2.金属结晶的热力学条件
- 格式:doc
- 大小:38.00 KB
- 文档页数:3
金属结晶的热力学条件金属的结晶过程是材料制备和加工中的重要环节,其结晶状态直接影响着材料的性能。
本文将从熔点与凝固点、熵与焓、自由能、温度与压力以及成分与浓度等方面,探讨金属结晶的热力学条件。
1.熔点与凝固点熔点是指金属从固态到液态的转变温度,而凝固点则是液态金属到固态金属的转变温度。
金属结晶的熔点和凝固点是晶体结构、组成和能量的综合体现。
根据热力学公式,熔点和凝固点的计算可以帮助我们判断在给定温度下金属所处的相态。
2.熵与焓熵和焓是描述系统热力学状态的两大重要参数。
在金属结晶过程中,熵和焓的变化对结晶过程及结晶产物的物理和化学性质产生重要影响。
一般来说,金属结晶过程中的熵变主要由晶格畸变和缺陷产生。
而焓变则主要来自于晶格形成、原子间的键合能以及缺陷的形成。
因此,温度和压力的变化会对金属结晶过程产生影响。
3.自由能金属结晶的自由能指的是在一定温度和压力下,从非晶态转变为晶态所需的能量。
自由能的变化决定着结晶过程是否能够发生以及结晶过程的稳定性。
通过自由能公式的推导,我们可以了解到金属结晶过程中自由能的变化及其对金属结晶的重要性。
4.温度与压力温度和压力是影响金属结晶的重要因素。
温度可以通过影响原子振动、扩散过程以及化学反应速率等途径来影响金属结晶过程。
而压力则可以通过改变原子间距离和晶格常数来影响金属结晶。
在热力学中,我们可以建立结晶相态变化的热力学关系,从而更好地理解和预测金属在不同温度和压力条件下的结晶行为。
5.成分与浓度金属结晶过程中的成分和浓度变化也会对结晶产生影响。
成分指的是金属中的元素组成,而浓度则指的是溶质和溶剂在合金中的相对含量。
在结晶过程中,成分和浓度的变化可能会导致晶体结构、相变温度以及力学性能等方面的变化。
通过建立成分-浓度-热力学关系,我们可以更深入地理解成分和浓度对金属结晶的影响机制,从而实现对金属结晶过程的精确调控。
总之,金属结晶的热力学条件是一个复杂而重要的领域,对于材料制备、性能优化以及应用研究都具有重要的指导意义。
2. 金属结晶(凝固)的形核热力学条件及形核机理。
答:金属结晶的热力学条件:金属结晶必须要过冷,过冷是金属结晶的必要条件。
金属结晶一般是在等压条件下进行的。
固、液两相都有各自的自由能,它们的自由能在等压条件下随温度的升高同样是降低的,如图2.1所示。
因为液相原子排列混乱程度高于固相,因而有:上式表示液相熵的负值比固相熵大,因此液相自由能随温度下降的速率大于固相。
而在绝对零度时,因液相原子排列混乱程度大于固相而具有更高的自由能。
这一关系可用图2.1来表示。
图中G L和G S分别代表液相和固相的自由能随温度变化的曲线,两曲线交于温度T m。
在T m温度,固、液两相自由能相等。
T m就是理论结晶温度。
所以理论结晶温度定义为固液两相自由能相等所对应的温度,也称平衡熔点。
图2.1 自由能随温度的变化示意图根据自由能最小原理,要发生液相向固相的自发转变,实现结晶,固相自由能必须小于液相,从图中可见:这只有在温度小于理论结晶温度时才能实现,这就是液体金属必须具有一定的过冷度,结晶才能自动进行的原因。
四、金属结晶的驱动力金属结晶的驱动力从宏观上看是过冷度,从热力学上看是固、液两相自由能之差。
实际上,可以证明单位体积固、液两相自由能之差ΔG v和过冷度ΔT之间存在如下关系:式中L m—结晶潜热。
从上可以看出:要实现结晶,根据自由能最小原理,G L-G S>0,而要保证必须保证G L-G S>0,即实际结晶温度必须低于理论结晶温度。
并且,过冷度越大,固、液两相自由能之差越大,金属结晶的驱动力也越大。
晶核的形成机理:形核有两种方式:均匀形核和非均匀形核。
均匀形核是指晶核不依附任何外来物形成,形核在液相各处的形核几率是相同的;非均匀形核是指晶核依附于外来物(如容器壁和固态杂质)上形成。
形核时自由能的变化 在一定过冷度下,假设金属液相中形成一个圆形的固相小晶体(即晶胚),则其自由能的变化包括两个方面:一方面液相向固相转变,使自由能降低,这是结晶的驱动力;另一方面由于在液相中生成固相,出现液固界面,产生界面能,使自由能升高,这是结晶的阻力。
1. 证明:(1)设均匀形核时其晶核为球形,临界形核功ΔG c 与临界晶核体积V c 的关系为:12c c V G V G ∆=-∆ (2)设均匀形核时其晶核为正方形,临界形核功ΔG c 与临界晶核体积V c 也存在上述关系。
(3)任意形状晶核的临界晶核形核功ΔG c 与临界晶核体积V c 也存在上述关系。
(4)设非均匀形核时其晶核为球冠形,临界形核功*c G ∆与临界晶核体积*c V 也存在上述关系。
2. 综述金属结晶的热力学条件、动力学条件、能量条件和结构条件。
习题答案1. (1)证明:设均匀形核时其球形晶核半径为r ,则322323443048r 02242143232V V V c Vc V c V c c V c c V c V G V G A r G r G r G rr G r G r G G r G r r G V G σππσππσσσπππ∆=∆+=∆+∂∆=⇒∆+∂∆∴=-=-∆∆∴∆=∆-=-∆=-∆令 = 即(4)证明:设非均匀形核时其球冠状晶核的曲率半径为r ,高为h ,则系统总表面自由能的增量ΔG S 为S L L W W LW LW G A A A A αααασσσσ∆==+-∑因为晶核周边表面张力应彼此平衡,则cos LW W L αασσσθ=+ 即cos W LW L αασσσθ-=-222(1cos )L A rh r αππθ==-222(sin )(1cos )W A r r απθπθ==-222S 232(1cos )(1cos )cos (23cos cos )L L L G r r r αααπθσπθσθπσθθ∆=---=-+球冠的体积 23311(3)(23cos cos )33V r h h r ππθθ=-=-+ 令31()(23cos cos )4f θθθ=-+ **3*24()4()3V S V L G V G G r G f r f απθπσθ∆=∆+∆=∆+则 **2**04()8()0c V c L G r G f r f rαπθπσθ∂∆=⇒∆+∂令 = ****22L c c cL V r G r G αασσ∆∴=-=-∆ 即 ****3**2*3*424()()323c V cc V c c V r G G r G r f r G f ππθπθ⎛⎫∆∴∆=∆-=-∆ ⎪⎝⎭ **3***41()32c c c c V V r f G V G πθ=∴∆=-∆2.答:必须同时满足以下四个条件,结晶才能进行。
金属结晶的现象一、晶体结晶过程的宏观现象(过冷度和结晶潜热)。
1)过冷度(ΔT=T m-T n)2)过冷度和金属的属性和冷却速度有关。
3)金属不同,过冷度不同;金属的纯度越高,过冷度越大;冷却速度越快,过冷度越大。
4)相变潜热1摩尔物资从一个相转变为另一个相时,伴随着吸收或放出的热量。
金属由固态变为液态,需要吸热;由液态变为固态需要放热。
前者称为融化潜热,后者称为结晶潜热。
二、从微观上说,金属的结晶过程就是形核和长大的过程。
1)当金属液体冷却到实际结晶温度时,晶核并未立即出生,而是经过一段时间才出现第一批晶核。
结晶开始前的这段停留时间称为孕育期。
2)晶核由晶胚形成。
3)由一个晶核长成的晶体就是一个晶粒。
4)一个晶粒内存在很多晶胞,并且晶胞位向一致。
5)因此单晶体表现出各向异性。
6)由两个以上晶粒组成的晶体称为多晶体。
7)一般的金属都是多晶体。
并且由无数个晶粒组成。
8)各晶粒位向各异,相互抵消。
9)所以一般金属不表现出各向异性。
金属结晶的热力学条件1、热力学第二定律:在等温等压条件下,物质系统总是自发的从自由能较高的状态向自由能较低的状态转变。
2、自由能之差是促进金属相变的热力学条件,即相变驱动力。
3、4、由上图可知:过冷度越大,自由能之差越大,且液相和固相自由能之差与过冷度成正比。
在过冷度等于0时,自由能之差也为0。
5、过冷度越大,自由能之差越大,相变驱动力越大,结晶速度越快。
金属结晶的结构条件1、液态金属的一个重要特点就是相起伏。
只有在过冷液中相起伏才能形成晶胚。
但不是所有晶胚都可以转化成晶核。
下节将讨论晶胚转化成晶核的条件。
2、晶核的形成1、在过冷液中形成晶核的方式有两种:均匀形核和非均匀形核。
2、实际金属的结晶主要是按非均匀形核方式进行的。
3、在过冷液中并不是所有晶胚都可以形成晶核。
只有那些尺寸等于大于某一临界尺寸的晶胚才能稳定的存在,并自发长大。
4、过冷度越大,临界尺寸越小。
5、从第三节2中可知:过冷度越大,最大相起伏尺寸越大。
第二节金属结晶的热力学条件
为什么液态金属在理论结晶温度下不能结晶,而必须在一定的过冷度条件下才能进行呢
这是由热力学条件决定的。
热力学第二定律指出:
在等温等压条件下,物质系统总是自发地从自由能较高的状态向自由能较低的状态转变。
这就说明对于结晶过程而言,结晶能否发生即看液相和固相的自由能孰髙轨低
1. 如果液相的自由能比固相的自由能低,那么金属将自发地从固相转变为液
相,即金属发生熔化。
2. 如果液相的自由能高于固相的自由能,那么液相将自发地转变为固相,即金
属发生结晶,从而使系统的自由能降低,处于更为稳定的状态。
结晶过程的驱动力:
液相金属和固相金属的自由能之差,就是促进这种转变的却动力
低值温度自由能:
熵的物理意义是表征系统中原子排列混乱程度的参数。
温度升髙,原子的活动能力提高,因而原子排列的混乱程度増加,即熵值增加,系统的自由能也就随着温度的升高而降低。
纯金属液,固两相自由能随温度变化的示意图:
● 由图可见,液相和面相的自由能都随着温度的升高而降低。
● 由于液态金属原子排列的混乱程度比固态金属的大,即S L S S ,也就是液相
自由能曲线的斜率较固相的大,所以液相自由能降低得更快些。
理论结晶温度及其意义:
1. 既然两条曲线的斜率不同,因而两条曲线必然在某一温度相交,此时的液、
固两相自由能相等,即S L G G =
2. 它表示两相可以同时共存,具有同样的稳定性,既不熔化,也不结晶,处于
热力学平衡状态,这一温度就是理论结晶温度m T 。
从图2.5还可以看出
● 只有当温度低于m T 时,固态金属的自由能才低于液态金属的自由能,液态金
属可以自发地转变为固态金属。
● 如果温度高于m T ,液态金属的自由能低于固态金属的自由能,此时不但液态
金属不能转变为固态,相反他固态金属还要熔化成液态,因为只有这样自由能才能降低,过程才可以自动进行。
当液相向固相转变时单位体积自由能的变化与过冷度的关系
1. 当液相向固相转变时单位体积自由能的变化与过冷度的关系:
0<-=∆L S V G G G
2. 当液相向固相转变时单位体积自由能的变化与过冷度的关系:
0>-=∆S L f H H H
3. 当液相向固相转变时单位体积自由能的变化与过冷度的关系:
0<∆∆-=∆m
f V T T H G 由此可见液态金属要结晶
其结晶温度一定要低于理论结晶温度CCC ,此时的固态金属的自由能低于液态金属的自由能,两相自由能之差构成了金属结晶的驱动力。
要获得结晶过程所必须的躯动力:
一定要使实际结晶温度低于理论结晶温度,这样才能满足结晶的热力学条件
过冷度越大
过冷度越大,液、固两相自由能的差值越大,即相变驱动力越大,结晶速度便越快。
这就说明了金属结晶时为什么必须过冷的根本原因。