2020年高三理科数学一轮复习课件:空间中的垂直关系
- 格式:ppt
- 大小:1.30 MB
- 文档页数:31
2020年高考数学一轮总复习:空间中的垂直关系[基础梳理] 1.直线与平面垂直(1)定义:直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直.(2)判定定理与性质定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此⎭⎬⎫a ,b αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 垂直于同一个平面的2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0°的角. (2)范围:⎣⎢⎡⎦⎥⎤0,π2.3.平面与平面垂直 (1)二面角的有关概念:①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫作二面角的平面角. (2)平面和平面垂直的定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直. (3)平面与平面垂直的判定定理与性质定理:一个平面过另一个则这两⎭⎪⎬⎪⎫l ⊥αl β⇒α⊥β 则一个平面内垂直于交线的直线与另一个⎭⎪⎬⎪⎫α⊥βl βα∩β=al ⊥a⇒l ⊥α1.判定定理的理解若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.a ∥b ,a ⊥α⇒b ⊥α. 2.性质定理如果两个平面互相垂那么过第一个平面内的一点且垂直于第在第α⊥β,P ∈β,PQ ⊥α⇒PQβ如果两个相交平面同时垂直于第三个平面,那么它们的交线必垂αγ[四基自测]1.下列命题中不正确的是( )A .如果平面α⊥平面β,且直线l ∥平面α,则直线l ⊥平面βB .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ答案:A2.已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系为() A.bαB.b∥αC.bα或b∥αD.b与α相交答案:C3.已知互相垂直的平面α,β交于直线l.若直线m、n满足m∥α,n⊥β,则() A.m∥l B.m∥nC.n⊥l D.m⊥n答案:C4.如图所示,在三棱锥V ABC中,∠VAB=∠VAC=∠ABC=90°,则构成三棱锥的四个三角形中直角三角形的个数为________.答案:4考点一线面垂直的判定与性质◄考基础——练透[例1](2019·河南商丘模拟)如图所示,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是A在PB、PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确命题的序号是________.解析:由P A⊥平面ABC,BC平面ABC,可得P A⊥BC,又AB是圆O的直径,C是圆O上一点,则有BC⊥AC,又P A∩AC=A,所以BC⊥面P AC,又AF面P AC,所以BC⊥AF,故③正确;因为AF⊥PC,PC∩BC=C,所以AF⊥面PBC,又PB面PBC,所以AF⊥PB,故①正确;因为AE⊥PB,AF⊥PB,AE∩AF=A,所以PB⊥平面AEF,又EF平面AEF,所以PB⊥EF,故②正确;由于AF⊥平面PBC,AF∩AE=A,所以AE不与面PBC垂直,故④错误.综上可知正确命题的序号为①②③.答案:①②③证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理:在平面内找两条相交直线与该直线垂直.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理:在平面内找与两平面交线垂直的直线.如图所示,三棱锥P ABC中,△ABC是正三角形,PC⊥平面ABC,PC=AC =2,E为AC中点,EF⊥AP,垂足为F.(1)求证:AP⊥FB;(2)求多面体PFBCE的体积.解析:(1)证明:由题意得BE⊥AC,又PC⊥平面ABC,∴PC⊥BE.又AC∩PC=C,∴BE⊥面P AC.∴BE⊥AP.又EF ⊥AP ,EF ∩BE =E ,∴AP ⊥面BEF . ∴AP ⊥FB .(2)在△ABC 中,AB =AC =BC =2,E 为AC 中点, ∴AE =1,BE = 3.在△PCA 中,∠PCA =90°,AC =PC =2,∴∠P AC =45°.又EF ⊥P A ,∴EF =AF =22,S △AEF =12EF ·AF =14.易知,BE ⊥平面AFE .∴V ABEF=V B AFE =13BE ·S △AEF =312,又V P ABC =13PC ·S △ABC =233,∴多面体PFBCE 的体积为V P ABC -V A BEF =7312. 考点二 平面与平面垂直的判定与性质◄考能力——知法[例2] (1)如图所示,一张A4纸的长、宽分别为22a,2a ,A ,B ,C ,D 分别是其四条边的中点.现将其沿图中虚线折起,使得P 1,P 2,P 3,P 4四点重合为一点P ,从而得到一个多面体.下列关于该多面体的命题,正确的是________.(写出所有正确命题的序号)①该多面体是三棱锥; ②平面BAD ⊥平面BCD ; ③平面BAC ⊥平面ACD ; ④该多面体外接球的表面积为5πa 2.解析:由题意得该多面体是一个三棱锥,故①正确;∵AP ⊥BP ,AP ⊥CP ,BP ∩CP=P,∴AP⊥平面BCD,又∵AP平面ABD,∴平面BAD⊥平面BCD,故②正确;同理可证平面BAC⊥平面ACD,故③正确;通过构造长方体可得该多面体的外接球半径R=52a,所以该多面体外接球的表面积为5πa2,故④正确,综上,正确命题的序号为①②③④.答案:①②③④(2)(2018·高考全国卷Ⅰ)如图所示,在平行四边形ABCM中,AB=AC=3,∠ACM =90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.①证明:平面ACD⊥平面ABC;②Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.解析:①证明:由已知可得,∠BAC=90°,即BA⊥AC. 又BA⊥AD,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.②由已知可得,DC=CM=AB=3,DA=3 2.又BP =DQ =23DA , 所以BP =2 2.如图所示,过点Q 作QE ⊥AC ,垂足为E ,则QE .由已知及(1)可得,DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为V Q -ABP =13×S △ABP ×QE =13×12×3×22sin 45°×1=1.应用线面垂直的判定与性质定理的思维(1)证明两个平面垂直,关键是选准其中一个平面内的一条直线,证明该直线与另一个平面垂直.这必须结合条件中各种垂直关系充分发挥空间想象综合考虑. (2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(2017·高考全国卷Ⅰ)如图所示,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.解析:(1)证明:由∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD . 由于AB ∥CD ,故AB ⊥PD ,又AP ∩PD =P ,从而AB ⊥平面P AD . 又AB平面P AB ,所以平面P AB ⊥平面P AD .(2)如图所示,在平面P AD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面P AD ,故AB ⊥PE ,可得PE ⊥平面ABCD . 设AB =x ,则由已知可得AD =2x ,PE =22x .故四棱锥P ABCD 的体积V P ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而P A =PD =2,AD =BC =22,PB =PC =2 2.可得四棱锥P ABCD 的侧面积为12P A ·PD +12P A ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.考点三 空间垂直关系的探索与转化◄考基础——练透[例3] (1)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是AC 1,A 1B 1的中点,点P 在其表面上运动,则总能使MP 与BN 垂直的点P 的轨迹的周长等于________.解析:分别取BB 1,CC 1的中点E ,F ,连接AE ,EF ,FD ,则BN ⊥平面AEFD ,过点M 作平面α,使α∥平面AEFD ,则平面α与正方体表面的交线即为点P 的轨迹,该轨迹为矩形,其周长与矩形AEFD 的周长相等,又矩形AEFD 的周长为2+5,所以所求轨迹的周长为2+ 5.答案:2+ 5(2)如图所示,在四棱锥S-ABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,且P为AD的中点.①求证:CD⊥平面SAD;②若SA=SD,M为BC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?并证明你的结论.解析:①证明:因为四边形ABCD为正方形,所以CD⊥AD.又平面SAD⊥平面ABCD,且平面SAD∩平面ABCD=AD,所以CD⊥平面SAD.②存在点N为SC的中点,使得平面DMN⊥平面ABCD.证明:连接PC、DM交于点O,连接PM、SP、NM、ND、NO,因为PD∥CM,且PD=CM,所以四边形PMCD为平行四边形,所以PO=CO.又因为N为SC的中点,所以NO∥SP.易知SP⊥AD,因为平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,并且SP⊥AD,所以SP ⊥平面ABCD ,所以NO ⊥平面ABCD . 又因为NO平面DMN ,所以平面DMN ⊥平面ABCD .探索垂直关系,常采用逆向思维一般假设存在线线垂直,所利用的关系常有: (1)等腰三角形的高、中线与底边垂直. (2)矩形的相邻边垂直.(3)直径所对的圆周角的两边垂直. (4)菱形的对角线垂直.(5)给出长度,满足勾股定理的两边垂直.(6)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路.(2019·安阳模拟)如图所示,平面ABDE ⊥平面ABC ,AC =BC ,四边形ABDE 是直角梯形,BD ∥AE ,BD =12AE ,O ,M 分别为CE ,AB 的中点. (1)求证:OD ∥平面ABC .(2)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由.解析:(1)证明:取AC 中点F ,连接OF ,FB .∵F 为AC 中点,O 为CE 中点, ∴OF ∥EA 且OF =12EA .。
高三新数学第一轮复习第十一讲—空间中的垂直关系一.知识整合1.线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。
三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直。
推理模式: ,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭。
注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 ⑵要考虑a 的位置,并注意两定理交替使用。
2.线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。
直线l 与平面α垂直记作:l ⊥α。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
3.面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面。
二.典例精析题型1:线线垂直问题例1.如图1所示,已知正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 、L 、M 、N 分别为A 1D 1,A 1B 1,BC ,CD ,DA ,DE ,CL 的中点,求证:EF ⊥GF 。
例2.(2006全国Ⅱ,19)如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC ,D 、E 分别为BB 1、AC 1的中点,证明:ED 为异面直线BB 1与AC 1的公垂线。