第三章结晶动力学与结晶热力学
- 格式:ppt
- 大小:321.50 KB
- 文档页数:64
第三章金属的结晶金属由液态转变为固态的过程称为凝固,由于固态金属是晶体,故又把凝固称为结晶。
§3.1 结晶的过程和条件一、液态金属的结构特点金属键:导电性,正电阻温度系数近程有序:近程规则排列的原子集团结构起伏:近程规则排列的原子集团是不稳定的,处于时聚时散,时起时伏,此起彼伏,不断变化和运动之中,称为结构起伏。
结晶的结构条件:当近程规则排列的原子集团达到一定的尺寸时,可能成为结晶核心称为晶核, 即由液态金属的结构起伏提供了结晶核心。
结构起伏是金属结晶的结构条件。
二、结晶过程形核:液相中出现结晶核心即晶核;晶核长大:晶核形成后不断长大,同时新晶核不断形成并长大;不断形核、不断长大;晶体形成:各晶核相互碰撞,形成取向各异、大小不等的等轴晶粒组成的多晶体形核与长大是晶体形成的一般规律。
单晶体与多晶体三、结晶的过冷现象用热分析法获得液态金属在缓慢冷却时温度随时间的变化关系,即冷却曲线。
由冷却曲线可知,结晶时有过冷现象:实际结晶温度Tn低于理论结晶温度Tm的现象称为过冷。
液态金属过冷是结晶的必要条件。
过冷度:△T=Tm-Tn, 其大小除与金属的性质和纯度有关外,主要决定于冷却速度,一般冷却速度愈大,实际结晶温度愈低,过冷度愈大。
四、结晶的热力学条件热力学:研究热现象中物态转变和能量转换规律的学科,主要研究平衡状态的物理、化学过程。
热力学第二定律:在等温等压下,自发过程自动进行的方向是体系自由焓降低的方向,这个过程一直进行到自由焓具有最低值为止,称为最小自由焓原理。
利用最小自由焓原理分析结晶过程。
两相自由焓差是相变的驱动力。
金属结晶的热力学条件:固相自由焓必须低于液相自由焓。
热力学条件与过冷条件的一致性。
§3.2 形核的规律形核方式:均匀形核(自发形核)与非均匀形核(非自发形核)。
一、均匀形核均匀形核:当液态金属很纯净时,在相当大的过冷度下,固态晶核依靠液相内部的结构起伏直接从液相中自发形成。
《材料科学基础》总结及重点第一章 材料的结构与键合1、金属键、离子键、共价键、分子键(范德华力)、氢键的特点,并解释材料的一些性能特点。
2、原子间的结合键对材料性能的影响。
用金属键的特征解释金属材料的性能—①良好的延展性;②良好的导电、导热性;③具有金属光泽。
3、比较金属材料、陶瓷材料、高分子材料、复合材料在结合键上的差别。
本章重要知识点: 1. 金属键、离子键、共价键、分子键、氢键的特点。
第二章 固体结构1、晶体与非晶体(在原子排列上的区别)2、空间点阵、晶格、晶胞及选取晶胞的的原则、七大晶系及各自的特点,布拉菲点阵(14种) 、晶格常数、晶胞原子数。
3、晶面指数、晶面族、晶向指数、晶向族、晶带和晶带定理、晶面间距、配位数、致密度、八面体间隙、四面体间隙。
各向同性与各向异性、实际晶体的伪各向异性、同素异构转变(重结晶、多晶型性转变) 。
(1)指数相同的晶向.和晶面必然垂直。
如[111]⊥(111)(2)当一晶向[uvw]位于或平行某一晶面(hkl )时,则必然满足晶带定理:h ·w+k ·v+l ·w =04、能绘出三维的体心、面心立方和密排六方晶胞,根据原子半径计算出金属的体心和面心立方晶胞的晶胞常数。
三种典型晶体结构的特征(包括:晶胞形状、晶格常数、晶胞原子数、原子半径、配位数、致密度、各类间隙尺寸与个数,最密排面(滑移面)和最密排方向的指数与个数,滑移系数目等);即:bcc 、fcc 、hcp 的晶格特征及变形能力(结合塑性变形一章的内容你必须知道常用金属材料的滑移面与滑移系的指数)。
给画出晶胞指出滑移面和滑移方向。
能标注和会求上述三种晶胞的晶向和晶面指数。
晶向和晶面指数的一些规律。
求晶面间距d (hkl )、晶面夹角。
5、晶面间距:d (hkl ) 的求法:(1)立方晶系:222)(l k h ad hkl ++= (2)正交晶系:222)(1⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=c l b k a h d hkl (3)六方晶系:2222)()(341⎪⎭⎫ ⎝⎛+++=c l a k hk h d hkl (4)四方晶系:2222)()/(/)(1c l a k h d hkl ++=以上公式仅适用于简单晶胞,复杂晶胞要考虑其晶面层数的增加。
第三章金属的结晶金属由液态转变为固态的过程称为凝固,由于固态金属是晶体,故又把凝固称为结晶。
§3.1 结晶的过程和条件一、液态金属的结构特点金属键:导电性,正电阻温度系数近程有序:近程规则排列的原子集团结构起伏:近程规则排列的原子集团是不稳定的,处于时聚时散,时起时伏,此起彼伏,不断变化和运动之中,称为结构起伏。
结晶的结构条件:当近程规则排列的原子集团达到一定的尺寸时,可能成为结晶核心称为晶核, 即由液态金属的结构起伏提供了结晶核心。
结构起伏是金属结晶的结构条件。
二、结晶过程形核:液相中出现结晶核心即晶核;晶核长大:晶核形成后不断长大,同时新晶核不断形成并长大;不断形核、不断长大;晶体形成:各晶核相互碰撞,形成取向各异、大小不等的等轴晶粒组成的多晶体形核与长大是晶体形成的一般规律。
单晶体与多晶体三、结晶的过冷现象用热分析法获得液态金属在缓慢冷却时温度随时间的变化关系,即冷却曲线。
由冷却曲线可知,结晶时有过冷现象:实际结晶温度Tn 低于理论结晶温度Tm 的现象称为过冷。
液态金属过冷是结晶的必要条件。
过冷度:△ T=Tm -Tn ,其大小除与金属的性质和纯度有关外,主要决定于冷却速度,一般冷却速度愈大,实际结晶温度愈低,过冷度愈大。
四、结晶的热力学条件热力学:研究热现象中物态转变和能量转换规律的学科,主要研究平衡状态的物理、化学过程。
热力学第二定律:在等温等压下,自发过程自动进行的方向是体系自由焓降低的方向,这个过程一直进行到自由焓具有最低值为止,称为最小自由焓原理。
利用最小自由焓原理分析结晶过程。
两相自由焓差是相变的驱动力。
金属结晶的热力学条件:固相自由焓必须低于液相自由焓。
热力学条件与过冷条件的一致性。
§3.2 形核的规律形核方式:均匀形核(自发形核)与非均匀形核(非自发形核)。
一、均匀形核均匀形核:当液态金属很纯净时,在相当大的过冷度下,固态晶核依靠液相内部的结构起伏直接从液相中自发形成。
高分子结晶1109401009 陈泽应用化学摘要:高分子结晶是聚合物的一种状态,由于它的微观结构,可以满足很多我们对于材料亟需的特性要求,所以高分子结晶非常重要。
本文旨在结合众多篇文献,加上自己的一些浅薄理解,对高分子结晶从结晶形态,结晶机理,结晶热力学,动力学等方面做一个简单介绍。
关键词:高分子结晶,高分子结晶机理,结晶动力学,热力学。
一、概述高分子由于自身之间的相互作用力,比如说范德华力,氢键等的影响,相互吸引,呈现聚集状态。
高分子的凝聚态结构是指高分子链之间的几何排列和堆砌结构。
聚集态可分为晶态、非晶态、取向态、液晶态等。
晶态与非晶态是高分子最重要的两种聚集态。
高分子由于其分子量巨大,所以一般不可能呈现气态。
所以可以总结高分子除了没有气态,几乎小分子所有的物态它都存在,只不过要复杂得多。
其中结晶态就是属于固态。
结晶就是物质内部的微观粒子(原子、分子、离子)在三维空间呈有规律地、周期性地排列。
但是不同于小分子,大分子由于其长链结构,所以它的空间质点是链段中的结构单元。
聚乙烯空间质点对应结构单元由于聚合物分子具有长链结构,结晶时妨碍了分子链的规整堆砌排列,所以高分子晶体内部往往含有比低分子晶体更多的晶格缺陷。
所谓晶格缺陷,指的是晶格点阵的周期性在空间的中断。
典型的高分子晶格缺陷是由端基、链扭结、链扭转所引起的局部构象错误所致。
所以高分子不能100%结晶[1]二、高分子结晶的形态和结构聚合物的基本性质主要取决于链结构,而高分子材料或制品的使用性能则很大程度上还取决于加工成型过程中形成的聚集态结构。
结晶形态主要有球晶、单晶、伸直链晶片、纤维状晶、串晶、树枝晶等。
各种结晶形态结构及形成条件以上结晶形态都是由三种基本结构单元组成,即无规线团的非晶结构、折叠链晶片和伸直链晶体。
所以结晶形态中都含有非晶部分,是因为高分子结晶都不可能达到100%结晶。
其中单晶又称折叠链片晶,是因为在结晶过程中它的长链发生了折叠,使其成亚稳态。
引言概述结晶现象是物质在一定条件下由液体或气体转变为固体的过程。
对于许多科学领域而言,了解结晶的原理和发生步骤是至关重要的,因为结晶现象广泛应用于化学、材料科学、地球科学等领域。
本文将深入探讨结晶现象的原理和发生步骤,希望读者能够更加理解这一现象。
正文内容一、原理1.结晶的定义和基本概念结晶是一种物质由无序状态变为有序结构的过程。
在结晶中,原子、分子或离子按照一定的规律排列,形成晶粒。
2.结晶的热力学基础结晶的发生需要克服固体与液体之间的能量差,即自由能差。
当自由能差为负时,结晶就能发生。
3.结晶的动力学过程结晶的动力学过程指的是物质从高能量状态转变为低能量状态的过程。
这个过程涉及到核化、生长和形态发生等多个步骤。
4.结晶的驱动力驱动结晶过程的因素有很多,如温度、溶剂性质、溶质浓度、杂质等。
不同的系统对这些因素的响应也大不相同。
5.结晶的种类结晶现象可分为物理结晶和化学结晶。
物理结晶是由于温度或浓度变化引起的,而化学结晶则是由于化学反应引起的。
二、发生步骤1.核化核化是结晶的第一步,指的是液体中出现起始晶核。
起始晶核的形成需要克服活化能的影响,活化能越低,核化速度越快。
2.生长晶核后,它们会通过吸收周围溶液中的溶质来增大尺寸,形成晶体的过程被称为生长。
生长速度受到温度、浓度、溶液饱和度等因素的影响。
3.晶体形态发生晶体形态发生是指晶体在生长过程中的形状改变。
形态发生的原因有很多,如溶剂对溶质的影响、晶体生长速度的变化等。
4.晶体合并晶体合并是指在结晶过程中,颗粒之间发生相互迁移和接触,形成更大晶体的过程。
合并的影响因素包括温度、浓度、晶体形态等。
5.晶体分散晶体分散是指结晶过程中,固体晶体颗粒由于能量分散、扩散等原因发生分离的过程。
晶体分散会导致空心晶体、多晶晶体等形成。
结尾总结结晶现象的原理与发生步骤是一个复杂且多变的过程。
通过了解结晶的原理,我们能够更好地理解和控制结晶现象,在化学工业和材料科学等领域有更广泛的应用。
聚合物的结晶动力学本节主要内容:讨论结晶的过程和速度问题,即结晶的动力学问题。
目的:了解聚合物的结构和外界条件对结晶速度和结晶形态的影响,进而通过结晶过程去控制结晶度和结晶形态,以达到控制最终产品性能的目的。
一、高分子结构与结晶的能力聚合物结晶过程能否进行,必须具备两个条件:1、聚合物的分子链具有结晶能力,分子链需具有化学和几何结构的规整性,这是结晶的必要条件——热力学条件。
2、给予充分的条件-适宜的温度和充分的时间——动力学条件。
(一)链的对称性大分子链的化学结构对称性越好,就越易结晶。
例如:聚乙烯:主链上全部是碳原子,结构对称,故其结晶能高达95%;聚四氟乙烯:分子结构的对称性好,具有良好的结晶能力;聚氯乙烯:氯原子破坏了结构的对称性,失去了结晶能力;聚偏二氯乙烯:具有结晶能力。
主链含有杂原子的聚合物,如聚甲醛、聚酯、聚醚、聚酰胺、聚砜等,虽然对称性有所降低,但仍属对称结构,都具有不同程度的结晶能力。
(二)链的规整性主链含不对称碳原子分子链,如具有空间构型的规整性,则仍可结晶,否则就不能结晶。
如自由基聚合制得的聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯等为非晶聚合物,但由定向聚合得到的等规或间规立构聚合物则可结晶。
二烯类聚合物:全顺式或全反式结构的聚合物有结晶能力;顺式构型聚合物的结晶能力一般小于反式构型的聚合物。
反式对称性好的丁二烯最易结晶。
(三)共聚物的结晶能力无规共聚物:1、两种共聚单体的均聚物有相同类型的晶体结构,则能结晶,而晶胞参数随共聚物的组成而发生变化。
2、若两种共聚单元的均聚物有不同的晶体结构,但其中一种组分比例高很多时,仍可结晶;而两者比例相当时,则失去结晶能力,如乙丙共聚物。
嵌段共聚物:各嵌段基本上保持着相对独立性,能结晶的嵌段可形成自己的晶区。
例如,聚酯—聚丁二烯—聚酯嵌段共聚物中,聚酯段仍可结晶,起物理交联作用,而使共聚物成为良好的热塑性弹性体。
影响结晶能力的其它因素:1、分子链的柔性:聚对苯二甲酸乙二酯的结晶能力要比脂肪族聚酯低2、支化:高压聚乙烯由于支化,其结晶能力要低于低压法制得的线性聚乙烯3、交联:轻度交联聚合物尚能结晶,高度交联则完全失去结晶能力。
氟化钙反应结晶热力学和动力学研究以氟化钙反应结晶热力学和动力学研究为题,本文将从热力学和动力学两个方面对氟化钙的结晶过程进行分析和探讨。
热力学是研究物质热平衡和热现象的科学,而动力学则是研究物质运动和变化的科学。
在氟化钙反应结晶过程中,热力学和动力学的研究对于了解反应机理和优化工艺具有重要意义。
从热力学角度来看,氟化钙的结晶过程涉及到反应物的热力学稳定性和产物的热力学稳定性。
氟化钙的结晶过程是一个放热反应,即在反应中释放热量。
根据热力学原理,反应物和产物的自由能差越大,反应越有利进行。
因此,氟化钙反应结晶的热力学稳定性会直接影响反应的进行。
从动力学角度来看,氟化钙的结晶过程涉及到反应速率和反应机理。
反应速率是指单位时间内反应物消耗或产物生成的量。
反应速率受到温度、浓度、催化剂等因素的影响。
在氟化钙反应结晶过程中,温度是一个重要的影响因素。
一般情况下,温度越高,反应速率越快。
此外,反应机理也是动力学研究的重点之一。
通过研究反应机理,可以揭示反应中各个步骤的速率和反应路径,为优化工艺提供理论依据。
研究表明,氟化钙反应结晶的过程符合一定的热力学和动力学规律。
在热力学方面,反应温度、浓度和压力等因素对反应的进行有重要影响。
一般情况下,提高反应温度和浓度可以促进反应进行,而增加压力则有利于提高产物的纯度。
在动力学方面,反应速率常被描述为反应物浓度的函数,可以用速率常数来表示。
反应速率常数与反应温度密切相关,一般情况下,随着温度的升高,反应速率常数增大,反应速率加快。
氟化钙反应结晶的过程中,溶液中的杂质和晶种的添加也会对结晶过程产生影响。
杂质的存在可以改变溶液的饱和度和过饱和度,从而影响结晶速率和产物形态。
晶种的添加可以提供一个固定的结晶模板,促进结晶核心的形成,从而加速结晶过程。
在实际应用中,了解氟化钙反应结晶的热力学和动力学特性对于优化工艺和提高产品质量具有重要意义。
通过调控反应温度、浓度和压力等条件,可以实现反应的高效进行。