原子核外电子的运动(1)
- 格式:pptx
- 大小:2.94 MB
- 文档页数:59
结构理论(一)核外电子的运动状态和排布规律围绕在原子核外作高速运动的电子,有它特殊的运动状态。
早在本世纪初,科学实验已证明了电子是一种质量为9.11×10-28g的微小粒子,证明了电子的运动具有粒子性。
但是,以后科学实验又证明了电子的运动和光、X射线一样具有波动性。
这就是说,电子的运动具有波粒二象性。
电子运动的这种波粒二象性,使它难以用经典物理学的一些基本定律来描述。
现代研究核外电子运动状态的理论叫做原子波动力学。
它是在上世纪20年代末由奥地利物理学家薛定谔等人发展起来的。
它的基本方面是一些复杂的数学波动方程,叫做薛定谔方程。
核外电子的运动正是通过计算薛定谔方程的解来加以描述的。
这里,我们只能按照原子波动力学的基本观点,初步形象地去认识核外电子的运动状态,从而再寻找出原子核外电子的排布有着怎样的规律。
一、电子云在描绘核外电子运动时,只能指出它在原子核外空间各处出现机会的多少。
电子在核外空间一定范围内出现,好像是带负电荷的云雾笼罩在原子核的周围。
可以形象地称它为“电子云”。
核外电子出现机会愈多的区域,电子云的密度愈大。
下图描绘了氢原子处于基态时的电子云。
氢原子核外只有1个电子,图中的“雾状”,说明氢原子核外电子在一个球形的空间里作高速运动。
图中表示,黑点密集处是电子出现机会多的地方,黑点稀疏处是电子出现机会少的地方。
二、描述核外电子运动状态的四个方面对于原子核外的每一个电子的运动状态,都可以从以下四个方面来描述。
1.电子层原子核外的电子可以看作是分层排布的。
处于不同层次中的电子,离核的远近也不同。
离核愈近的电子层能量愈低,离核愈远的电子层能量愈高。
通常用n=1、2、3…等数值来表示电子层离核的远近。
n=1,即表示离核最近的电子层,其中的电子能量最小。
n=2,即表示为第二电子层。
有时也用K、L、M、N、O等分别表示1、2、3、4、5等电子层。
我们怎么知道含有多个电子的原子里核外电子的能量并不相同呢?根据对元素电离能数据的分析,可以初步得到这个结论。
原子核外电子的空间运动状态原子核外电子的空间运动状态:(一)电子轨道1、电子轨道是电子沿着原子核外围运动的一条椭圆形轨迹。
这条椭圆形轨迹完全由电子和核间的电磁场相互作用决定。
2、电子轨道的轨道角动量是指电子在原子核外围空间运动的时候的角动量,它可以通过电磁场的膜位能准确的确定出来。
3、电子轨道的运动状态就是指电子在轨道中的运动状态,包括了单重态的电子轨道运动状态,以及双重态的电子轨道运动状态和三重态的电子轨道运动状态等。
(二)电子自旋1、电子自旋是电子在空间中自身运动的一个特征,通俗来说就是电子在原子核外围空间中以固定的角速度运动。
2、电子自旋具有两个独立的特性,即电子的线性自旋,也就是说电子的运动方向不断变化;另一个就是电子的角速度自旋,也就是说电子的具体自旋方向会一直保持不变。
3、自旋的结构包括两个自旋态,一个是有磁态,即自由自旋,它没有内部能量变化;对应的还有无磁态,即锁定自旋,它有内部能量变化。
(三)电子跃迁1、电子跃迁是指电子在原子核外围空间中运动时从一个轨道状态跃到另一个空间状态的过程,电子跃迁中包括了单重态电子跃迁,双重态电子跃迁和三重态电子跃迁等等。
2、电子跃迁的机理一般是由电磁场的膜位能决定的,这也是电子跃迁过程发生的根本原因。
电子跃迁过程中,电子原先处在的低能量状态会被电磁场膜位能引导,由低能量跃到其他的高能量状态之中。
3、电子跃迁过程还会受到外界的干扰,包括光辐射,热辐射等,外界的干扰可以使原子中电子从一个轨道跃到另一个轨道或空间状态,从而使原子转变为激发态,从而发生一系列使原子性质发生变化的现象。
原子核外电子运动规律
原子核外电子是构成物质的基本粒子,它们的运动规律已经成为学前教育中不
可或缺的课程内容。
原子核外电子的运动可以用谐振模型来描述,其运动轨迹为圆形椭圆或者柱面角的轨道。
传统的表示方法是用箭头的形式。
比如,在原子中,最外层的电子由n核外椭圆轨道组成,它们之间交错组合,每个椭圆轨道就是一个箭头,表示着电子运动的轨道。
有人也学习新概念,把原子外电子轨道称为电子场和电子云,即一组电子,以
不同的频率运动,构成一个电子球。
这些电子沿着原子外部运动,它们绕着原子核旋转,互相引力和斥力,在这样的活动中,它们以频率和振幅特定的谐振节奏表达出自己的图景。
电子的运动是按照确定的规律进行的,它是定性的,而不是定量的。
在学前教育中,结合实验教学,让学生通过动态实物模型来感受这种运动规律,将有助于提高学生对物质本质的理解。
另外,为了更深入地理解电子外部运动的规律,学前学生可以学习相关的电磁
学和量子力学内容,了解电子的行为与基本力学定律的关系,量子力学解释了电子以不断变化的方式运动的规律,因此,学习量子力学中的知识,能够更好地理解原子核外电子的运动。
综上所述,原子核外电子运动的规律在学前教育中是不可或缺的课程内容,而
实物实验结合理论知识,可以帮助学生更好地理解原子核外电子的运动规律。
希望学前教师在课堂中及时引导学生思考,培养学生深入探究物质世界的热情。
《原子核外电子的运动》知识清单一、原子核外电子的排布规律在原子中,电子围绕着原子核运动。
原子核带正电荷,电子带负电荷,它们之间的相互吸引使得电子处于特定的轨道上。
1、能量最低原理电子总是先占据能量最低的轨道,然后再依次进入能量较高的轨道。
这就好像爬楼梯一样,要从最低的台阶开始往上走。
2、泡利不相容原理在同一个原子中,不可能有两个电子具有完全相同的四个量子数。
简单来说,每个轨道最多只能容纳两个电子,而且这两个电子的自旋方向必须相反。
3、洪特规则电子在等价轨道(相同能量的轨道)上排布时,总是尽可能分占不同的轨道,并且自旋方向相同。
这样可以使原子的能量处于较低的状态。
例如,对于氮原子(N),其电子排布式为 1s² 2s² 2p³。
其中 1s、2s、2p 是不同的轨道,2p 轨道有三个等价轨道,所以三个电子分别占据不同的 2p 轨道,并且自旋方向相同。
二、原子轨道的类型原子轨道可以分为不同的类型,主要包括 s 轨道、p 轨道、d 轨道和 f 轨道。
1、 s 轨道s 轨道是球形对称的,形状像一个球体。
它只有一个轨道,可以容纳 2 个电子。
2、 p 轨道p 轨道呈哑铃形,有三个相互垂直的取向,分别称为 px、py 和 pz 轨道。
每个 p 轨道可以容纳 2 个电子,所以 p 轨道总共可以容纳 6 个电子。
3、 d 轨道d 轨道的形状比较复杂,有五个不同的取向。
d 轨道可以容纳 10 个电子。
4、 f 轨道f 轨道更为复杂,能容纳 14 个电子。
三、电子云电子云是用来描述电子在原子核外空间出现概率的形象化表示。
电子云并不是真正的云,而是通过大量的计算和模拟得出的结果。
电子云的密度表示电子在该区域出现的概率大小。
电子云密度越大,电子在该区域出现的概率就越高;反之,电子云密度越小,电子在该区域出现的概率就越低。
四、原子核外电子运动的特点1、高速运动电子在原子核外以极高的速度运动,接近光速。