题(1刚性绳 (或接触面 :一种不发生明显形变就能产生弹力的物体, 剪断 (或脱离后, 弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2弹簧 (或橡皮绳 :当弹簧的两端与物体相连(即两端为固定端时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中, 其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例 1.如图,物体 A 、 B 用轻质细线 2相连,然后用细线 1悬挂在天花板上,求剪断轻细线 1的瞬间两个物体的加速度 a 1、 a 2大小分别为 (A . g, 0B . g , gC . 0, gD . 2g , g例 1题图例 2题图例 3题图例 2. 如图所示, 吊篮 P 悬挂在天花板上, 与吊篮质量相等的物体 Q 被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝 P 和物体 Q 的加速度大小是 (A . a P =a Q =gB . a P =2g , a Q =0C . a P =g , a Q =2gD . a P =2g , a Q =g例 3. 如图所示,物块 1、 2间用刚性轻质杆连接,物块 3、 4间用轻质弹簧相连,物块 1、 3质量为 m, 2、 4质量为 M , 两个系统均置于水平放置的光滑木板上, 并处于静止状态. 现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块 1、 2、 3、4的加速度大小分别为 a 1、 a 2、 a 3、 a 4. 重力加速度大小为 g ,则有 (A.a 1=a2=a3=a4=0B. a1=a2=a3=a4=gC . a 1=a 2=g , a 3=0, a 4=m +M M gD . a 1=g , a 2=m +M M g , a 3=0, a 4=m +M M g例 4.细绳拴一个质量为 m 的小球, 小球用固定在墙上的水平弹簧支撑, 小球与弹簧不粘连. 平衡时细绳与竖直方向的夹角为 53°, 如图所示. 以下说法正确的是 (已知cos 53°=0.6, sin 53°=0.8(大智者必谦和,大善者比宽容。
牛顿第二定律的瞬时性问题
由牛顿第二定律可知,加速度是由合外カ决定的,即有什么样的合外力,就有什么样的加速度与之相对应。
当合外力变化时,加速度也随之变化,某一时刻的瞬时加速度是由那一时刻物体所受合外力决定的,因此确定瞬时加速度的关键是正确确定瞬时作用力。
所谓瞬时性,就是物体的加速度 a 与其所受的合外力 F 有瞬时对应的关系,每一瞬时的加速度只取决于这一瞬时的合外力。
也就是物体一旦受到不为零的合外力的作用,物体立即产生加速度;当合外力的方向、大小改变时,物体的加速度方向、大小也立即发生相应的改变;当物体的合外力为零时,物体的加速度也立即为零。
由此可知,力和加速度之间是瞬时对应。
在用牛顿第二定律解决瞬时性问题时,要先对没有剪断细线或弹簧前的研究对象进行受力分析,确定各力的大小及方向。
剪断细线或弹簧的瞬间,抓住弹簧的弹力不会发生突变,而细线上的弹力会发生突变,从而确定物体所受的合外力,再由F合=ma求出物体的加速度大小。
牛顿第二定律瞬时性问题分析本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March牛顿第二定律瞬时性的“两种”模型牛顿第二定律的表达式为F=ma,其核心是加速度与合外力的瞬时对应关系,二者总是同时产生、同时消失、同时变化,具体可简化为以下两种典型的模型:(1)轻绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,不需要形变恢复时间,其弹力立即消失.当外界条件突然改变瞬间其弹力可以发生突然的改变,比如突然增大、减小、消失等等。
也就是可以发生突变。
(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间。
在两端的约束物仍然存在时,在瞬时性问题中,其弹力的大小往往可以看成保持不变.例题:1.如图所示,物体甲、乙质量均为m,弹簧和悬线的质量可忽略不计.当悬线被烧断的瞬间,甲、乙的加速度数值应为( )A.甲是0,乙是gB.甲是g,乙是g.C.甲是0,乙是0 D.甲是2g,乙是g若剪断弹簧瞬间呢若弹簧和细绳互换位置如图,则悬线被烧断的瞬间,甲、乙的加速度数值应为( )2、如图所示,轻弹簧上端与一质量为m的木块1相连,下端与另一质量为M的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a1、a2.重力加速度大小为g.则有()…A. a1=0,a2=gB. a1=g,a2=gC. a1=0,a2=m+M M g.m+M D. a1=g,a2=M g3、如图如图(a)所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.(1)现将图(a)中L2线剪断,求剪断瞬间物体的加速度.(2)若将图(a)中的细线L1改为质量不计的轻弹簧而其余情况不变,如图(b)所示,求剪断L2瞬间物体的加速度.(1)gsinθ (2)gtanθ如图所示,在光滑水平面上,质量分别为m 1和m 2的木块A 和B 在水平拉力F 作用下,以加速度a 做匀变速直线运动,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度为a 1和a 2,则()….A. a 1=a 2=0B. a 1=a ,a 2=0C. a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2aD. a 1=a ,a 2=-m 1m 2a总结:。
牛顿第二定律瞬时性问题轻绳、轻弹簧共同之处是均不计重力。
不同点在于:1.轻绳:不可伸长。
即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。
由此特点可知:绳(或线)中的张力可以突变,为瞬时力。
2.轻弹簧由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,为延时力。
【例1】如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?练习:如图4所示,质量为m的小球被弹簧和水平细绳悬挂而处于静止,弹簧与竖直方向的夹角为,现剪断水平绳,此瞬间弹簧的拉力为___________;小球的加速度为_________,方向为___________。
连接体问题两个或两个以上物体相互连接参与运动的系统称为连接体.以平衡态或非平衡态下连接体问题拟题屡次呈现于高考卷面中,是考生备考临考的难点之一【例】如图2-1,质量为2 m的物块A与水平地面的摩擦可忽略不计,质量为m的物块B 与地面的动摩擦因数为μ,在已知水平推力F的作用下,A、B做加速运动,A对B的作用力为____________.弹簧问题(动力学角度)如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()A.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下临界与极值如图,A,B两个物体间用最大张力为100N的轻绳相连,A,B两物质量各为4Kg,8Kg,在拉力F的作用下向上作加速运动,为使轻绳不被拉断,Fmax是多大?1、如图,质量m=10kg的小球挂在倾角α=37º的光滑斜面上,当斜面和小球以a1=g/2的加速度向右加速运动时,小球对绳子的拉力和对斜面的压力分别多大?如果斜面和小球以a 2= 3 g的加速度向右加速运动时,小球对绳子的拉力和对斜面的压力分别多大?2.质量分别为m A=2kg、m B=4kg的物体叠放在水平地面上,B与水平地面间的摩擦系数为0.4,A与B间的静摩擦系数为0.8,水平力F作用在B上(如图),要使A与B间不发生滑动,则F的最大值为多少?若改为F加在A上呢?牛顿运动定律中的图像问题质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v—t图象如图12所示。
牛顿第二定律的瞬时性问题加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失。
分析物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下两种模型:(1)刚性绳(或接触面)——不发生明显形变就能产生弹力,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间。
(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变。
【题型1】两个质量均为m 的小球,用两条轻绳连接,处于平衡状态,如图所示。
现突然迅速剪断轻绳OA ,让小球下落,在剪断轻绳的瞬间,设小球A 、B 的加速度分别用a 1和a 2表示,则( )A.a 1=g ,a 2=gB.a 1=0,a 2=2gC.a 1=g ,a 2=0D.a 1=2g ,a 2=0【题型2】如图所示,光滑水平面上,A 、B 两物体用轻弹簧连接在一起,A 、B 的质量分别为m 1、m 2,在拉力F 作用下,A 、B 共同做匀加速直线运动,加速度大小为a ,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度大小为a 1和a 2,则( )A.a 1=0,a 2=0B.a 1=a ,a 2=m 2m 1+m 2aC.a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2a D.a 1=a ,a 2=m 1m 2a 【题型3】(多选)如图甲、乙所示,图中细线均不可伸长,两小球质量相同且均处于平衡状态,细线和弹簧与竖直方向的夹角均为θ。
如果突然把两水平细线剪断,则剪断瞬间( )A.图甲中小球的加速度大小为g sin θ,方向水平向右B.图乙中小球的加速度大小为g tan θ,方向水平向右C.图甲中倾斜细线与图乙中弹簧的拉力之比为1∶cos 2θD.图甲中倾斜细线与图乙中弹簧的拉力之比为cos 2θ∶1【题型4】如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M ,两个系统均置于水平放置的光滑木板上,并处于静止状态。