Fra bibliotek× √
核心考点·分类突破
解题技法
求椭圆标准方程的步骤
考点二 椭圆的几何性质 考情提示 高考对椭圆性质的考查是历年的重点,主要以离心率或与椭圆有关的最值问题为载 体考查逻辑推理与运算求解能力.
2.求解与椭圆有关的范围、最值问题的常用思路 (1)充分利用椭圆的几何性质,结合图形进行分析. (2)注意利用椭圆的范围如-a≤x≤a,-b≤y≤b,0<e<1构造不等式. (3)列出所求目标的解析式,构造函数利用单调性,或者利用基本不等式求最值或范 围.
预计2025年高考椭圆的几何性质仍会出题,三种题型都可能会出,往往会 预测
与其他知识交汇出题.
必备知识·逐点夯实
知识梳理·归纳 椭圆的几何性质
焦点的位置
图形
标准方程
焦点在x轴上 +=1(a>b>0)
焦点在y轴上 +=1(a>b>0)
范围
顶点 性 质 轴长
焦点 离心率 a,b,c的关系
_-_a_≤_x_≤_a_,_且__-b_≤_y_≤_b_
_-_b_≤_x_≤_b_,_且__-a_≤_y_≤_a_
_A_1_(_-a_,_0_)_,A_2_(_a_,0_)_, _B__1(_0_,-_b_)_,B__2(_0_,b_)_
_A_1_(_0_,-_a_)_,A_2_(_0_,a_)_, _B__1(_-_b_,0_)_,B__2(_b_,0_)_
谢谢观赏!!
长轴长=2a,短轴长=2b
_F__1(_-_c,_0_)_,F_2_(_c_,0_)_
_F__1(_0_,_-c_)_,F__2(_0_,c_)_
e=,且e∈(0,1)