第04章主成分分析和典型相关分析
- 格式:ppt
- 大小:3.45 MB
- 文档页数:127
偏最小二乘回归是一种新型的多元统计数据分析方法,它与1983年由伍德与阿巴诺等人首次提出。
近十年来,它在理论、方法与应用方面都得到了迅速的发展。
密西根大学的弗耐尔教授称偏最小二乘回归为第二代回归分析方法。
偏最小二乘回归方法在统计应用中的重要性主要的有以下几个方面:(1)偏最小二乘回归是一种多因变量对多自变量的回归建模方法。
(2)偏最小二乘回归可以较好地解决许多以往用普通多元回归无法解决的问题。
在普通多元线形回归的应用中,我们常受到许多限制。
最典型的问题就是自变量之间的多重相关性。
如果采用普通的最小二乘方法,这种变量多重相关性就会严重危害参数估计,扩大模型误差,并破坏模型的稳定性。
变量多重相关问题十分复杂,长期以来在理论与方法上都未给出满意的答案,这一直困扰着从事实际系统分析的工作人员。
在偏最小二乘回归中开辟了一种有效的技术途径,它利用对系统中的数据信息进行分解与筛选的方式,提取对因变量的解释性最强的综合变量,辨识系统中的信息与噪声,从而更好地克服变量多重相关性在系统建模中的不良作用。
(3)偏最小二乘回归之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。
由于偏最小二乘回归在建模的同时实现了数据结构的简化,因此,可以在二维平面图上对多维数据的特性进行观察,这使得偏最小二乘回归分析的图形功能十分强大。
在一次偏最小二乘回归分析计算后,不但可以得到多因变量对多自变量的回归模型,而且可以在平面图上直接观察两组变量之间的相关关系,以及观察样本点间的相似性结构。
这种高维数据多个层面的可视见性,可以使数据系统的分析内容更加丰富,同时又可以对所建立的回归模型给予许多更详细深入的实际解释。
一、 偏最小二乘回归的建模策略\原理\方法 1.1建模原理设有 q 个因变量{q y y ,...,1}与p 自变量{p x x ,...,1}。
为了研究因变量与自变量的统计关系,我们观测了n 个样本点,由此构成了自变量与因变量的数据表X={p x x ,...,1}与.Y={q y y ,...,1}。
主成分分析类型:一种处理高维数据的方法。
降维思想:在实际问题的研究中,往往会涉及众多有关的变量。
但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。
一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。
因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。
一、总体主成分1.1 定义设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。
记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为()[(())(())],T ij p p E X E X X E X σ⨯∑==--它是一个 p 阶非负定矩阵。
设1111112212221122221122Tp p Tp pT pp p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X⎧==+++⎪==+++⎪⎨⎪⎪==+++⎩(1) 则有()(),1,2,...,,(,)(,),1,2,...,.T T i i i i TT T i j ijij Var Y Var l X l l i p Cov Y Y Cov l X l X l l j p ==∑===∑= (2)第 i 个主成分: 一般地,在约束条件1T i i l l =及(,)0,1,2,..., 1.T i k i k Cov Y Y l l k i =∑==-下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的T i i Y l X =称为 X 1,X 2,…,X p 的第 i 个主成分。
1.2 总体主成分的计算设 ∑是12(,,...,)T p X X X X =的协方差矩阵,∑的特征值及相应的正交单位化特征向量分别为120p λλλ≥≥≥≥及12,,...,,p e e e则 X 的第 i 个主成分为1122,1,2,...,,T i i i i ip p Y e X e X e X e X i p ==+++= (3)此时(),1,2,...,,(,)0,.Ti i i i Ti k i k Var Y e e i p Cov Y Y e e i k λ⎧=∑==⎪⎨=∑=≠⎪⎩ 1.3 总体主成分的性质1.3.1 主成分的协方差矩阵及总方差记 12(,,...,)T p Y Y Y Y = 为主成分向量,则 Y=P T X ,其中12(,,...,)p P e e e =,且12()()(,,...,),T T p Cov Y Cov P X P P Diag λλλ==∑=Λ=由此得主成分的总方差为111()()()()(),p ppTTiii i i i Var Y tr P P tr PP tr Var X λ=====∑=∑=∑=∑∑∑即主成分分析是把 p 个原始变量 X 1,X 2,…,X p 的总方差1()pii Var X =∑分解成 p 个互不相关变量 Y 1,Y 2,…,Y p 的方差之和,即1()pii Var Y =∑而 ()k k Var Y λ=。
可编辑修改精选全文完整版主成分分析(principal component analysis, PCA)如果一组数据含有N个观测样本,每个样本需要检测的变量指标有K个, 如何综合比较各个观测样本的性质优劣或特点?这种情况下,任何选择其中单个变量指标对本进行分析的方法都会失之偏颇,无法反映样本综合特征和特点。
这就需要多变量数据统计分析。
多变量数据统计分析中一个重要方法是主成份分析。
主成分分析就是将上述含有N个观测样本、K个变量指标的数据矩阵转看成一个含有K维空间的数学模型,N个观测样本分布在这个模型中。
从数据分析的本质目的看,数据分析目标总是了解样本之间的差异性或者相似性,为最终的决策提供参考。
因此,对一个矩阵数据来说,在K维空间中,总存在某一个维度的方向,能够最大程度地描述样品的差异性或相似性(图1)。
基于偏最小二乘法原理,可以计算得到这个轴线。
在此基础上,在垂直于第一条轴线的位置找出第二个最重要的轴线方向,独立描述样品第二显著的差异性或相似性;依此类推到n个轴线。
如果有三条轴线,就是三维立体坐标轴。
形象地说,上述每个轴线方向代表的数据含义,就是一个主成份。
X、Y、Z轴就是第1、2、3主成份。
由于人类很难想像超过三维的空间,因此,为了便于直观观测,通常取2个或者3个主成份对应图进行观察。
图(1)PCA得到的是一个在最小二乘意义上拟合数据集的数学模型。
即,主成分上所有观测值的坐标投影方差最大。
从理论上看,主成分分析是一种通过正交变换,将一组包含可能互相相关变量的观测值组成的数据,转换为一组数值上线性不相关变量的数据处理过程。
这些转换后的变量,称为主成分(principal component, PC)。
主成分的数目因此低于或等于原有数据集中观测值的变量数目。
PCA最早的发明人为Karl Pearson,他于1901年发表的论文中以主轴定理(principal axis theorem)衍生结论的形式提出了PCA的雏形,但其独立发展与命名是由Harold Hotelling于1930年前后完成。
主成分分析:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个综合指标(主成分),用综合指标来解释多变量的方差协方差结构,即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的综合指标即为主成分。
欧阳学文求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知)。
(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)注意事项:1. 由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;2. 对于度量单位或是取值范围在同量级的数据,可直接求协方差阵;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;3.主成分分析不要求数据来源于正态分布;4. 在选取初始变量进入分析时应该特别注意原始变量是否存在多重共线性的问题(最小特征根接近于零,说明存在多重共线性问题)。
优点:首先它利用降维技术用少数几个综合变量来代替原始多个变量,这些综合变量集中了原始变量的大部分信息。
其次它通过计算综合主成分函数得分,对客观经济现象进行科学评价。
再次它在应用上侧重于信息贡献影响力综合评价。
缺点:当主成分的因子负荷的符号有正有负时,综合评价函数意义就不明确。
命名清晰性低。
聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。
目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。
其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。
常用聚类方法:系统聚类法,K均值法,模糊聚类法,有序样品的聚类,分解法,加入法。
注意事项:1. 系统聚类法可对变量或者记录进行分类,K均值法只能对记录进行分类;2. K均值法要求分析人员事先知道样品分为多少类;3. 对变量的多元正态性,方差齐性等要求较高。
典型相关分析(CCA)简介一、引言在多变量统计分析中,典型相关分析(Canonical Correlation Analysis,简称CCA)是一种用于研究两个多变量之间关系的有效方法。
这种方法最早由哈罗德·霍特林(Harold Hotelling)于1936年提出。
随着数据科学和统计学的发展,CCA逐渐成为多个领域分析数据的重要工具。
本文将对典型相关分析的基本原理、应用场景以及与其他相关方法的比较进行详细阐述。
二、典型相关分析的基本概念1. 什么是典型相关分析典型相关分析是一种分析两个多变量集合之间关系的方法。
设有两个随机向量 (X) 和 (Y),它们分别包含 (p) 和 (q) 个变量。
CCA旨在寻找一种线性组合,使得这两个集合在新的空间中具有最大的相关性。
换句话说,它通过最优化两个集合的线性组合,来揭示它们之间的关系。
2. 数学模型假设我们有两个数据集:(X = [X_1, X_2, …, X_p])(Y = [Y_1, Y_2, …, Y_q])我们可以表示为:(U = a^T X)(V = b^T Y)其中 (a) 和 (b) 是待求解的权重向量。
通过最大化协方差 ((U, V)),我们得到最大典型相关系数 (),公式如下:[ ^2 = ]通过求解多组 (a) 和 (b),我们可以获得多个典型变量,从而得到不同维度的相关信息。
三、典型相关分析的步骤1. 数据准备在进行CCA之前,需要确保数据集满足一定条件。
一般来说,应对数据进行标准化处理,以消除可能存在的量纲差异。
可以使用z-score标准化的方法来处理数据。
2. 求解协方差矩阵需要计算两个集合的协方差矩阵,并进一步求出其逆矩阵。
给定随机向量 (X) 和 (Y),我们需要计算如下协方差矩阵:[ S_{xx} = (X, X) ] [ S_{yy} = (Y, Y) ] [ S_{xy} = (X, Y) ]同时,求出逆矩阵 (S_{xx}^{-1}) 和 (S_{yy}^{-1})。
《多元统计分析思考题》第一章 回归分析1、回归分析是怎样的一种统计方法,用来解决什么问题?答:回归分析作为统计学的一个重要分支,基于观测数据建立变量之间的某种依赖关系,用来分析数据的内在规律,解决预报、控制方面的问题。
2、线性回归模型中线性关系指的是什么变量之间的关系?自变量与因变量之间一定是线性关系形式才能做线性回归吗?为什么?答:线性关系是用来描述自变量x 与因变量y 的关系;但是反过来如果自变量与因变量不一定要满足线性关系才能做回归,原因是回归方程只是一种拟合方法,如果自变量和因变量存在近似线性关系也可以做线性回归分析。
3、实际应用中,如何设定回归方程的形式?答:通常分为一元线性回归和多元线性回归,随机变量y 受到p 个非随机因素x1、x2、x3……xp 和随机因素Ɛ的影响,形式为:011p p y x x βββε=++⋅⋅⋅++01p βββ⋅⋅⋅是p+1个未知参数,ε是随机误差,这就是回归方程的设定形式。
4、多元线性回归理论模型中,每个系数(偏回归系数)的含义是什么? 答:偏回归系数01p βββ⋅⋅⋅是p+1个未知参数,反映的是各个自变量对随机变量的影响程度。
5、经验回归模型中,参数是如何确定的?有哪些评判参数估计的统计标准?最小二乘估计法有哪些统计性质?要想获得理想的参数估计值,需要注意一些什么问题? 答:经验回归方程中参数是由最小二乘法来来估计的;评判标准有:普通最小二乘法、岭回归、主成分分析、偏最小二乘法等; 最小二乘法估计的统计性质:其选择参数满足正规方程组, (1)选择参数01ˆˆββ分别是模型参数01ββ的无偏估计,期望等于模型参数;(2)选择参数是随机变量y的线性函数要想获得理想的参数估计,必须注意由于方差的大小表示随机变量取值的波动性大小,因此自变量的波动性能够影响回归系数的波动性,要想使参数估计稳定性好,必须尽量分散地取自变量并使样本个数尽可能大。
6、理论回归模型中的随机误差项的实际意义是什么?为什么要在回归模型中加入随机误差项?建立回归模型时,对随机误差项作了哪些假定?这些假定的实际意义是什么?答:随机误差项Ɛ的引入使得变量之间的关系描述为一个随机方程,由于因变量y很难用有限个因素进行准确描述说明,故其代表了人们的认识局限而没有考虑到的偶然因素。
多元统计分析讲义(第四章)(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《多元统计分析》Multivariate Statistical Analysis主讲:统计学院许启发()统计学院应用统计学教研室School of Statistics2004年9月第三章主成分分析【教学目的】1.让学生了解主成分分析的背景、基本思想;2.掌握主成分分析的基本原理与方法;3.掌握主成分分析的操作步骤和基本过程;4.学会应用主成分分析解决实际问题。
【教学重点】1.主成分分析的几何意义;2.主成分分析的基本原理。
§1 概述一、什么是主成分分析1.研究背景在实际问题的研究中,为了全面分析问题,往往涉及众多有关的变量。
但是,变量太多不但会增加计算的复杂性,而且也给合理地分析问题和解释问题带来困难。
一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同。
实际上,在很多情况下,众多变量间有一定的相关关系,人们希望利用这种相关性对这些变量加以“改造”,用为数较少的新变量来反映原变量所提供的大部分信息,通过对新变量的分析达到解决问题的目的。
主成分分析及典型相关分析便是在这种降维的思维下产生的处理高维数据的统计方法。
本章主要介绍主成分分析。
主成分分析的基本方法是通过构造原变量的适当的线性组合,以产生一系列互不相关的新变量,从中选出少数几个新变量并使它们含有尽可能多的原变量带有的信息,从而使得用这几个新变量代替原变量分析问题和解决问题成为可能。
当研究的问题确定之后,变量中所含“信息”的大小通常用该变量的方差或样本方差来度量。
概括地说,主成分分析(principal component analysis)就是一种通过降维技术把多个指标约化为少数几个综合指标的综合统计分析方法,而这些综合指标能够反映原始指标的绝大部分信息,它们通常表现为原始几个指标的线性组合。