金属结晶的热力学条件
- 格式:ppt
- 大小:756.00 KB
- 文档页数:21
第三章金属的结晶金属由液态转变为固态的过程称为凝固,由于固态金属是晶体,故又把凝固称为结晶。
§3.1 结晶的过程和条件一、液态金属的结构特点金属键:导电性,正电阻温度系数近程有序:近程规则排列的原子集团结构起伏:近程规则排列的原子集团是不稳定的,处于时聚时散,时起时伏,此起彼伏,不断变化和运动之中,称为结构起伏。
结晶的结构条件:当近程规则排列的原子集团达到一定的尺寸时,可能成为结晶核心称为晶核, 即由液态金属的结构起伏提供了结晶核心。
结构起伏是金属结晶的结构条件。
二、结晶过程形核:液相中出现结晶核心即晶核;晶核长大:晶核形成后不断长大,同时新晶核不断形成并长大;不断形核、不断长大;晶体形成:各晶核相互碰撞,形成取向各异、大小不等的等轴晶粒组成的多晶体形核与长大是晶体形成的一般规律。
单晶体与多晶体三、结晶的过冷现象用热分析法获得液态金属在缓慢冷却时温度随时间的变化关系,即冷却曲线。
由冷却曲线可知,结晶时有过冷现象:实际结晶温度Tn低于理论结晶温度Tm的现象称为过冷。
液态金属过冷是结晶的必要条件。
过冷度:△T=Tm-Tn, 其大小除与金属的性质和纯度有关外,主要决定于冷却速度,一般冷却速度愈大,实际结晶温度愈低,过冷度愈大。
四、结晶的热力学条件热力学:研究热现象中物态转变和能量转换规律的学科,主要研究平衡状态的物理、化学过程。
热力学第二定律:在等温等压下,自发过程自动进行的方向是体系自由焓降低的方向,这个过程一直进行到自由焓具有最低值为止,称为最小自由焓原理。
利用最小自由焓原理分析结晶过程。
两相自由焓差是相变的驱动力。
金属结晶的热力学条件:固相自由焓必须低于液相自由焓。
热力学条件与过冷条件的一致性。
§3.2 形核的规律形核方式:均匀形核(自发形核)与非均匀形核(非自发形核)。
一、均匀形核均匀形核:当液态金属很纯净时,在相当大的过冷度下,固态晶核依靠液相内部的结构起伏直接从液相中自发形成。
金属结晶的热力学条件金属的结晶过程是材料制备和加工中的重要环节,其结晶状态直接影响着材料的性能。
本文将从熔点与凝固点、熵与焓、自由能、温度与压力以及成分与浓度等方面,探讨金属结晶的热力学条件。
1.熔点与凝固点熔点是指金属从固态到液态的转变温度,而凝固点则是液态金属到固态金属的转变温度。
金属结晶的熔点和凝固点是晶体结构、组成和能量的综合体现。
根据热力学公式,熔点和凝固点的计算可以帮助我们判断在给定温度下金属所处的相态。
2.熵与焓熵和焓是描述系统热力学状态的两大重要参数。
在金属结晶过程中,熵和焓的变化对结晶过程及结晶产物的物理和化学性质产生重要影响。
一般来说,金属结晶过程中的熵变主要由晶格畸变和缺陷产生。
而焓变则主要来自于晶格形成、原子间的键合能以及缺陷的形成。
因此,温度和压力的变化会对金属结晶过程产生影响。
3.自由能金属结晶的自由能指的是在一定温度和压力下,从非晶态转变为晶态所需的能量。
自由能的变化决定着结晶过程是否能够发生以及结晶过程的稳定性。
通过自由能公式的推导,我们可以了解到金属结晶过程中自由能的变化及其对金属结晶的重要性。
4.温度与压力温度和压力是影响金属结晶的重要因素。
温度可以通过影响原子振动、扩散过程以及化学反应速率等途径来影响金属结晶过程。
而压力则可以通过改变原子间距离和晶格常数来影响金属结晶。
在热力学中,我们可以建立结晶相态变化的热力学关系,从而更好地理解和预测金属在不同温度和压力条件下的结晶行为。
5.成分与浓度金属结晶过程中的成分和浓度变化也会对结晶产生影响。
成分指的是金属中的元素组成,而浓度则指的是溶质和溶剂在合金中的相对含量。
在结晶过程中,成分和浓度的变化可能会导致晶体结构、相变温度以及力学性能等方面的变化。
通过建立成分-浓度-热力学关系,我们可以更深入地理解成分和浓度对金属结晶的影响机制,从而实现对金属结晶过程的精确调控。
总之,金属结晶的热力学条件是一个复杂而重要的领域,对于材料制备、性能优化以及应用研究都具有重要的指导意义。
第三章金属的结晶金属由液态转变为固态的过程称为凝固,由于固态金属是晶体,故又把凝固称为结晶。
§3.1 结晶的过程和条件一、液态金属的结构特点金属键:导电性,正电阻温度系数近程有序:近程规则排列的原子集团结构起伏:近程规则排列的原子集团是不稳定的,处于时聚时散,时起时伏,此起彼伏,不断变化和运动之中,称为结构起伏。
结晶的结构条件:当近程规则排列的原子集团达到一定的尺寸时,可能成为结晶核心称为晶核, 即由液态金属的结构起伏提供了结晶核心。
结构起伏是金属结晶的结构条件。
二、结晶过程形核:液相中出现结晶核心即晶核;晶核长大:晶核形成后不断长大,同时新晶核不断形成并长大;不断形核、不断长大;晶体形成:各晶核相互碰撞,形成取向各异、大小不等的等轴晶粒组成的多晶体形核与长大是晶体形成的一般规律。
单晶体与多晶体三、结晶的过冷现象用热分析法获得液态金属在缓慢冷却时温度随时间的变化关系,即冷却曲线。
由冷却曲线可知,结晶时有过冷现象:实际结晶温度Tn 低于理论结晶温度Tm 的现象称为过冷。
液态金属过冷是结晶的必要条件。
过冷度:△ T=Tm -Tn ,其大小除与金属的性质和纯度有关外,主要决定于冷却速度,一般冷却速度愈大,实际结晶温度愈低,过冷度愈大。
四、结晶的热力学条件热力学:研究热现象中物态转变和能量转换规律的学科,主要研究平衡状态的物理、化学过程。
热力学第二定律:在等温等压下,自发过程自动进行的方向是体系自由焓降低的方向,这个过程一直进行到自由焓具有最低值为止,称为最小自由焓原理。
利用最小自由焓原理分析结晶过程。
两相自由焓差是相变的驱动力。
金属结晶的热力学条件:固相自由焓必须低于液相自由焓。
热力学条件与过冷条件的一致性。
§3.2 形核的规律形核方式:均匀形核(自发形核)与非均匀形核(非自发形核)。
一、均匀形核均匀形核:当液态金属很纯净时,在相当大的过冷度下,固态晶核依靠液相内部的结构起伏直接从液相中自发形成。
纯金属结晶的热力学条件
1 热力学条件
热力学条件是指在结晶过程中物质的能量变化和微观结构变化的
重要控制因子。
它是物理学、化学和其他科学和技术领域中设计和提
高产品质量的重要手段。
热力学条件信息是指常温下热力学数据,用
于说明晶体形状、晶体大小、晶体结构以及示踪剂对结晶产品质量的
重要影响。
2 纯金属结晶
纯金属结晶是一种金属材料的特殊表征技术。
它可以用来表征金
属的性能、形状、结构和组成等特征,这些特征都可以改进纯金属的
性能,使其能够满足工程要求。
热力学条件对纯金属结晶的控制是至
关重要的,因为在结晶过程中的物理性质的变化会直接影响最终的结
晶效果。
3 结晶过程中的热力学变化
结晶过程中的物质能量变化特别容易引起热力学变化。
但是,热
力学变化也可以用来优化结晶产品的性能。
首先,可以通过改变温度、拉压速率和拉压负荷等参数,来控制结晶过程中热力学变化的大小,
从而控制金属结晶产品的质量。
其次,也可以通过控制冷却率,使冷
却率与拉压率成都弹数的关系,来提高结晶产品的强度和性能,同时
减少其微观结构上的裂纹和空隙。
4 结论
热力学条件对纯金属结晶具有重要作用,对最终产品的质量和性能有直接影响。
正确掌握热力学条件是提高结晶质量的关键要素,为保证结晶产品性能的安全性和可靠性提供保障。
第5章 纯金属的凝固1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。
结晶过程:形核和长大过程交替重叠在一起进行2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学看,没有过冷度结晶就没有趋动力。
根据T R k ∆∝1可知当过冷度T ∆=0时临界晶核半径R *为无穷大,临界形核功(21T G ∆∝∆)也为无穷大,无法形核,所以液态金属不能结晶。
晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。
孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间3、均匀形核和非均匀形核均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。
非均匀形核:液态金属原子依附于固态杂质颗粒上形核的方式。
临界晶核半径:ΔG 达到最大值时的晶核半径r *=-2γ/ΔGv 物理意义:r<rc 时, ΔGs 占优势,故ΔG>0,晶核不能自动形成。
r>rc 时, ΔGv 占优势,故ΔG<0,晶核可以自动形成,并可以稳定生长。
临界形核功:ΔGv *=16πγ3/3ΔGv 3 形核率:在单位时间单位体积母相中形成的晶核数目。
受形核功因子和原子扩散机率因子控制。
4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。
在凝固结晶前沿的过冷度随离界面距离的增加而减小。
纯金属结晶平面生长。
负的温度梯度:过冷度随离界面距离的增加而增加。
纯金属结晶树枝状生长。
5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。
粗糙界面即非小平面界面:固液两相间界面微观上看高低不平,存在很薄的过渡层,故从宏观上看界面反而平直,不出现曲折小平面的界面。