高中物理人教版必修二第四节 万有引力理论的成就1
- 格式:doc
- 大小:69.50 KB
- 文档页数:3
第四节 万有引力理论的成就一、天体质量的求解1、思路一:“地上公式”法(亦称为自力更生法)已知中心天体的半径R 和中心天体的重力加速度g :;,G g R M mg RGMm 22== 2、思路二:“天上公式”法(亦称为借助外援法)①已知中心天体匀速圆周运动的周期T 、轨道半径r 、;,)、、(23222244:GTr M r T m r GMm R r T ππ== ②已知中心天体匀速圆周运动的线速度v 、轨道半径r 、;,)、、(Gr v M r v m r GMm R r v 222:== ③中心天体匀速圆周运动的线速度v 、公转周期T 、;,,)、、(GT v M T v r v m r GMm R T v ππ22:322=== 3、说明:①环绕天体的质量只能给出不能求出。
②要想求某天体的质量只能将其作为中心天体来研究。
③求中心天体质量的几种情景。
A 已知环绕天体的轨道半径、线速度、周期(线速度、频率)中的任意两个。
B 已知中心天体的重力加速度和半径。
二、天体密度的求解1、思路一:“地上公式”法已知中心天体的半径R 和中心天体的重力加速度g :GR g R V G g R M mg R GMm R g πρπ4334:322====,;,)、(2、思路二:“天上公式”法①已知中心天体匀速圆周运动的周期T 、轨道半径r 、天体半径为R323323222233444:R GT r R V GT r M r T m r GMm R r T πρπππ====,;,)、、( 特别注意:吐过卫星绕天体表面运行时,天体密度ρ=3πGT 2,即只要测出卫星环绕天体表面运动周期T ,就可算中心天体的密度。
②已知中心天体匀速圆周运动的线速度v 、轨道半径r 、天体半径为R3232224334:GR r v R V G r v M r v m r GMm R r v πρπ====,;,)、、( ③中心天体匀速圆周运动的线速度v 、公转周期T 、天体半径为R323322833422:GR T v R V G T v M T v r v m r GMm R T v πρπππ=====,;,,)、、(3、说明:①一般情况求中心天体的密度必须知道中心天体的半径。
高中物理(人教版)必修第二册讲义—万有引力理论的成就【学习目标】1.了解地球表面物体的万有引力两个分力的大小关系,计算地球质量;2.行星绕恒星运动、卫星的运动的共同点:万有引力作为行星、卫星圆周运动的向心力,会用万有引力定律计算天体的质量;3.了解万有引力定律在天文学上有重要应用。
【学习重点】1.地球质量的计算、太阳等中心天体质量的计算。
2.通过数据分析、类比思维、归纳总结建立模型来加深理解。
【学习难点】根据已有条件求中心天体的质量。
知识梳理一、计算天体的质量1.地球质量的计算(1)思路:地球表面的物体,若不考虑地球自转,物体的重力等于地球对物体的万有引力。
(2)关系式:mg =2mRM G。
(3)结果:M =GR 2g ,只要知道,g 、R 、G 的值,就可计算出地球的质量。
2.太阳质量的计算(1)思路:质量为m 的行星绕太阳做匀速圆周运动时,行星与太阳间的万有引力充当向心力。
(2)关系式:2m r M G =r 4m 22Tπ。
(3)结论:M =232r 4GT π只要知道行星绕太阳运动的周期T 和半径r 就可以计算出太阳的质量。
(4)推广:若已知卫星绕行星运动的周期T 和卫星与行星之间的距离r ,可计算行星的质量M ,公式是M =2324r 4Tπ。
3.天体质量和密度的计算情景及求解思路结果天体质量的计算①已知所求星体的半径R 及其表面的重力加速度g ,则G Mm R 2=mg GR M 2g4.天体运动的分析与计算(1)掌握一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型。
②质量为m 的行星绕所求星体做匀速圆周运动,万有引力提供行星所需的向心力,即G Mm r 2=m v2r =mω2r =r2m 2⎪⎭⎫ ⎝⎛T π①Gv M 2r =②GM 23r ω=③232r4GT M π=天体密度的计算ρ=MV =M 43πR 3①ρ=3g4πGR (gR 2=GM )②ρ=3rv 24πGR 3③ρ=3r 3ω24πGR 3r =R 时:ρ=3ω24πG④ρ=3πr 3GT 2R 3r =R 时:ρ=3πGT 2(2)记住两组公式G Mm r 2=m v 2r =mω2r =m 4π2T2r =ma mg =GMmR2g 为星体表面处的重力加速度)即GM =R 2g ,该公式通常被称黄金代换。
人教版高中物理Ⅱ课后习题答案第五章:曲线运动第1节 曲线运动1. 答:如图6-12所示,在A 、C 位置头部的速度与入水时速度v 方向相同;在B 、D 位置头部的速度与入水时速度v 方向相反。
图6-122. 答:汽车行驶半周速度方向改变180°。
汽车每行驶10s ,速度方向改变30°,速度矢量示意图如图6-13所示。
图6-133. 答:如图6-14所示,AB 段是曲线运动、BC 段是直线运动、CD 段是曲线运动。
图6-14第2节 质点在平面内的运动1. 解:炮弹在水平方向的分速度是v x =800×cos60°=400m/s;炮弹在竖直方向的分速度是v y =800×sin60°=692m/s 。
如图6-15。
图6-152. 解:根据题意,无风时跳伞员着地的速度为v 2,风的作用使他获得向东的速度v 1,落地速度v 为v 2、v 1的合速度(图略),即:v xv v1vB6.4/v m s ===,速度与竖直方向的夹角为θ,tanθ=0.8,θ=38.7°3. 答:应该偏西一些。
如图6-16所示,因为炮弹有与船相同的由西向东的速度v 1,击中目标的速度v 是v 1与炮弹射出速度v 2的合速度,所以炮弹射出速度v 2应该偏西一些。
图6-164. 答:如图6-17所示。
图6-17第3节 抛体运动的规律1. 解:(1)摩托车能越过壕沟。
摩托车做平抛运动,在竖直方向位移为y =1.5m =212gt经历时间0.55t s ===在水平方向位移x =v t =40×0.55m =22m >20m 所以摩托车能越过壕沟。
一般情况下,摩托车在空中飞行时,总是前轮高于后轮,在着地时,后轮先着地。
(2)摩托车落地时在竖直方向的速度为v y =gt =9.8×0.55m/s =5.39m/s 摩托车落地时在水平方向的速度为v x =v =40m/s 摩托车落地时的速度:/40.36/v s m s == 摩托车落地时的速度与竖直方向的夹角为θ, tanθ=vx /v y =405.39=7.422. 解:该车已经超速。
人教版普通高中课程标准试验教科书物理必修2第六章第4节《万有引力理论的成就》教学设计一、教学分析1.教材分析本节课是《万有引力定律》之后的一节,内容是万有引力在天文学上的应用。
教材主要安排了“科学真是迷人”、“计算天体质量”和“发现未知天体”三个标题性内容。
学生通过这一节课的学习,一方面对万有引力的应用有所熟悉,另一方面通过卡文迪许“称量地球的质量”和海王星的发现,促进学生对物理学史的学习,并借此对学生进行情感、态度、价值观的学习。
2.教学过程概述本节课从宇宙中具有共同特点的几幅图片入手,对万有引力提供天体圆周运动的向心力进行了复习引入万有引力在天体运动中有什么应用呢?接下来,通过“假设你成为了一名宇航员,驾驶宇宙飞船……发现前方未知天体”,围绕“你有什么办法可以测出该天体的质量吗”全面展开教学。
密度的计算以及海王星的发现自然过渡和涉及。
在教材的处理上,既立足于教材,但不被教科书所限制,除了介绍教科书中重要的基本内容外,关注科技新进展和我国天文观测技术的发展,时代气息浓厚,反映课改精神,着力于培养学生的科学素养。
二、教学目标1.知识与技能(1)通过“计算天体质量”的学习,学会估算中数据的近似处理办法,学会运用万有引力定律计算天体的质量;(2)通过“发现未知天体”,“成功预测彗星的回归”等内容的学习,了解万有引力定律在天文学上的重要应用。
2.过程与方法运用万有引力定律计算天体质量,体验运用万有引力解决问题的基本思路和方法。
3.情感、态度、价值观(1)通过“发现未知天体”、“成功预测彗星的回归”的学习,体会科学定律在人类探索未知世界的作用;(2)通过了解我国天文观测技术的发展,激发学习的兴趣,养成热爱科学的情感。
三、教学重点1.中心天体质量的计算;2. “称量地球的质量”和海王星的发现,加强物理学史的教学。
四、教学准备实验器材、PPT课件等多媒体教学设备五、教学过程(一)、图片欣赏复习引入问题一:已知地球的质量M =6.0×1024kg,地球半径R =6.4×103km.请根据以上数据计算:(1)在赤道表面上质量为60 kg 的物体所受的重力及万有引力(2)该物体随地球自转所需的向心力.根据以上计算结果,在忽略地球自转的影响的情况下,你能得出什么结论?设计思想:学生通过计算比较既巩固了已学的知识,又理解了为什么可以忽略地球自转的影响。
新人教版高中物理必修二 同步试题
第六章 万有引力与航天 第四节 万有引力理论的成就
【试题评价】 小试身手
1、若有一星球密度与地球密度相同,它表面的重力加速度是地球表面重力加速度的2倍则该星球质量是地球质量的 ( D ) A 、0.5倍 B 、2倍 C 、4倍 D 、8倍
2、若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T ,引力常量为G ,那么该行星的平均密度为( B )
A 、π
32
GT B 、
23GT π
C 、π42
GT D 、2
4GT π
3、为了估算一个天体的质量,需要知道绕该天体做匀速圆周运动的另一星球的条件是
( AC )
A 、运转周期和轨道半径
B 、质量和运转周期
C 、线速度和运转周期
D 、环绕速度和质量
4、在某行星上,宇航员用弹簧称称得质量为m 的砝码重量为F ,乘宇宙飞船在靠近该星球表面空间飞行,测得其环绕周期为T ,根据这些数据求该星球的质量。
M=4
34
316πGm T F
能力测验
1、一颗质量为m 的卫星绕质量为M 的行星做匀速圆周运动,则卫星的周期(AB ) A .与卫星的质量无关
B .与卫星轨道半径的3/2次方有关
C .与卫星的运动速度成正比
D .与行星质量M 的平方根成正比
2、设在地球上和某天体上以相同的初速度竖直向上抛一物体的最大高度之比为k (均不计阻力),且已知地球于该天体的半径之比也为k ,则地球与天体的质量之比为( B ) A.1 B.k C.k 2 D.1/k
3、两颗行星A 和B 各有一颗卫星a 和b ,卫星轨道接近各自的行星表面,如果两行星质量之比为M A /M B =p ,两行星半径之比R A /R B =q ,则两卫星周期之比T a /T b 为(D )
A 、
pq B 、p
q
C 、q p p
D 、p q q
4、A 、B 两颗行星,质量之比为M A /M B =p ,半径之比为R A /R B =q ,则两行星表面的重力加速度为( C )
A 、p/q
B 、pq 2
C 、p/q 2
D 、pq
5、地球公转的轨道半径是R 1,周期是T 1,月球绕地球运转的轨道半径是R 2,周期是T 2,则太阳质量与地球质量之比是( B ) A 、T
R T R 22
322131 B 、T
R T
R 21
32
2231
C 、T
R T R 2
1
22
2221 D 、T
R T R 3
2
22
3
121
6、若某行星的质量和半径均为地球的一半,那么质量为50kg 的宇航员在该星球上的重力是地球上重力的( C )
A 、1/4
B 、1/2
C 、2倍
D 、4倍
7、月球质量是地球质量的1/81,月球半径是地球半径的1/3.8。
如果分别在地球上和在月球上都用同一初速度竖直上抛出一个物体(阻力不计),两者上升高度的比为多少?
7
.51
818.32
8、已知月球与地球的平均距离是3.84×108m,月球绕地球转动的平均速率为1000m/s,试求地球质量M 。
保留2位有效数字). 5.8×1024kg
9、太阳光到达地球表面所需的时间为500s ,地球绕太阳运行一周的时间为365天,试估算出太阳的质量(取一位有效数字)。
2×1030kg。