高考数学冲刺模拟试题(一)理
- 格式:doc
- 大小:578.00 KB
- 文档页数:10
一、单选题二、多选题1. 设,,则的值为( )A.B.C.D.2. 的图像大致是( )A.B.C.D.3.已知,则( )A.B.C.D.4. 已知某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.5. 已知定义在R上的函数满足,且是奇函数,则( )A .是偶函数B .的图象关于直线对称C .是奇函数D.的图象关于点对称6.已知函数,则不等式的解集为 ( )A.B.C.D.7.已知函数,则在上( )A .单调递增B .单调递减C .先增后减D .先减后增8. 过抛物线:的焦点的直线交抛物线于、两点,以线段为直径的圆的圆心为,半径为.点到的准线的距离与之积为25,则( )A .40B .30C .25D .209. 已知函数,令,则( )A .当,恒成立B .函数在区间上单调递增C .a ,b ,c 中最大的是cD .a ,b ,c 中最小的是a陕西省榆林市2023届高三三模文科数学试题(高频考点版)陕西省榆林市2023届高三三模文科数学试题(高频考点版)三、填空题四、解答题10. 在正方体中,分别为棱上的一点,且,是的中点,是棱上的动点,则( )A .当时,平面B.当时,平面C.当时,存在点,使四点共面D.当时,存在点,使三条直线交于同一点11.已知角,是锐角三角形的三个内角,下列结论一定成立的有( )A.B.C.D.12. 如图,正方体棱长为,是直线上的一个动点,则下列结论中正确的是()A .的最小值为B.的最小值为C .三棱锥的体积不变D .以点为球心,为半径的球面与面的交线长13. 函数为定义在上的奇函数,且满足,若,则__________.14. 复数,,若为实数,则________.15. 黄金矩形的短边与长边的比值为黄金分割比.黄金矩形能够给画面带来美感,如图,在黄金矩形画框中设,则________.16. 由中央电视台综合频道(CCTV-1)和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课.每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了、两个地区的名观众,得到如下的列联表:非常满意满意合计A 30yB x z已知在被调查的名观众中随机抽取名,该观众是地区当中“非常满意”的观众的概率为,且.(1)现从名观众中用分层抽样的方法抽取名进行问卷调查,则应抽取“满意”的、地区的人数各是多少.(2)完成上述表格,并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系.(3)若以抽样调查的频率为概率,从地区随机抽取人,设抽到的观众“非常满意”的人数为,求的分布列和期望.陊ⅹ又耉兲引ⅹ17. 某款自营生活平台以及提供配送服务的生活类软件主要提供的产品有水产海鲜,水果,蔬菜,食品,日常用品等.某机构为调查顾客对该软件的使用情况,在某地区随机访问了100人,访问结果如下表所示.使用人数未使用人数女性顾客4020男性顾客2020(1)从被访问的100人中随机抽取2名,求所抽取的都是女性顾客且使用该软件的概率;(2)用随机抽样的方法从该地区抽取10名市民,这10名市民中使用该软件的人数记为,问为何值时,的值最大?18. 如图,在中,已知,,,,边上的两条中线,相交于点.(1)求;(2)求的余弦值.19. 已知数列满足,且的前100项和(1)求的首项;(2)记,数列的前项和为,求证:.20. 设各项均为正数的数列满足(为常数),其中为数列的前n项和.(1)若,求证:是等差数列;(2)若,求数列的通项公式.21. 已知抛物线的焦点为,直线与抛物线交于点,且.(1)求抛物线的方程;(2)过点作抛物线的两条互相垂直的弦,,设弦,的中点分别为P,Q,求的最小值.。
2024年第一次广东省普通高中学业水平合格性考试数学冲刺卷(一)答案解析一、选择题:本大题共12小题,每小题6分,共72分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2,0,1,2A =-,{}21B x x =-≤≤∣,则A B = ()A.{}2- B.{}1 C.{}2,0,1- D.{}0,1,2【答案】C 【解析】【分析】根据集合交集运算求解即可.【详解】解:因为{}2,0,1,2A =-,{}21B xx =-≤≤∣,所以A B = {}2,0,1-故选:C2.已知角α的终边过点()1,2P -,则tan α等于()A.2 B.2- C.12-D.12【答案】B 【解析】【分析】由正切函数的定义计算.【详解】由题意2tan 21α==--.故选:B .3.下列函数中是减函数且值域为R 的是()A.1()f x x= B.1()f x x x=-C.()ln f x x= D.3()f x x=-【答案】D 【解析】【分析】由幂函数及对数函数的图象与性质即可求解.【详解】解:对A :函数()f x 的值域为()(),00,-∞⋃+∞,故选项A 错误;对B :函数()f x 为(),0∞-和()0,∞+上的增函数,故选项B 错误;对C :函数()ln ,0()ln ln ,0x x f x x x x >⎧==⎨-<⎩,所以()f x 在()0,∞+上单调递增,在(),0∞-上单调递减,故选项C 错误;对D :由幂函数的性质知()f x 为减函数且值域为R ,故选项D 正确;故选:D.4.不等式22150x x -++≤的解集为()A .532x x ⎧⎫-≤≤⎨⎬⎩⎭B.52x x ⎧≤-⎨⎩或}3x ≥C.532x x ⎧⎫-≤≤⎨⎬⎩⎭D.{3x x ≤-或52x ⎫≥⎬⎭【答案】B 【解析】【分析】将式子变形再因式分解,即可求出不等式的解集;【详解】解:依题意可得22150x x --≥,故()()2530x x +-≥,解得52x ≤-或3x ≥,所以不等式的解集为52x x ⎧≤-⎨⎩或}3x ≥故选:B .5.化简:AB OC OB +-=()A.BAB.CAC.CBD.AC【答案】D 【解析】【分析】根据向量的线性运算法则,准确运算,即可求解.【详解】根据向量的线性运算法则,可得()AB OC OB AB OC OB AB BC AC +-=+-=+=.故选:D.6.方程()234xf x x =+-的零点所在的区间为()A.()1,0- B.10,2⎛⎫ ⎪⎝⎭C.1,12⎛⎫ ⎪⎝⎭D.41,3⎛⎫⎪⎝⎭【答案】C 【解析】【分析】分析函数()f x 的单调性,利用零点存在定理可得出结论.【详解】因为函数2x y =、34y x =-均为R 上的增函数,故函数()f x 在R 上也为增函数,因为()10f -<,()00f <,15022f ⎛⎫=<⎪⎝⎭,()110f =>,由零点存在定理可知,函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:C.7.已知扇形的半径为1,圆心角为60 ,则这个扇形的弧长为()A.π6B.π3C.2π3D.60【答案】B 【解析】【分析】根据扇形的弧长公式计算即可.【详解】易知π603=,由扇形弧长公式可得ππ133l =⨯=.故选:B8.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件【答案】B 【解析】【分析】根据题意,分析可得“甲分得红牌”与“乙分得红牌”不会同时发生,但除了这2个事件外,还有事件“丙分得红牌”,由对立事件与互斥事件的概念,可得答案.【详解】根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,则两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,则两者不是对立事件,则事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件;故选:B .【点睛】本题考查对立事件与互斥事件的概念,要注意对立一定互斥,但互斥不一定对立,属于基础题.9.要得到函数4y sinx =-(3π)的图象,只需要将函数4y sin x =的图象A.向左平移12π个单位B.向右平移12π个单位C.向左平移3π个单位D .向右平移3π个单位【答案】B 【解析】【详解】因为函数sin 4sin[4()]312y x x ππ⎛⎫=-=- ⎪⎝⎭,要得到函数43y sin x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数4y sin x =的图象向右平移12π个单位.本题选择B 选项.点睛:三角函数图象进行平移变换时注意提取x 的系数,进行周期变换时,需要将x 的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同.10.已知两条直线l ,m 与两个平面α,β,下列命题正确的是()A.若//l α,l m ⊥,则m α⊥B.若//αβ,//m α,则//m βC.若//l α,//m α,则//l mD.若l α⊥,l //β,则αβ⊥【答案】D 【解析】【分析】A.利用线面的位置关系判断;B.利用线面的位置关系判断;C.利用直线与直线的位置关系判断;D.由l //β,过l 作平面γ,有m γβ= ,利用线面平行的性质定理得到得到//l m ,再利用面面垂直的判定定理判断.【详解】A.若//l α,l m ⊥,则//,m m αα⊂或,m α相交,故错误;B.若//αβ,//m α,则//m β或m β⊂,故错误;C.若//l α,//m α,则//l m ,l ,m 相交或异面,故错误;D.若l //β,过l 作平面γ,有m γβ= ,则//l m ,因为l α⊥,所以m α⊥,又m β⊂,则αβ⊥,故正确.故选:D11.已知函数()122,0,log ,0,x x f x x x ⎧≤⎪=⎨>⎪⎩则()()2f f -=()A.-2B.-1C.1D.2【答案】D 【解析】【分析】先根据分段函数求出()2f -,再根据分段函数,即可求出结果.【详解】因为()21224f --==,所以()()12112log 244f f f ⎛⎫-=== ⎪⎝⎭.故选:D.12.已知37log 2a =,1314b ⎛⎫= ⎪⎝⎭,135log c =,则a 、b 、c 的大小关系为()A.a b c >> B.a c b>> C.b a c>> D.c b a>>【答案】A 【解析】【分析】利用对数函数、指数函数的单调性结合中间值法可得出a 、b 、c 的大小关系.【详解】因为337log log 312a =>=,13110144b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,1133log 5log 10c =<=,因此,a b c >>.故选:A.二、填空题:本大题共6小题,每小题6分,共36分.13.已知i 是虚数单位,则复数4i1i-+的虚部为__________.【答案】2-【解析】【分析】先把复数化简为22i --,再根据虚部定义得出即可.【详解】()()()()224i 1i 4i 1i 4i4i 4i =22i 1i 1i 1i 1i 2------===--++--,则复数的虚部为2-.故答案为:2-.14.函数51x y a -=+且((0a >且1a ≠)的图象必经过定点______________.【答案】(5,2)【解析】【分析】由指数函数的性质分析定点【详解】令50x -=,得5x =,此时2y =故过定点(5,2)15.如果函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为2π,则ω的值为______________.【答案】4【解析】【分析】根据正弦型函数的周期计算公式2T πω=即可求解.【详解】2T πω=,∴2242Tππωπ===.故答案为:4.16.已知圆柱的底面直径与高都等于球的直径,若该球的表面积为48π,则圆柱的侧面积为_____.【答案】48π.【解析】【分析】先由球的表面积为48π求出球的半径,然后由圆柱的侧面积公式算出即可【详解】因为球的表面积24π48πS R ==所以R所以圆柱的底面直径与高都为所以圆柱的侧面积:2π⨯故答案为:48π【点睛】本题考查的是空间几何体表面积的算法,较简单.17.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.【答案】18【解析】【详解】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .18.已知()f x 是定义在R 上的偶函数,当x ≥0时,()22xf x =-,则不等式()2f x ≤的解集是_______;【答案】[]22-,【解析】【分析】判断函数当0x ≥时的单调性,利用函数奇偶性和单调性的关系将不等式进行转化求解即可.【详解】∵当x ≥0时,()22xf x =-,∴偶函数()f x 在[0,+∞)上单调递增,且()2=2f ,所以()2f x ≤,即()()2fx f ≤,∴2x ≤,解得22x -≤≤.故答案为:[]22-,.三、解答题:本大题共4小题,第19~21题各10分,第22题12分,共42分.解答需写出文字说明,证明过程和演算步骤.19.在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,已知46,5,cos 5a b A ===-(1)求角B 的大小;(2)求三角形ABC 的面积.【答案】(1)B=300(2)93122ABC S ∆-=【解析】【详解】分析:(1)由同角三角函数关系先求3sin 5A =,由正弦定理可求sinB 的值,从而可求B 的值;(2)先求得()()sin 30C sin A B sin A =+=+的值,代入三角函数面积公式即可得结果.详解:(1)由正弦定理又∴B 为锐角sinA=35,由正弦定理B=300(2)()()sin 30C sin A B sin A =+=+,∴19312bsin 22ABC S a C -==点睛:以三角形和为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用比例分配的分层随机抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)20,30,[)30,40,⋅⋅⋅,[]80,90,并整理得到如下频率分布直方图:(1)根据频率分布直方图估计分数的样本数据的70%分位数;(2)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中女生的人数.【答案】(1)77.5;(2)160(人).【解析】【分析】(1)根据分位数的概念,结合题给频率分布直方图计算得出结果即可;(2)根据频率分布直方图计算出样本中分数不小于70的人数,进而计算出样本中男生及女生的人数,最后求出总体中女生的人数.【详解】(1)由频率分布直方图可知,样本中分数不小于70的频率为()0.020.04100.6+⨯=,从而有:样本中分数小于70的频率为10.60.4-=,又由频率分布直方图可得:样本中分数小于80的频率为0.8,所以样本数据的70%分位数必定位于[)70,80之间.计算为:0.70.4701077.50.80.4-+⨯=-所以其分数的样本数据的70%分位数估计值为77.5.(2)由题知,样本中分数不小于70的学生人数为()0.020.041010060+⨯⨯=,从而有,样本中分数不小于70的男生人数为160302⨯=,进而得,样本中的男生人数为30260⨯=,女生人数为1006040-=,所以总体中女生人数为40400160100⨯=(人).21.某市出租车的票价按以下规则制定:起步公里为2.6公里,收费10元;若超过2.6公里的,每公里按2.4元收费.(1)设A 地到B 地的路程为4.1公里,若搭乘出租车从A 地到B 地,需要付费多少?(2)若某乘客搭乘出租车共付费16元,则该出租车共行驶了多少公里?【答案】(1)13.6元(2)5.1公里【解析】【分析】(1)设出租车行驶x 公里,根据题设写出付费额()f x 的分段函数形式,进而求从A 地到B 地需要的付费;(2)由题意出租车行驶公里数 2.6x >,结合解析式列方程求该出租车共行驶的公里数.【小问1详解】设出租车行驶x 公里,则付费额10,0 2.6()10 2.4( 2.6), 2.6x f x x x <≤⎧=⎨+->⎩,所以(4.1)10 2.4(4.1 2.6)13.6f =+⨯-=元.【小问2详解】由题意,出租车行驶公里数 2.6x >,令10 2.4( 2.6)16x +-=,则 5.1x =公里.22.如图,在三棱锥V-ABC 中,平面VAB ⊥平面ABC ,VAB 为等边三角形,AC BC ⊥,且AC=BC=,O,M分别为AB,VA 的中点.(1)求证:VB //平面MOC ;(2)求三棱锥V-ABC 的体积.【答案】(1)证明见解析;(2)33.【解析】【详解】试题分析:(1)要证明线面平行,就是要证线线平行,题中有中点,由中位线定理易得线线平行,注意得出线面平行结论时,必须把判定定理的条件写全;(2)要求三棱锥的体积,首先要确定高,本题中有面面垂直,由此易得VO 与底面ABC 垂直,因此VO 就是高,求出其长,及ABC 面积,可得体积.试题解析:(1)证明: 点O,M 分别为AB,VA 的中点//OM VB ∴又,OM MOC VB MOC ⊂⊄平面平面//VB MOC∴平面(2)解:连接VO ,则由题知VO ⊥平面AB C,∴VO 为三棱锥V-ABC 的高.又112ABC S VO === ,11.1333V ABC ABC V S VO -∴==⨯=考点:线面平行的判断,体积.。
2024年高考仿真模拟数试题(一) 试卷+答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( )3.设等差数列{}n a 的前n 项和为n S ,若789101120a a a a a ++++=,则17S =( ) A .150B .120C .75D .68A .672B .864C .936D .1056说法正确的是( )( )二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.10.已知复数1z ,2z ,则下列命题成立的有( )11.已知函数()f x 满足:①对任意,x y ∈R ,()()()()()2f x y f x f y f x f y +++=⋅+;②若x y ≠,则A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.2024年高考仿真模拟数试题(一)带答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( ) A .4 B .5C .6D .7A .150B .120C .75D .68此时α与β可能平行或相交,故C 错误;对D 选项:若//l β,则必存在直线p β⊂,使//l p , 又l α⊥,则p α⊥,又p β⊂,则αβ⊥,故D 正确.故选D.5.有7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有( )种站排方式. A .672 B .864 C .936 D .1056A .P 的轨迹为圆B .P 到原点最短距离为1C .P 点轨迹是一个菱形D .点P 的轨迹所围成的图形面积为4二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=答案 ABC解析 对于A ,令0x y ==,得()()23002f f =+ ,解得()01f =或()02f =, 若()01f =,令0y =,得()()212f x f x +=+,即()1f x ≡,三、填空题:本题共3小题,每小题5分,共15分.O O 当外接球的球心O在线段12 =OO h四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)。
高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。
如需改动,先擦干净再涂其他答案。
不得在试卷上作答。
2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。
如需改动,先划掉原答案再写新答案。
不得用铅笔或涂改液。
不按要求作答无效。
3.答题卡需整洁无误。
考试结束后,交回试卷和答题卡。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。
3B。
4C。
7D。
82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。
iB。
-iC。
2iD。
-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。
80B。
85C。
90D。
954.XXX每天上学都需要经过一个有交通信号灯的十字路口。
已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。
如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。
4/5B。
3/4C。
2/3D。
3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。
120B。
160C。
200D。
2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。
3.119B。
2020年安徽省高考数学(理科)模拟试卷(1)一.选择题(共12小题,满分60分,每小题5分)1.(5分)已知集合A ={x ∈N |x >1},B ={x |x <5},则A ∩B =( ) A .{x |1<x <5}B .{x |x >1}C .{2,3,4}D .{1,2,3,4,5}2.(5分)复数z =(1+2i )2(i 为虚数单位)的共轭复数z 在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,已知恰有80个点落在阴影部分,据此可估计阴影部分的面积是( )A .165B .325C .10D .1854.(5分)为得到y =2sin (3x −π3)的图象,只需要将y =2cos3x 函数的图象( ) A .向左平移π6个单位B .向右平移π6个单位C .向左平移5π18个单位 D .向右平移5π18个单位5.(5分)已知函数f(x)=√x 2+x +a 的定义域为R ,则实数a 的取值范围是( ) A .(0,14]B .(﹣∞,14]C .[14,+∞)D .[1,+∞)6.(5分)已知抛物线y 2=2px (p >0)与圆x 2+y 2=5交于A ,B 两点,且|AB |=4,则p =( ) A .√2B .1C .2D .47.(5分)若直线y =ax +2a 与不等式组{x −y +6≥0x ≤3x +y −3≥0表示的平面区域有公共点,则实数a的取值范围是( )A .[0,95]B .[0,9]C .[0,+∞]D .[﹣∞,9]8.(5分)函数y =2x +2x−1(x >1)的最小值是( ) A .2B .4C .6D .89.(5分)已知sin(π+α)=45,且sin2α<0,则tan (α−π4)的值为( ) A .7B .﹣7C .17D .−1710.(5分)设a =30.1,b =log 0.30.5,c =log 60.3,则a ,b ,c 的大小关系是( ) A .a <b <cB .c <b <aC .c <a <bD .b <c <a11.(5分)把一个已知圆锥截成一个圆台和一个小圆锥,已知圆台的上、下底面半径之比为1:3,母线长为6cm ,则已知圆锥的母线长为( )cm . A .8B .9C .10D .1212.(5分)如图,F I ,F 2是双曲线C :x 22−y 23=1(a >0)的左、右焦点,点P 是双曲线上位于第一象限内的一点,且直线F 2P 与y 轴的正半轴交于点A ,△APF 1的内切圆与边PF 1切于点Q ,且|PQ |=4,则双曲线C 的离心率为( )A .2B .√72C .2√33D .√194二.填空题(共4小题,满分20分,每小题5分)13.(5分)如图,在平行四边形ABCD 中,AB =2,AD =1.则AC →⋅BD →的值为 .14.(5分)化简:tan(3π−α)cos(4π+α)sin(π2−α)cos(−α−π)sin(−5π−α)= .15.(5分)已知(1﹣x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则a 2= ,a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6= .16.(5分)在三棱锥P ﹣ABC 中,P A =PC =2√3,BA =BC =√3,∠ABC =90°,若P A 与底面ABC 所成的角为60°,则三棱锥P ﹣ABC 的外接球的表面积 . 三.解答题(共6小题)17.已知数列{a n }是等差数列,满足a 2=5,a 4=9,数列{b n +a n }是公比为3的等比数列,且b 1=3.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和S n .18.已知函数f(x)=sinx ⋅sin(x +π3)−14(x ∈R). (1)求f(π3)的值和f (x )的最小正周期;(2)设锐角△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且f(A2)=14,a =2,求b +c 的取值范围.19.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为矩形,侧面P AB ⊥底面ABCD ,H 为棱AB 的中点,E 为棱DC 上任意一点,且不与D 点、C 点重合.AB =2,AD =P A =1,PH =√2. (Ⅰ)求证:平面APE ⊥平面ABCD ;(Ⅱ)是否存在点E 使得平面APE 与平面PHC 所成的角的余弦值为√63?若存在,求出点E 的位置;若不存在,请说明理由.20.已知一堆产品中有一等品2件,二等品3件,三等品4件,现从中任取3件产品. (1)求一、二、三等品各取到一个的概率;(2)记X 表示取到一等品的件数,求X 的分布列和数学期望. 21.已知f (x )=(x ﹣m )e x .(1)当m =2时,求函数f (x )在点(0,f (0))处的切线方程;(2)若函数f (x )在区间(﹣1,0)上有极小值点,且总存在实数m ,使函数f (x )的极小值与e 2m +2am 2(a+1)e互为相反数,求实数a 的取值范围.22.已知动圆C 与圆C 1:(x −2)2+y 2=1外切,又与直线l :x =﹣1相切.设动圆C 的圆心的轨迹为曲线E . (1)求曲线E 的方程;(2)在x 轴上求一点P (不与原点重合),使得点P 关于直线y =12x 的对称点在曲线E 上.2020年安徽省高考数学(理科)模拟试卷(1)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)已知集合A ={x ∈N |x >1},B ={x |x <5},则A ∩B =( ) A .{x |1<x <5}B .{x |x >1}C .{2,3,4}D .{1,2,3,4,5}【解答】解:∵集合A ={x ∈N |x >1},B ={x |x <5}, ∴A ∩B ={x ∈N |1<x <5}={2,3,4}. 故选:C .2.(5分)复数z =(1+2i )2(i 为虚数单位)的共轭复数z 在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:因为z =(1+2i )2=1+4i +4i 2=﹣3+4i ; ∴z =−3﹣4i ;∴z 在复平面内对应的点在第三象限; 故选:C .3.(5分)“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,已知恰有80个点落在阴影部分,据此可估计阴影部分的面积是( )A .165B .325C .10D .185【解答】解:由题意可得:S 阴影S 正方形=80200,∴S 阴影=25×32=185. 故选:D .4.(5分)为得到y =2sin (3x −π3)的图象,只需要将y =2cos3x 函数的图象( ) A .向左平移π6个单位B .向右平移π6个单位C .向左平移5π18个单位D .向右平移5π18个单位【解答】解:将y =2cos3x =2sin (3x +π2)的图象,向右平移5π18个单位,可得函数的图象得到y =2sin (3x −π3)的图象, 故选:D .5.(5分)已知函数f(x)=√x 2+x +a 的定义域为R ,则实数a 的取值范围是( ) A .(0,14]B .(﹣∞,14]C .[14,+∞)D .[1,+∞)【解答】解:∵f (x )的定义域为R , ∴x 2+x +a ≥0的解集为R , ∴△=1﹣4a ≤0,解得a ≥14, ∴实数a 的取值范围是[14,+∞). 故选:C .6.(5分)已知抛物线y 2=2px (p >0)与圆x 2+y 2=5交于A ,B 两点,且|AB |=4,则p =( ) A .√2B .1C .2D .4【解答】解:抛物线y 2=2px (p >0)与圆x 2+y 2=5交于A ,B 两点,且|AB |=4, 由抛物线和圆都关于x 轴对称,可得A ,B 的纵坐标为2,﹣2, 可设A (2p ,2),代入圆的方程可得4p 2+4=5,可得p =2.故选:C .7.(5分)若直线y =ax +2a 与不等式组{x −y +6≥0x ≤3x +y −3≥0表示的平面区域有公共点,则实数a的取值范围是( ) A .[0,95]B .[0,9]C .[0,+∞]D .[﹣∞,9]【解答】解:画出不等式组表示的平面区域,如图所示{x −y +6=0x +y −3=0⇒{x =−32y =92;∴C (−32,92),直线y =a (x +2)过定点A (﹣2,0),直线y =a (x +2)经过不等式组表示的平面区域有公共点 则a >0,k AC =92−0(−32)−(−2)=9,∴a ∈[0,9]. 故选:B .8.(5分)函数y =2x +2x−1(x >1)的最小值是( ) A .2B .4C .6D .8【解答】解:因为y =2x +2x−1(x >1), =2(x ﹣1)+2x−1+2≥2√2(x −1)⋅2x−1+2=6, 当且仅当2(x ﹣1)=2x−1即x =2时取等号,此时取得最小值6. 故选:C .9.(5分)已知sin(π+α)=45,且sin2α<0,则tan (α−π4)的值为( ) A .7B .﹣7C .17D .−17【解答】解:∵sin(π+α)=45, ∴可得sin α=−45,又∵sin2α=2sin αcos α<0,可得cos α>0,∴可得cosα=√1−sin2α=35,tanα=sinαcosα=−43,∴tan(α−π4)=tanα−11+tanα=−43−11−43=7.故选:A.10.(5分)设a=30.1,b=log0.30.5,c=log60.3,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.b<c<a【解答】解:∵a=30.1>30=1,∴a>1;∵log0.31<b=log0.30.5<log0.30.3=1,∴0<b<1;∵c=log50.3<log51=0,∴c<0,∴a>b>c,故选:B.11.(5分)把一个已知圆锥截成一个圆台和一个小圆锥,已知圆台的上、下底面半径之比为1:3,母线长为6cm,则已知圆锥的母线长为()cm.A.8B.9C.10D.12【解答】解:由题意画出轴截面图形,可知CDAB =SDSB=13,BD=6,可得SD=2,所以圆锥的母线长为:2+6=8(cm).故选:A.12.(5分)如图,F I,F2是双曲线C:x2a2−y23=1(a>0)的左、右焦点,点P是双曲线上位于第一象限内的一点,且直线F2P与y轴的正半轴交于点A,△APF1的内切圆与边PF1切于点Q,且|PQ|=4,则双曲线C的离心率为()A .2B .√72C .2√33D .√194【解答】解:PQ =PF 1﹣F 1Q =PF 1﹣F 1M =PF 1﹣NF 2=PF 1﹣(PF 2+PQ ) ⇒PQ =12(PF 1−PF 2)=a ,∴a =4,b =√3,∴c =√19, 所以双曲线的离心率为:e =√194.故选:D .二.填空题(共4小题,满分20分,每小题5分)13.(5分)如图,在平行四边形ABCD 中,AB =2,AD =1.则AC →⋅BD →的值为 ﹣3 .【解答】解:∵AB =2,AD =1, ∴AC →⋅BD →=(AB →+AD →)⋅(BA →+BC →) =(AB →+AD →)⋅(AD →−AB →) =AD →2−AB →2 =1﹣4 =﹣3. 故答案为:﹣3.14.(5分)化简:tan(3π−α)cos(4π+α)sin(π2−α)cos(−α−π)sin(−5π−α)= 1 .【解答】解:tan(3π−α)cos(4π+α)sin(π2−α)cos(−α−π)sin(−5π−α)=(−tanα)cosαcosα(−cosα)sinα=1.故答案为:1.15.(5分)已知(1﹣x)6=a0+a1x+a2x2+…+a6x6,则a2=15,a0﹣a1+a2﹣a3+a4﹣a5+a6=64.【解答】解:由(1﹣x)6的通项为T r+1=C6r(−x)r可得,令r=2,即x2项的系数a2为C62=15,即a2=15,由(1﹣x)6=a0+a1x+a2x2+…+a6x6,取x=﹣1,得a0﹣a1+a2﹣a3+a4﹣a5+a6=[1﹣(﹣1)]6=64,故答案为:15,64.16.(5分)在三棱锥P﹣ABC中,P A=PC=2√3,BA=BC=√3,∠ABC=90°,若P A与底面ABC所成的角为60°,则三棱锥P﹣ABC的外接球的表面积15π.【解答】解:因为P A=PC=2√3,BA=BC=√3,所以P在底面的投影在∠ABC的角平分线上,设为E,再由若P A与底面ABC所成的角为60°可得AE=P A•cos60°=2√3⋅12=√3,可得E,B重合,PB=P A•sin60°=2√3⋅√32=3,即PB⊥面ABC,由∠ABC=90°可得,将三棱锥P﹣ABC放在长方体中,由长方体的对角线为外接球的直径2R可得:4R2=32+(√3)2+(√3)2=15,所以外接球的表面积S=4πR2=15π,故答案为:15π.三.解答题(共6小题)17.已知数列{a n}是等差数列,满足a2=5,a4=9,数列{b n+a n}是公比为3的等比数列,且b1=3.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和S n.【解答】解:(1)数列{a n}是公差为d的等差数列,满足a2=5,a4=9,可得a1+d=5,a1+3d=9,解得a1=3,d=2,即有a n=3+2(n﹣1)=2n+1;数列{b n+a n}是公比为3的等比数列,且b1=3,可得b n+a n=6•3n﹣1=2•3n,则b n=2•3n﹣(2n+1);(2)前n项和S n=(6+18+…+2•3n)﹣(3+5+…+2n+1)=6(1−3n)1−3−12n(3+2n+1)=3n+1﹣3﹣n(n+2).18.已知函数f(x)=sinx⋅sin(x+π3)−14(x∈R).(1)求f(π3)的值和f(x)的最小正周期;(2)设锐角△ABC的三边a,b,c所对的角分别为A,B,C,且f(A2)=14,a=2,求b+c的取值范围.【解答】解:(1)函数f(x)=sinx⋅sin(x+π3)−14(x∈R).所以f(π3)=√32×√32−14=12.所以f(x)=sinx(12sinx+√32cosx)=1−cos2x4+√34sin2x−14=12sin(2x−π6),所以函数f(x)的最小正周期为π;(2)设锐角△ABC的三边a,b,c所对的角分别为A,B,C,且f(A2)=14,所以sin(A−π6)=12,解得A=π3.利用正弦定理asinA =bsinB=csinC,解得b=3,c=3sin(2π3−B),所以b+c=3+sin(2π3−B)]=4sin(B+π6),由于{0<B<π20<C=2π3−B<π2,解得π6<B<π2,所以B+π6∈(π3,2π3),所以b+c∈(2√3,4].19.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,侧面P AB⊥底面ABCD,H为棱AB 的中点,E为棱DC上任意一点,且不与D点、C点重合.AB=2,AD=P A=1,PH=√2.(Ⅰ)求证:平面APE⊥平面ABCD;(Ⅱ)是否存在点E 使得平面APE 与平面PHC 所成的角的余弦值为√63?若存在,求出点E 的位置;若不存在,请说明理由.【解答】解:(Ⅰ)证明:∵AB =2,H 为AB 中点, ∴AH =1,又PA =1,PH =√2,∴P A 2+AH 2=PH 2,则P A ⊥AH ,又侧面P AB ⊥底面ABCD ,侧面P AB ∩底面ABCD =AB , ∴P A ⊥平面ABCD , 又P A 在平面APE 内, ∴平面APE ⊥平面ABCD ;(Ⅱ)由(Ⅰ)可知,以A 为坐标原点,AD ,AB ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,1),H (0,1,0),C (1,2,0),假设存在点E (1,y ,0)满足题意,则AP →=(0,0,1),AE →=(1,y ,0),PH →=(0,1,−1),HC →=(1,1,0),设平面APE 的一个法向量为m →=(a ,b ,c),则{m →⋅AP →=c =0m →⋅AE →=a +by =0,设a =1,则m →=(−1,1y ,0),设平面PHC 的一个法向量为n →=(p ,k ,t),则{n →⋅PH →=k −t =0n →⋅HC →=p +k =0,设k =1,则n →=(−1,1,1),∵平面APE 与平面PHC 所成的角的余弦值为√63, ∴|cos <m →,n →>|=|m →⋅n →||m →||n →|=|1+1y |√1+1y2⋅√3=√63,∴y =1,即存在点E 为CD 的中点,使得平面APE 与平面PHC 所成的角的余弦值为√63. 20.已知一堆产品中有一等品2件,二等品3件,三等品4件,现从中任取3件产品. (1)求一、二、三等品各取到一个的概率;(2)记X 表示取到一等品的件数,求X 的分布列和数学期望.【解答】解:(1)一堆产品中有一等品2件,二等品3件,三等品4件,现从中任取3件产品.基本事件总数n =C 93=84,一、二、三等品各取到一个包含的基本事件个数m =2×3×4=24, ∴一、二、三等品各取到一个的概率p =m n =2484=27. (2)记X 表示取到一等品的件数,则X 的可能取值为0,1,2, P (X =0)=C 73C 93=512, P (X =1)=C 21C 72C 93=12, P (X =2)=C 22C 71C 93=112,∴X 的分布列为:X 012 P51212112数学期望E (X )=0×512+1×12+2×112=23. 21.已知f (x )=(x ﹣m )e x .(1)当m =2时,求函数f (x )在点(0,f (0))处的切线方程;(2)若函数f (x )在区间(﹣1,0)上有极小值点,且总存在实数m ,使函数f (x )的极小值与e 2m +2am 2(a+1)e互为相反数,求实数a 的取值范围.【解答】解:(1)f '(x )=[x ﹣(m ﹣1)]e x .当m =2时,f (x )=(x ﹣2)e x ,f '(x )=(x ﹣1)e x . ∴f (0)=﹣2,f '(0)=﹣1,所以,函数f (x )在点(0,f (0))处的切线方程为y +2=﹣(x ﹣0),即x +y +2=0. (2)f '(x )=[x ﹣(m ﹣1)]e x 得x ∈(﹣∞,m ﹣1)时,f '(x )<0,x ∈(m ﹣1,+∞)时,f '(x )>0,∴函数f (x )在区间(﹣∞,m ﹣1)上单调递减,在区间(m ﹣1,+∞)单调递增, 函数f (x )的极小值点为m ﹣1. 由已知﹣1<m ﹣1<0,∴0<m <1.f(x)极小=f(m −1)=−e m−1 故在区间(0,1)上存在m ,使得e 2m +2am 2(a+1)e−e m−1=0.∴2a =e 2m −2e m e m −m (0<m <1).设g(m)=e 2m −2e me m −m.∴当0<m <1时,g ′(m)=(e m −1)[e 2m +2(1−m)e m ](e m −m)2>0,∴函数g (m )在区间(0,1)上递增, ∴当0<m <1时,g (0)<g (m )<g (1),即−1<2a <e 2−2e e−1,∴−12<a <e 2−2e 2e−2,所以,实数a 的取值范围是(−12,e 2−2e2e−2).22.已知动圆C 与圆C 1:(x −2)2+y 2=1外切,又与直线l :x =﹣1相切.设动圆C 的圆心的轨迹为曲线E . (1)求曲线E 的方程;(2)在x 轴上求一点P (不与原点重合),使得点P 关于直线y =12x 的对称点在曲线E 上.【解答】解:解法一:(1)依题意得圆心C 到于直线x =﹣2的距离等于到圆C 1圆心的距离,所以C 的轨迹是(2,0)为焦点,以直线x =﹣2为准线的抛物线, 设其方程y 2=2px (p >0),则p2=2,p =4,所以曲线E 的方程为y 2=8x .(2)设P (t ,0),P 关于直线y =12x 的对称点为P 1(m ,n ),则{nm−t=−2,n 2=12(m+t 2),即{2m +n =2t ,2n −m =t ,解得{m =35t ,n =35t.代入曲线E 得1625t 2=245t ,解得t =0(舍去),t =152,即点P 的坐标为(152,0). 解法二:(1)设圆心C (x ,y ),依题意x ≥﹣1, 因为圆C 与直线l :x =﹣1相切,所以r =x +1, 又圆C 与圆C 1外切,所以|CC 1|=r +1, 即√(x −2)2+y 2=x +2, 化简得曲线E 的方程为y 2=8x . (2)同解法.。
2023年陕西省宝鸡市高考数学模拟试卷(理科)(一)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.A .{-2,-1,0,1,2}B .{0,1,2}C .{-2,-1,1,2}D .{1,2}1.(5分)已知集合A ={x |y =lgx },B ={-2,-1,0,1,2},那么A ∩B 等于( )A .1B .2C .2D .42.(5分)已知复数z =1−i 1+i,则|z |=( )√A .y =±12x B .y =±2x C .y =±22x D .y =±2x3.(5分)双曲线2x 2-y 2=1的渐近线方程是( )√√A .甲检测点的平均检测人数多于乙检测点的平均检测人数B .甲检测点的数据极差大于乙检测点的数据极差C .甲检测点数据的中位数大于乙检测点数据的中位数D .甲检测点数据的方差大于乙检测点数据的方差4.(5分)最早发现于2019年7月的某种流行疾病给世界各国人民的生命财产带来了巨大的损失.近期某市由于人员流动出现了这种疾病,市政府积极应对,通过3天的全民核酸检测,有效控制了疫情的发展,决定后面7天只针对41类重点人群进行核酸检测,下面是某部门统计的甲、乙两个检测点7天的检测人数统计图,则下列结论不正确的是( )A .25B .32C .3D .55.(5分)已知正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,侧棱长为4,则异面直线AC 与DC 1所成角的正切值为( )√√√A .π6B .π3C .2π3D .5π66.(5分)已知向量m ,n 满足(2m −3n )⊥n ,且|m |=3|n |,则m ,n 夹角为( )→→→→→→√→→→A .−43B .43C .−247D .2477.(5分)已知α∈(0,π),sinα−cosα=15,则tan 2α=( )二、填空题,本题共4小题,每小题5分,共20分.A .[12,34]B .[34,32]C .[1,2]D .[32,2]8.(5分)椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上,且直线PA 2斜率取值范围是[−1,−12],那么直线PA 1斜率取值范围是( )A .①②B .①③C .①④D .①②③9.(5分)已知等差数列{a n }满足a 4+a 7=0,a 5+a 8=-4,则下列命题:①{a n }是递减数列;②使S n >0成立的n 的最大值是9;③当n =5时,S n 取得最大值;④a 6=0,其中正确的是( )A .(0,2]B .(0,4]C .[2,+∞)D .[4,+∞)10.(5分)已知直线y =mx +n (m ≥0,n >0)与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .3B .4C .5D .611.(5分)11+2+13+4+15+6+⋯+199+100的整数部分是( )√√√√√√√√A .2B .4C .6D .812.(5分)已知函数f (x )=ax 3+bx 2+cx +d (a ≠0)满足f (x )+f (2−x )=2,g (x )=x x −1,若函数y =f (x )与y =g (x )的图像恰有四个交点,则这四个交点的横坐标之和为( )13.(5分)若(x 2-1x )6的展开式中的常数项是 .√14.(5分)命题“∃x ∈R ,ax 2-2ax +1≤0”为假命题,则实数a 的取值范围是 .15.(5分)七巧板是古代劳动人民智慧的结晶.如图是某同学用木板制作的七巧板,它包括5个等腰直角三角形、一个正方形和一个平行四边形.若用四种颜色给各板块涂色,要求正方形板块单独一色,其余板块两块一种颜色,而且有公共边的板块不同色,则不同的涂色方案有 种.16.(5分)在棱长为1的正方体ABCD -B 1C 1D 1中,M 是侧面BB 1C 1C 内一点(含边界)则下列命题中正确的是(把所有正确命题的序号填写在横线上) .①使AM =2的点M 有且只有2个;②满足AM ⊥B 1C 的点M 的轨迹是一条线段;√三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请先涂题号.[选修4-4:坐标系与参数方程][选修4-5:不等式选讲](本小题满分0分)③满足AM ∥平面A 1C 1D 的点M 有无穷多个;④不存在点M 使四面体MAA 1D 是鳖臑(四个面都是直角三角形的四面体).17.(12分)已知向量m =(3sinx ,cosx ),n =(cosx ,−cosx ),定义函数f (x )=m ⋅n −12.(1)求函数f (x )的最小正周期;(2)在△ABC 中,若f (C )=0,且AB =3,CD 是△ABC 的边AB 上的高,求CD 长的最大值.√18.(12分)如图在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知PA =AB =2,AD =5,AC =1,E 是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.√19.(12分)已知点A (x 0,-2)在抛物线C :y 2=2px (p >0)上,且A 到C 的焦点F 的距离与到x 轴的距离之差为12.(1)求C 的方程;(2)当p <2时,M ,N 是C 上不同于点A 的两个动点,且直线AM ,AN 的斜率之积为-2,AD ⊥MN ,D 为垂足.证明:存在定点E ,使得|DE |为定值.20.(12分)甲、乙两个代表队各有3名选手参加对抗赛.比赛规定:甲队的1,2,3号选手与乙队的1,2,3号选手按编号顺序各比赛一场,某队连赢3场,则获胜,否则由甲队的1号对乙队的2号,甲队的2号对乙队的1号加赛两场,胜场多者最后获胜(每场比赛只有胜或负两种结果),已知甲队的1号对乙队的1,2号选手的胜率分别是0.5,0.6,甲队的2号对乙队的1,2号选手的胜率都是0.5,甲队的3号对乙队的3号选手的胜率也是0.5,假设每场比赛结果相互独立.(1)求甲队仅比赛3场获胜的概率;(2)已知每场比赛胜者可获得200个积分,求甲队队员获得的积分数之和X 的分布列及期望.21.(12分)已知函数f (x )=m (x +1)e x (m >0),g (x )=2lnx +x +1.(1)求曲线y =g (x )在点(1,g (1))处的切线方程;(2)若函数y =f (x )的图像与y =g (x )的图像最多有一个公共点,求实数m 的取值范围.22.(10分)在直角坐标系xOy 中,曲线C 1的参数方程为V Y Y Y W Y Y Y X x =t +2t ,y =t −2t(t 为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为θ=π3(ρ∈R ).(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)求曲线C 1的任意一点到曲线C 2距离的最小值.23.已知a>b>c>0,求证:(1)1a−b +1b−c≥4a−c;(2)a2a b2b c2c>a b+c b c+a c a+b.。
100所名校高考模拟金典卷(一)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数232ii --等于A .4755i -B .7455i -C .7455i +D .4755i +2.已知集合{}22|log (32)A x y x x ==-+,2{|0}3x B x x +=<-,则A B I 等于A .{|21x x -<<或23}x <<B .{}|23x x -<<C .{}|3x x >D .{}|2x x <-3.向量a b ⋅=-r r ||a =rb r 在向量a r 方向上的投影为 A .6B .3C .-3D .-64.下列函数()f x 中,满足:对任意的12,(,0)x x ∈-∞,当12x x <时,总有12()()f x f x >,且其图像关于原点中心对称的是A .2()f x x =B .3()f x x =C .1()f x x=D .()xf x e =5.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +等于A .7B .5C .-5D .-76.一个几何体的三视图如图所示,则此几何体的体积为A B C D .7.某程序框图如图所示,则该程序运行后输出a 的值为A .-1B .0C .1D .28.已知n的展开式中,各项系数的和与其各项二项式系数的和之比为64,则展开式中的常数项等于A .135B .270C .10809.设函数2()sin()2cos 1(0)62f x x x πωωω=--+>,直线y =()y f x =图像相邻两交点的距离为π,则函数()y f x =在区间[]0,π上的单调增区间为A .50,12π⎡⎤⎢⎥⎣⎦B .511,1212ππ⎡⎤⎢⎥⎣⎦C .11,12ππ⎡⎤⎢⎥⎣⎦D .50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦10.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,设P 是双曲线右支上一点,12F F u u u u r 在1F P u u u r 方向上的投影的大小恰好为1||F P u u u r ,且它们的夹角为6π,则双曲线的离心率e 是 ABC1D111.设,x y 满足约束条件360,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩若目标函数(0,0)z ax by a b =+>>的最大值是12,则2294a b +的最小值为 A .12B .1C .2D .5212.已知集合{}1,2,3M =,{}1,2,3,4N =,定义函数:f M N →.若点(1,(1))A f ,(2,(2))B f ,(3,(3))C f ,△ABC 的外接圆圆心为D ,且()DA DC DB R λλ+=∈u u u r u u u r u u u r,则满足条件的函数()f x 有A .6个B .10个C .12个D .16个第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.正视图二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.边长为2的正方体内切球的表面积为 .14.假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:若由资料可知:y 对x 呈线性相关关系,且线性回归方 程为$y bx a =+,其中已知 1.23b =,请估计使用年限 为20年时,维修费用约为 万元.15.如图是一个长为4、宽为2的长方形,图中阴影部分是由曲线y =1(1)3y x =-,4x =及x 轴围成的图形.随机的向长方形内投入一点,则该点落入阴影部分的概率为: . 16.(20XX 年·福建)数列{}n a 的通项公式为cos12n n a n π=+,前n 项和为n S ,则2012S = . 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知向量3(sin ,)4a x =r ,(cos ,1)b x =-r.(1)当a r ∥b r 时,求2cos sin 2x x -的值;(2)设函数()2()f x a b b =+⋅r r r,已知在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,若a =2b =,sin 3B =,求()4cos(2)(0,)63f x A x ππ⎡⎤++∈⎢⎥⎣⎦的取值范围. 18.(本小题满分12分)为缓解某路段交通压力,计划将该路段实施“交通限行”.在该路段随机抽查了50人,了解公众对“该路段限行”的态度,将调查情况进行整理,制成下表:(1(2)若从年龄在[)15,25,[)25,35的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“交通限行”的人数为X ,求随机变量X 的分布列和数学期望.19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,已知1BC =,12BB =,190BCC ∠=o ,AB ⊥平面11BB C C .(1)在棱1CC (不包含端点1,C C )上确定一点E ,使得1EA EB ⊥(要求说明理由);(2)在(1)的条件下,若AB =求二面角11A EB A --的大小.20.(本小题满分12分)设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,上顶点为A ,离心率12e =,在x 轴负半轴上有一点B 且212BF BF =u u u u r u u u r .(1)若过A 、B 、2F三点的圆恰好与直线:30l x --=相切,求椭圆C 的方程; (2)在(1)的条件下,过右焦点2F 作斜率为k 的直线l '与椭圆C 交于M 、N 两点,在x 轴上是否存在点(,0)P m ,使得以PM ,PN 为邻边的平行四边形是菱形,若存在,求出m 的取值范围;若不存在,说明理由.21.(本小题满分12分)已知函数()ln f x x x =. (1)求()f x 的最小值;(2)当0,0a b >>,求证:()()()()ln 2f a f b f a b a b +≥+-+.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号. 22.(本小题满分10分)【选修4-1:几何选讲】如图,△ABC 内接于圆O ,AB AC =,直线MN 切圆O 于点C ,BD∥MN ,AC 与BD 相交于点E . (1)求证:AE AD =;(2)若6,4AB BC ==,求AE 的长.23.(本小题满分10分)【选修4-4:坐标系与参数方程】已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴正半轴重合.直线l 的参数方程为AA 1B 1C 1B CE1,1,2x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4cos ρθ=. (1)写出C 的直角坐标方程,并指出C 是什么曲线; (2)设直线l 与曲线C 相交于点P 、Q 两点,求||PQ 的值. 24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()|1|2f x x =-+,()|2|3g x x =-++. (1)解不等式()2g x ≥-;(2)当x R ∈时,()()2f x g x m -≥+恒成立,求实数m 的取值范围.数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧 13.4π 14.24.6815.234816.3018三、解答题 17.。
高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。
注意事项:1.答题前,请务必填写自己的姓名和考籍号。
2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。
3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,请只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。
高考模拟信息卷01(理)(本卷满分150分,考试时间120分钟。
)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为( ) A .3B .4C .7D .82.设复数12i z =-(i 是虚数单位),则z z +的值为( ) A .32B .22C .1D .23.已知3sin 22sin 2παα⎛⎫=+ ⎪⎝⎭,则cos2=α( )A .79-B .79 C .13-D .134.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“< ”和“> ”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若0a b >>,则下列结论错误..的是( ) A .11a b< B .2log ()0a b -> C .1122a b >D .33a b >5.如图是某个闭合电路的一部分,每个元件出现故障的概率为110,则从A 到B 这部分电源能通电的概率为( )A .97929100000B .97919100000C .98029100000D .980191000006.一动圆P 过定点(4,0)M -,且与已知圆22:(4)16N x y -+=相切,则动圆圆心P 的轨迹方程是A .221(2)412x y x -=B .221(2)412x y x -=-C .221412x y -=D .221412y x -=7.若直角坐标平面内A 、B 两点满足①点A 、B 都在函数()f x 的图像上;②点A 、B 关于原点对称,则点(),A B 是函数()f x 的一个“姊妹点对”.点对(),A B 与(),B A 可看作是同一个“姊妹点对”,已知函数()()()22020x x x x f x x e ⎧+<⎪=⎨≥⎪⎩,则()f x 的“姊妹点对”有( )A .0个B .1个C .2个D .3个8.运用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图1)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图2),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆2211636x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图3),类比上述方法,运用祖暅原理可求得其体积等于( )A .64πB .148πC .128πD .32π9.如图,在一个凸四边形ABCD 内,顺次连接四边形各边中点E ,F ,G ,H 而成的四边形是一个平行四边形,这样的平行四边形被称为瓦里尼翁平行四边形.如图,现有一个面积为12的凸四边形ABCD ,设其对应的瓦里尼翁平行四边形为1111D C B A ,记其面积为1a ,四边形为1111D C B A 对应的瓦里尼翁平行四边形为2222A B C D ,记其面积为2a ,…,依次类推,则由此得到的第四个瓦里尼翁平行四边形4444A B C D 的面积为( )A .1B .427C .34D .不确定10.已知函数()()cos 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭,()()()3F x f x f x '=为奇函数,则下述四个结论中说法正确的是( )A .tan 3ϕ=B .()f x 在[],a a -上存在零点,则a 的最小值为6πC .()F x 在,4ππ⎛⎫⎪⎝⎭上单调递增D .()f x 在0,2π⎛⎫⎪⎝⎭有且仅有一个极大值点11.对于棱长为1的正方体1111ABCD A B C D -,有如下结论,其中错误的是( ) A .以正方体的顶点为顶点的几何体可以是每个面都为直角三角形的四面体; B .过点A 作平面1A BD 的垂线,垂足为点H ,则1,,A H C 三点共线; C .过正方体中心的截面图形不可能是正六边形; D .三棱锥11A B CD -与正方体的体积之比为1:3.12.锐角ABC 的三边分别为,,a b c ,2cos a b B =,则cb 的取值范围是( )A .[)1,3B .1,22⎛⎫⎪⎝⎭C .3,33⎛⎫⎪ ⎪⎝⎭D .[)1,2二、填空题:本题共4小题,每小题5分,共20分。
数学理试题
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题。
每小题5分,共60分,在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.设全集R U =,=A (2){|21},{|ln(1)}x x x B x y x -<==-,则图中阴影部分表示的集合
A . {|1}x x ≥
B .{|12}x x ≤<
C .{|01}x x <≤
D .{|1}x x ≤
2.已知,x y R ∈,i 为虚数单位,且1xi y i -=-+,则(1)x y
i ++的值为
A . 2
B .
2i -
C . 4-
D . 2i
3.如果执行如右图所示的程序框图,则输出的S 值为 A .3- B .12
-
C .2
D .
13
4.设函数()sin()cos()(0,)2
f x x x π
ωϕωϕωϕ=+++><
的最小正周期
为π,且()()f x f x -=则 A . ()y f x =在3(
,
)44
ππ
单调递增 B . ()y f x =在(0,)2
π
单调递增
C . ()y f x =在3(,)44
ππ
单调递减
D . ()y f x =在(0,
)2
π
单调递减
5.一艘轮船从O 点的正东方向10km 处出发,沿直线向O 点的正北方向10km 处的港口航行,
某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间]10
,5[内的一个随机数,则轮船在航行途中会遭受台风影响的概率是 A .
212- B .2
2
1- C .12- D .22-
6.已知四棱锥P ABCD -的三视图如右图1所示,则四棱锥P ABCD -的四个侧面中的
最大面积是
A . 6
B .8
C
.
D . 3
7.若直线y kx =与圆2
2
(2)1x y -+=的两个交点关于直线20x y b ++=对称,则,k b 的值
分别为
A . 1
,42
k b =
=- B . 1,42
k b =-=
C . 1
,42
k b == D . 1,42
k b =-=-
8.已知等比数列{}n a 满足0,1,2,
n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,
2123221log log log n a a a -++
+=
A .(21)n n -
B .2
(1)n + C .2n D .2(1)n -
9.如图,PAB ∆所在的平面α 和四边形ABCD 所在的平面β互相垂
直,且 ,AD B C αα⊥⊥,4AD =, 8BC =,6A B =,若
tan 2tan 10A D P B C P ∠+∠=,则点
P 在平面α内的轨迹是
A .圆的一部分
B .椭圆的一部分
C .双曲线的一部分
D .抛物线的一部分
10.椭圆
22
1369
x y +=上有两个动点P 、Q ,(3,0)E ,EP EQ ⊥,则 EP ⋅· EP QP 的最小值为
A . 6
B .
3C . 9
D .
12-11.若曲线f (x ,y )= 0上两个不同点处的切线重合,则称这条切线为曲线f (x ,y )= 0
的“自公切线”.下列方程:①2
2
1x y -=;②2
||y x x =-,③3sin 4cos y x x =+;
④||1x +=
对应的曲线中存在“自公切线”的有
β α
P
A
B
C
D
A .①②
B .②③
C .①④
D .③④
12.将甲、乙、丙、丁、戊共五位同学分别保送到北大、上海交大和浙大3所大学,若每所
大学至少保送1人,且甲不能被保送到北大,则不同的保送方案共有多少种? A .150 B .114 C .100 D .72
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分. 13.某产品的广告费用x 与销售额y 的统计数据如下表:
根据上表可得回归方程y bx a =+ ∧∧∧中的b ∧
为7.据此模型预报广告费用为10万元时销售
额为
(万元). 14.设6
sin (a xdx,π
=
⎰
则二项式的展开式中的常数项等于 . 15.已知实数x 、y 满足22224,2(1)(1)(0)
y x x y y x y r r ≤⎧⎪+≤⎪
⎨
≥-⎪
⎪++-=>⎩则r 的最小值为 . 16.设数列{}n a 的各项均为正数,前n 项和为n S ,对于任意的n N +∈,2,,n n n a S a 成等差
数列,设数列{}n b 的前n 项和为n T ,且2
(ln )n
n n
x b
a =,若对任意的实数(]1,x e ∈(e 是自然对数的底)和任意正整数n ,总有n T r <()r N +∈.则r 的最小值为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)
在锐角三角形ABC 中,a 、b 、c 分别是角A 、B 、C 2sin 0c A -=. (Ⅰ)求角C 的大小;
(Ⅱ)若2c =,求a +b 的最大值. 18.(本小题满分12分)
在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回...
的随机抽取两张卡片,记第一次抽取卡片的标号为x ,第二次抽取卡片的标号为y .设O 为
坐标原点,点P 的坐标为(2,),x x y --记2||OP ξ=. (Ⅰ)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;
(Ⅱ)求随机变量ξ的分布列和数学期望.
19.(本小题满分12分)
如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB //CD ,AD =CD =2AB ,
E 、
F 分别为P C .CD 的中点. (Ⅰ)求证:CD ⊥平面BEF ;
(Ⅱ)设PA =k·AB ,且二面角E -BD -C 大于30°,求k 的取值范围.
P
A
B
C
D
E F
20. (本小题满分12分)
椭圆22
221(0)x y a b a b +=>>的左、右焦点分别为1
F 、2F , 过1F 的直线l 与椭圆交A 、B 两点.
(Ⅰ)如果点A 在圆222
x y c +=(c 为椭圆的半焦距)上,且1F A c
=,求椭圆的离心率;
(Ⅱ)
若函数log (01)m y x m m >≠且的图象,无论m 为何值时恒过定点(,)b a ,求22F A F B ⋅的取值范围.
21.(本小题满分12分) 已知函数2
11()2
f x x =
,2()ln f x a x =(其中0a >)
.
(Ⅰ)求函数12()()()f x f x f x =⋅的极值;
(Ⅱ)若函数12()()()(1)g x f x f x a x =-+-在区间1
(,)e e
内有两个零点,求正实数a 的取
值范围;
(Ⅲ)求证:当0x >时,2
31
ln 04x x x e
+
->.(说明:e 是自然对数的底数,e =2.71828…).
22.(本小题满分10分)选修4—1:几何证明选讲
如图,半圆O 的直径AB 的长为4,点C 平分弧AE ,过C 作AB 的垂线交AB 于D ,交AE 于
F .
(Ⅰ)求证:AF AE CE ⋅=2;
(Ⅱ)若AE 是CAB ∠的角平分线,求CD 的长. 23.(本小题满分10分)选修4—4:坐标系与参数方程
在平面直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧-=-=,
2cos 3,
sin 32ααy x (其中α为参数,
R ∈α).在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴)中,曲线2C 的
极坐标方程为a =-)4
cos(π
θρ.
(Ⅰ)把曲线1C 和2C 的方程化为直角坐标方程; (Ⅱ)若曲线1C 上恰有三个点到曲线2C 的距离为
2
3
,求曲线2C 的直角坐标方程.
24.(本小题满分10分)选修4—5:不等式选讲 已知函数||)(a x x f +=.
(1)当1-=a 时,求不等式1|1|)(++≥x x f 的解集;
(2)若不等式2)()(<-+x f x f 存在实数解,求实数a 的取值范围.。