2.[链接苏教选必一P88—P89知识]椭圆的右焦点为,椭圆上的两点, 关于原点对称,若,且椭圆的离心率为,则椭圆 的方程为( )
A
A. B. C. D.
【解析】由题意知,,关于原点对称,所以,得,又椭圆的离心率为,所以 ,得,故椭圆的方程为 ,选A.
解后反思若椭圆的左、右焦点分别为,,,两点在椭圆上,且关于坐标原点对称,则,,, 四点所构成的四边形为平行四边形,若或四边形有一个内角为 ,则该四边形为矩形.
10.[人A选必一P115习题3.1第4题变式]求满足下列条件的椭圆的标准方程.
(1)长半轴长为4,半焦距为,焦点在 轴上;
【答案】设椭圆方程为,(注意焦点在 轴上)由题意得,,,所以 ,所以其标准方程为 .
(2)与椭圆有相同的焦点,且经过点 ;
【答案】易知椭圆的焦点坐标为 ,设所求椭圆方程为,则 ,因为椭圆过点,所以,即 ,所以,所以所求椭圆的标准方程为 .
教材知识萃取
方法技巧利用椭圆的简单几何性质求最值或范围的思路
(1)将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系,利用函数或基本不等式求最值或范围;
(2)将所求范围用 , , 表示,利用 , , 自身的范围、关系求范围.
教材素材变式
1.[多选][苏教选必一P93习题3.1(2)第13题变式]如图所示,一个底面半径为 的圆柱被与其底面成 角的平面所截,截面是一个椭圆,则( )
3.[人B选必一P141练习A第4题变式]已知,分别是椭圆的左顶点和右焦点, 是椭圆上一点,直线与直线相交于点,且是顶角为 的等腰三角形,则该椭圆的离心率为( )
C
A. B. C. D.
【解析】如图,设直线与轴的交点为,由是顶角为 的等腰三角形,知, ,则在中, .又,所以.结合得,即 ,解得或 (舍去).故选C.