第二章 非线性方程的数值解法
- 格式:ppt
- 大小:1.79 MB
- 文档页数:55
数值分析非线性方程的数值解法数值分析是一种应用数学方法来分析和解决数学问题的领域。
非线性方程是数值分析中一类重要的问题,其解法包括了迭代法、牛顿法、割线法等。
本文将详细介绍这些数值解法及其原理和应用。
一、迭代法迭代法是解非线性方程的一种常用数值方法。
该方法的基本思想是通过不断迭代逼近方程的根,直到达到所需精度或满足停止准则为止。
迭代法的求根过程如下:1.选择适当的初始值x0。
2. 利用迭代公式xn+1 = g(xn),计算下一个近似根。
3.重复步骤2,直到满足停止准则为止。
常用的迭代法有简单迭代法、弦截法和牛顿法。
简单迭代法的迭代公式为xn+1 = f(xn),其中f(x)为原方程的一个改写形式。
该方法的收敛性要求函数f(x)在解附近有收敛性且导数在一个区间内收敛。
弦截法的迭代公式为xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。
该方法通过连接两个点上的函数值的割线来逼近方程的根。
牛顿法的迭代公式为xn+1 = xn - f(xn) / f'(xn),其中f'(x)为f(x)的导数。
该方法通过用切线来逼近方程的根。
二、牛顿法牛顿法是解非线性方程的一种常用迭代法。
该方法通过使用方程的导数来逼近方程的根。
迭代过程如下:1.选择适当的初始值x0。
2. 利用迭代公式xn+1 = xn - f(xn) / f'(xn),计算下一个近似根。
3.重复步骤2,直到满足停止准则为止。
牛顿法的收敛速度较快,但要求方程的导数存在且不为0。
三、割线法割线法是解非线性方程的另一种常用迭代法。
该方法通过连接两个点上的函数值的割线来逼近方程的根。
迭代过程如下:1.选择适当的初始值x0和x12. 计算下一个近似根xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。
3.重复步骤2,直到满足停止准则为止。
割线法的收敛速度介于简单迭代法和牛顿法之间。
(一)非线性方程的迭代解法1.非线性方程的一般形式:f(x)=02.非线性方程的分类:⎩⎨⎧=为其他函数。
超越方程,次代数多项式;为代数方程,)()(0)(x f n x f x f 3.方程的根:若存在常数s 使f(s)=0,则称s 是方程(4.1)的根,又称s 是函数f(x)的零点。
4.重根:若f(x)能分解为)()()(x s x x f m ϕ-= 则称s 是方程(4.1)的m 重根和f(x)的m 重零点。
当m=1时,s 称为方程(4.1)的单根和f(x)的单零点。
5.结论:(1)零点存在定理:设函数f(x)在闭区间[a,b]上连续,且f(a)•f(b)<0,那么在开区间(a,b )内至少有一点ξ,使f(ξ)=0.(2)根的唯一性判别:一阶导数不变号且不为零(3)n 次代数方程在复数域上恰有n 个根(4)高于4次的代数方程没有求根公式6.方法:(1)搜索根方法:①作图法:②逐步搜索法:确定方程根的范围的步骤:步骤1 取含f(x)=0根的区间[a,b],即f(a)•f(b)<0;步骤2 从a 开始,按某个预定的步长h ,不断地向右跨一步进行一次搜索, 即检查kh a x k +=上的函数)(k x f 值的符号。
若0)()(1<•-k k x f x f ,则可以确定一个有根区间],[1k k x x -.步骤3 继续向右搜索,直到找出[a,b]上的全部有根区间],[1k k x x -(k=1,2,…,n).(2)二分法①基本思想:含根区间逐次分半缩小,得到一个区间长度以1/2的比例减小的含根区间序列 {}k I ,在给定根的误差界时,利用长度趋于零的特点,可得到在某个区间中满足要求的近似根。
②迭代终止的条件ε<)(k x fε2<-k k a b或者ε<-≤-2k k k a b s x(3)简单迭代法及其收敛性)(0)(x x x f ϕ=⇔=,2,1,0),(1==+k x x k k ϕ迭代法是一种逐次逼近法,用某个固定公式反复校正根的近似值,使之逐 步精确化,最后得到满足精度要求的解。
非线性方程数值解法及其应用摘要:数值计算方法主要研究如何运用计算机去获得数学问题的数值解的理论和算法。
本文主要介绍非线性方程的数值解法以及它在各个领域的应用。
是直接从方程出发,逐步缩小根的存在区间,或逐步将根的近似值精确化,直到满足问题对精度的要求。
我将从二分法、Steffensen加速收敛法、Newton迭代法、弦截法来分析非线性方程的解法及应用。
关键字:非线性方程;二分法;Steffensen加速收敛法;代数Newton法;弦截法一、前言随着科技技术的飞速发展,科学计算越来越显示出其重要性。
科学计算的应用之广已遍及各行各业,例如气象资料的分析图像,飞机、汽车及轮船的外形设计,高科技研究等都离不开科学计算。
因此经常需要求非线性方程 f(x) = O的根。
方程f(x) = O 的根叫做函数f(x)的零点。
由连续函数的特性知:若f(x)在闭区间[a,b]上连续,且f(a)·f(b)<O,则f(x) = O在开区间(a,b)内至少有一个实根。
这时称[a,b]为方程f(x) = O的根的存在区间。
本文主要是对在区间[1.2]的根的数值解法进行分析,介绍了非线性方程数值解法的四种方法,从而得到在实际问题中遇到非线性方程根的求解问题的解决方法。
二、非线性方程的数值解法1、二分法二分法的基本思想是将方程根的区间平分为两个小区间,把有根的小区间再平分为两个更小的区间,进一步考察根在哪个更小的区间内。
如此继续下去,直到求出满足精度要求的近似值。
设函数f(x)在区间[a,b]上连续,且f(a)·f(b)<O,则[a,b]是方程f(x)=O 的根的存在区间,设其内有一实根,记为。
取区间[a,b]的中点,并计算,则必有下列三种情况之一成立:(1)= O,就是方程的根;(2)f(a)·f()<O,方程的根位于区间[a,]之中,此时令,;(3)f()·f(b)<O,方程的根位于区间[,b]之中,此时令。