资源分配 如 资金安排 数学建模
- 格式:doc
- 大小:734.00 KB
- 文档页数:41
数学建模在资源分配优化中的应用数学建模是一种将数学理论、方法应用于实际问题解决的过程,它可以帮助人们更好地理解和处理现实生活中的各种问题。
资源分配优化是指在有限的资源条件下,通过合理规划和分配,使资源得到最大化、最有效地利用。
在资源分配中,数学建模起着重要的作用,本文将探讨数学建模在资源分配优化中的应用。
一、线性规划模型线性规划是一种通过线性函数建立关系,并在约束条件下求解最优解的数学建模方法。
在资源分配优化中,线性规划模型可以用来解决一些线性约束条件下的最优分配问题。
例如,在某个工程项目中,存在多个子项目,每个子项目需要分配一定的资源。
我们可以通过线性规划模型确定每个子项目所需资源的数量,从而实现资源的最优分配。
二、整数规划模型整数规划是线性规划的一种扩展形式,其变量取值限制为整数。
在资源分配中,有些问题并不适合仅仅用线性规划来解决,因为资源的分配单位可能是整数,而整数规划则可以很好地满足这种需求。
例如,在某个仓库中,存在不同规格的货物,需要拣货员进行合理的货物分配。
我们可以通过整数规划模型确定每个拣货员应拣取的货物数量,从而实现货物的合理分配。
三、网络流模型网络流模型是一种通过建立网络关系,并模拟物质、信息在网络中流动的数学建模方法。
在资源分配优化中,网络流模型可以用来解决一些资源在不同节点之间流动的问题。
例如,在某个城市中,存在多个医疗资源点,每个点都有一定的医疗资源供应。
为了实现公平合理的资源分配,我们可以通过网络流模型确定每个资源点之间所需的资源流动量,从而达到资源的最优分配。
四、动态规划模型动态规划是一种通过状态转移方程建立模型,并在给定初始状态下,自底向上递推求解最优解的数学建模方法。
在资源分配中,动态规划模型可以用来解决一些资源随时间变化的问题。
例如,在某个生产线中,存在多个工序,每个工序耗时不同,需要合理安排资源的分配顺序。
我们可以通过动态规划模型确定每个工序所需资源的分配顺序,从而实现资源的最优利用。
数学建模在农业生产优化中的应用有哪些农业作为国民经济的基础产业,其生产效率和质量的提升对于保障粮食安全、促进农村发展和提高农民收入具有至关重要的意义。
随着科学技术的不断进步,数学建模作为一种有效的工具,在农业生产优化中发挥着越来越重要的作用。
本文将探讨数学建模在农业生产优化中的一些具体应用。
一、农业资源配置优化农业生产需要合理配置土地、水资源、劳动力和资金等各种资源,以实现最大的产出和效益。
数学建模可以帮助我们建立资源配置的优化模型,通过对各种资源的数量、质量和利用效率进行分析,确定最优的资源分配方案。
例如,对于土地资源的配置,可以利用数学建模来确定不同农作物在不同土地类型上的最佳种植面积和布局。
考虑到土壤肥力、地形地貌、气候条件等因素,建立数学模型来计算每种农作物的产量预测和成本效益,从而找到土地利用的最优方案,提高土地的产出效率。
水资源是农业生产中不可或缺的资源,但其在不同地区和季节的分布往往不均衡。
通过建立数学模型,可以对灌溉用水进行优化调度,根据农作物的需水规律、水源的供应情况和灌溉设施的能力,制定合理的灌溉计划,在满足农作物生长需求的同时,最大限度地节约水资源。
劳动力和资金的配置也可以通过数学建模来实现优化。
根据农业生产的季节性和周期性特点,合理安排劳动力的投入时间和数量,以及资金的投入方向和规模,以降低生产成本,提高生产效率。
二、农作物生长模型的建立农作物的生长受到多种因素的影响,如气候、土壤、施肥、病虫害等。
数学建模可以帮助我们建立农作物生长的动态模型,模拟农作物在不同环境条件下的生长过程,为农业生产提供科学的决策依据。
通过收集大量的农作物生长数据,包括气温、降水、光照、土壤养分等,利用数学方法建立起农作物生长与这些环境因素之间的关系模型。
例如,利用回归分析、神经网络等方法,可以建立农作物产量与施肥量之间的函数关系,从而确定最佳的施肥方案,既能保证农作物的高产,又能减少肥料的浪费和对环境的污染。
数学建模分配问题模型数学建模是一种通过数学方法解决实际问题的方法。
在实际生活中,我们经常会遇到分配问题,即将一定数量的资源分配给不同的需求方。
这些资源可以是金钱、人力、材料等,需求方可以是个人、企业、机构等。
为了合理地分配资源,我们可以使用数学建模的方法进行分析和优化。
一般来说,分配问题可以分为两类:最优化问题和约束问题。
最优化问题的目标是使得某个指标达到最大或最小值,比如最大化利润、最小化成本等。
约束问题则是在一定的条件下寻找满足需求的最优解。
下面我们将分别介绍这两类问题的数学建模方法。
对于最优化问题,我们首先需要确定一个目标函数。
目标函数描述了我们希望优化的指标,可以是一个或多个变量之间的函数关系。
然后,我们需要确定一组约束条件。
约束条件反映了资源的限制以及需求方的限制,可以是等式或不等式。
最后,我们需要确定决策变量,即需要分配的资源量或决策方案。
通过求解目标函数在约束条件下的最优解,就可以得到最佳的分配方案。
以货物运输为例,假设有一批货物需要从仓库分配给不同的销售点,我们希望通过最优化分配来降低运输成本。
我们可以将每个销售点的需求量作为约束条件,将货物的运输成本作为目标函数。
然后,我们需要确定每个销售点的分配量作为决策变量,通过求解目标函数在约束条件下的最优解,就可以得到最佳的分配方案,从而降低运输成本。
对于约束问题,我们需要确定一组约束条件,这些条件可能是资源的限制、需求方的限制或其他限制。
然后,我们需要确定决策变量,即需要分配的资源量或决策方案。
通过在约束条件下寻找满足需求的最优解,就可以得到合理的分配方案。
以人力资源分配为例,假设有一定数量的员工需要分配到不同的项目中,每个项目对员工的技能要求不同。
我们希望通过合理的分配来最大化项目的效益。
我们可以将每个项目的效益作为约束条件,将员工的技能水平作为决策变量。
通过在约束条件下寻找满足需求的最优解,就可以得到最佳的分配方案,从而最大化项目的效益。
基于数学建模的资源优化分配模型资源优化分配模型是一种基于数学建模方法的决策模型,旨在通过合理的资源分配策略来实现资源的最大化利用和效益。
在资源优化分配模型中,首先需要确定目标函数,即所需优化的目标。
目标函数可以根据具体的应用场景来确定,如最大化利润、最小化成本、最大化效益、最大化服务质量等。
根据目标函数的设定,可以进一步确定约束条件和决策变量。
约束条件是指对资源分配进行限制的条件。
这些约束条件可以是资源的供给限制、技术限制、市场条件等。
例如,一家生产企业在分配生产资源时可能会考虑工人的工作时间、机器的使用时间、原材料的供应量等。
这些约束条件需要根据实际情况加以确定,并在模型中进行描述和考虑。
决策变量是指在资源分配过程中可供调整的变量。
决策变量的选取与模型的复杂性和实际可行性有关。
常见的决策变量包括:产品生产量、资源的分配比例、生产线的配置等。
在实际应用中,决策变量的选取需要综合考虑多个方面的因素,例如成本、效益、风险等。
在基于数学建模的资源优化分配模型中,常用的数学方法包括线性规划、整数规划、动态规划、模拟等。
不同的数学方法适用于不同的问题,根据实际情况选择合适的方法进行建模和求解。
线性规划是一种常用的数学方法,适用于目标函数和约束条件都是线性关系的问题。
线性规划通过数学优化理论和算法来求解最优的资源分配方案。
整数规划则是在线性规划的基础上增加了整数变量的限制,在某些问题中可以更好地反映实际情况。
动态规划是一种适用于具有重叠子问题和最优子结构性质的问题的优化方法。
通过将问题分解为多个子问题,并保存子问题的最优解,动态规划可以高效求解问题的最优解。
在资源优化分配模型中,动态规划可以用于处理具有时序关系的问题,例如生产计划、库存管理等。
模拟是一种基于随机数生成的数学方法,适用于对不确定性因素进行建模和分析的问题。
通过随机数的生成和运算,模拟可以模拟一系列可能的情况,从而评估各种资源分配策略的效果。
在资源优化分配模型中,模拟可以用于评估不同决策方案的风险和不确定性。
运筹学分配问题建模
运筹学分配问题是指在特定的条件下,如何合理地分配资源以达到最优化的解决方案的问题。
这类问题可以用数学模型来描述和解决。
在运筹学中,分配问题通常涉及到有限的资源和不同的需求或约束条件。
在建模时,可以使用线性规划、整数规划、动态规划或网络流等方法来求解。
以一个简单的分配问题为例,假设有三个项目(A、B、C)需要分配有限的资源(如人力、时间或资金)。
每个项目会产生不同的效益(如收益或效率),同时存在一些约束条件(如人力资源的限制或时间的限制)。
我们的目标是在满足约束条件下,最大化总体效益。
为了建模这个问题,我们可以定义以下变量和参数:
令x1、x2、x3分别表示项目A、B、C的分配比例;
令c1、c2、c3分别表示项目A、B、C的效益;
令r表示可用资源的数量;
令a1、a2、a3分别表示项目A、B、C所需资源的数量。
然后,我们可以建立以下数学模型:
目标函数:maximize Z = c1*x1 + c2*x2 + c3*x3
约束条件:a1*x1 + a2*x2 + a3*x3 <= r
x1 + x2 + x3 = 1
x1, x2, x3 >= 0
这个数学模型可以被解释为:我们要最大化总体效益(Z),
但同时要满足资源约束条件(第一个约束条件),并且项目的分配比例之和为1(第二个约束条件)。
当我们求解这个数学模型时,可以得到最优的分配比例,从而实现最大化总体效益。
这只是一个简单的示例,实际的运筹学分配问题可能更加复杂,可以根据具体情况进行进一步的建模和求解。
数学建模在资源分配中的应用数学建模是一种通过建立数学模型来解决实际问题的方法。
它的应用范围非常广泛,其中之一就是在资源分配中的应用。
资源分配是一项重要的决策过程,不仅涉及到经济、环境等方面的问题,也牵涉到社会公平和效率等方面的考量。
在资源分配中,数学建模可以提供决策者们一个量化的工具,帮助他们做出科学合理的决策,以实现资源的最优配置。
一、问题描述在资源分配中,我们可以遇到各种各样的问题。
比如,一个城市有多个公园和多个学校,如何合理地分配教育资源和休闲资源成为了一个重要的问题。
这个问题可以用数学建模来解决。
我们需要考虑多个因素,比如学校的位置、学生人数、学校的规模等,以及公园的位置、面积、居民数量等。
通过建立数学模型,我们可以得到一个最优的资源配置方案。
二、数学建模数学建模可以从不同的角度出发,具体的建模方法也有所不同。
在资源分配中,一种常用的建模方法是线性规划。
线性规划是一种通过线性的数学模型来描述问题,并通过最小化或最大化一个线性目标函数来得到最优解的方法。
在我们的问题中,可以将公园和学校看作是决策变量,可以设置一个线性目标函数,比如使得公园面积与学校规模的乘积最大化,来优化资源的分配。
同时,我们还需要加入一些约束条件,比如每个学校的学生数量不得超过规定的上限,以及每个公园的面积不得超过规定的上限等等。
通过解决这个线性规划问题,我们可以得到一个最优的资源分配方案。
三、模型求解要求解线性规划问题,我们可以使用一些数学软件,比如MATLAB、Python等。
这些软件提供了一些强大的数值计算和优化工具,可以帮助我们高效地求解问题。
首先,我们需要将问题转化为数学模型并进行数值计算。
然后,通过这些数学软件提供的优化算法,可以得到一个最优解。
同时,我们还可以对模型进行灵敏度分析,比如调整一些参数的值,观察最优解的变化情况,以评估模型的鲁棒性和稳定性。
四、实际应用数学建模在资源分配中的应用不仅仅局限于公园和学校的问题,还可以应用于其他领域。
出版社资源分配方案摘要:针对信息量不足且历史数据量少的问题,为了减小预测的误差,本文运用了灰色预测法对影响资源配置的因素进行了很好的预测,譬如2006年各个课程的销售量和计划准确度。
数据处理方面,我们采用了数据处理功能强大的Excel,将所给的数据进行筛选和统计。
在灰色预测法中,我们先利用01~04年的数据分别对各个课程05年进行预测,求得预测的误差率。
若误差率小于20%,则采用该预测法来预测06年所需的数据,反之,应对数据进行进一步筛选,重新预测。
灰色预测法有效地、合理地解决了本题的预测,并将销售量的预测误差控制在了15.51%以内。
最后,我们在保证经济效益的前提下,将资源配置问题转化为线性规划问题,并用LINGO软件求得分配方案的全局最优解,总经济效益为74.697393*10个单位。
具体方案如下表所示:各分社分配到的书号数关键词:灰色预测线性规划市场竞争力计划准确度满意度一、问题的重述1.1背景知识随着党中央国务院“十一五”发展规划的提出,我国的文化产业也受到了前所未有的重视,同时,“十一五”也宣告了出版产业面临着前所未有的挑战。
“十一五”期间,出版发行业将面临因特网、手机短信、数字出版等科技发展引发的对出版环境的影响,不少出版社和发行单位已经或者正在开始着手对自身未来发展的思考和规划,这种现象本身也是出版业理性回归的一个重要标志。
对于出版发行单位而言,战略规划的最大价值在于它的过程,在于培养一种在市场经济环境中的系统思考与应变能力,而不仅仅是规划的结果。
根据加入WTO的承诺,2006年是我国出版分销行业全面放开的最后一年,深化体制改革以应对入世,正在成为出版发行行业的重中之重。
行业对竞争力的关注前所未有的重视,任何研究报告、市场调查、行业排名都会触动出版社敏感的神经。
教育出版对出版社的竞争力影响大,经营成为最主要的提高竞争力的手段,形成了相对稳定的竞争力优势。
因此,占据出版业优势地位的教材出版业更注重对市场的调查研究,对市场做出科学的评估和预测,需要的就是一种科学的调查、评估和预测方法。
资源分配问题模型及其解法研究一、引言在现实生活中,许多资源需要进行分配。
例如,工厂的生产设备、财务部门的资金、医院的医疗设备等,这些资源的分配需要考虑效率和公平性等方面的问题。
资源分配问题是运筹学的重要问题之一,本文将介绍资源分配问题模型及其解法的研究进展。
二、资源分配问题模型资源分配问题的模型有很多,常见的有线性规划模型、整数规划模型、非线性规划模型、多目标规划模型等。
这里重点介绍几种经典的模型。
1. 线性规划模型线性规划模型是一种通过线性关系描述决策变量间关系的数学模型。
常见的线性规划模型有最大化模型和最小化模型。
对于资源分配问题,最常见的是最大化模型,即在满足限制条件的前提下,尽可能多地利用资源、提高效率。
例如,某工厂有3台机器和5个生产任务,每个任务需要用到不同的机器和不同的时间,需要求出如何分配才能使生产任务得到最大化的利用。
2. 整数规划模型整数规划模型是一种在线性规划基础上,增加了决策变量取整限制的模型。
对于资源分配问题,往往需要考虑资源的数量是有限的,此时整数规划模型更加适用。
例如,某医院有6台心电图仪和10个病人需要检查,每个病人需要用到一台仪器,需要求出如何分配才能最大化利用仪器且不超过仪器的数量限制。
3. 非线性规划模型非线性规划模型是一种描述决策变量与目标函数之间的非线性关系的数学模型,它往往更适用于实际问题。
例如,某企业要对产品进行生产和销售,需要考虑到不同市场的需求量,销售价格及生产成本等因素的影响,这种多因素多目标的情况可以用非线性规划模型进行求解。
三、解法研究资源分配问题的解法也非常丰富,下面介绍一些常见的解法。
1. 单纯形法单纯形法是一种常见的线性规划问题求解方法,它是通过不断地在解空间内移动求解目标的角度,并调整决策变量的值来达到极值的目的。
2. 整数规划分支定界法整数规划问题一般不能用单纯形法来求解,因为整数规划问题的解不一定是整数,而单纯形法的进退原则只考虑当前决策变量是否成为最优变量,而不考虑它的整数性。
.例1差分方程——资金(de)时间价值问题1:抵押贷款买房——从一则广告谈起每家人家都希望有一套(甚至一栋)属于自己(de)住房,但又没有足够(de)资金一次买下,这就产生了贷款买房(de)问题.先看一下下面(de)广告(这是1991年1月1日某大城市晚报上登(de)一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心(de)是:如果一次付款买这栋房要多少钱呢银行贷款(de)利息是多少呢为什么每个月要付1200元呢是怎样算出来(de)因为人们都知道,若知道了房价(一次付款买房(de)价格),如果自己只能支付一部分款,那就要把其余(de)款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说(de)房子作出决策了.现在我们来进行数学建模.由于本问题比较简单无需太多(de)抽象和简化.a.明确变量、参数,显然下面(de)量是要考虑(de):需要借多少钱,用记;月利率(贷款通常按复利计)用R记;每月还多少钱用x记;借期记为N个月.b.建立变量之间(de)明确(de)数学关系.若用记第k个月时尚欠(de) 款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总(de)欠款为k=0,1,2,3,而一开始(de)借款为.所以我们(de)数学模型可表述如下(1)c. (1)(de)求解.由(2)这就是之间(de)显式关系.d.针对广告中(de)情形我们来看(1)和(2)中哪些量是已知(de).N=5年=60个月,已知;每月还款x=1200元,已知 A.即一次性付款购买价减去70000元后剩下(de)要另外去借(de)款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策(de)困难.然而,由(2)可知60个月后还清,即,从而得(3)A和x之间(de)关系式,如果我们已经知(3)表示N=60,x=1200给定时0A.例如,若R =0.01,则由(3)可算得道银行(de)贷款利息R,就可以算出053946元.如果该房地产公司说一次性付款(de)房价大于70000十53946=123946元(de)话,你就应自己去银行借款.事实上,利用图形计算器或Mathematica这样(de)数学软件可把(3)(de)图形画出来,从而可以进行估算决策.以下我们进一步考虑下面两个问题.注1问题1标题中“抵押贷款”(de)意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子(de)产权)作抵押,即万一你还不出钱了,就没收你(de)不动产.例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清.假设这对夫妇每月可有节余900元,是否可以去买房呢解:现在(de)问题就是要求使 (de)x,由(2)式知现=60000,R=0.01,k=300,算得x=632元,这说明这对夫妇有能力买房.例题2 恰在此时这对夫妇看到某借贷公司(de)一则广告:“若借款60000元,22年还清,只要;(i)每半个月还316元;(ii)由于文书工作多了(de)关系要你预付三个月(de)款,即316×6=1896元.这对夫妇想:提前三年还清当然是好事,每半个月还316元,那一个月不正好是还632元,只不过多跑一趟去交款罢了;要预付18%元,当然使人不高兴,但提前三年还清省下来(de)钱可是22752元哟,是1896元(de)十几倍哪这家公司是慈善机构呢还是仍然要赚我们(de)钱呢这对夫妇请教你给他们一个满意(de)回答.具体解法略.问题2:养老基金今后,当年青人参加工作后就要从其每月工资中扣除一部分作为个人 (de)养老基金,所在单位(若经济效益好(de)话)每月再投入一定数量(de)钱,再存入某种利息较高而又安全(de)“银行”(也可称为货币市场)到60岁退休时可以动用.也就是说,若退休金不足以维持一定(de)生活水平时,就可以动用自己(de)养老基金,每月取出一定(de)款项来补贴不足部分.假设月利率及=0.01不变,还允许在建立养老基金时自己可以一次性地存入A(不论多少),每月存入y元(个人和单位投入(de)总和);通常从一笔钱0三十一岁开始到六十岁就可以动用.这当然是一种简化(de)假设,但作为估算仍可作为一种考虑(de)出发点.本问题实际上有两个阶段,即退休前和退休后,其数学模型为其中x为每月要从养老基金中提出(de)款项.习题1 某大学年青教师小李从31岁开始建立自己(de)养老基金,他把已有(de)积蓄1万元也一次性地存入,已知月利率为0.01 (以复利计),每月存入300元,试问当小李60岁退休时,他(de)退休基金有多少又若,他退休后每月要从银行提取l000元,试问多少年后他(de)退休基金将用完你能否根据你了解(de)实际情况建立一个较好(de)养老基金(de)数学模型及相应(de)算法和程取软件).习题2 渔业(林业)管理问题设某养鱼池(或某海域)一开始有某种鱼条,鱼(de)平均年净繁殖率为R,每年捕捞x条,记第N年有鱼条,则池内鱼数按年(de)变化规律为注意,在实际渔业经营中并不按条数计算而是以吨记数(de).若对某海域(de)渔业作业中=100000吨,R=0.02,x=1000吨,试问会不会使得若干年后就没有鱼可捕捞了(资源枯竭了)例2比例分析法——席位分配问题:某学校有三个系联合成立学生会,(1)试确定学生会席位分配方案.(2)若甲系有100名,乙系60名,丙系40名.学生会设20个席位,分配方案如何(3)若丙系有3名学生转入甲系,3名学生转入乙系,分配方案有何变化(4)因为有20个席位(de)代表会议在表决提案时有可能出现10: 10(de)平局,会议决定下一届增加1席,若在第(3)问中将学生会席位增加一席呢(5)试确定一数量指标衡量席位分配(de)公平性,并以此检查(1)—(4).公平而又简单(de)席位分配办法是按人数(de)比例分配,若甲系有100名,乙系60名,丙系40名.学生会设20个席位,三个系分别应有10,6,4个席位.如果丙系有6名学生转入其他两系学习,各系人数如表所示系别学生人数所占比例(%)按比例分配(de)席位按惯例分配(de)席位甲10310乙636第二列所示,按比例分配席位时,出现了小数(见表中第四列).在将取得整数(de)19席分配完毕后,剩下(de)1席按照惯例分给余数最大(de)丙系,于是三个系仍分别占有10、6、4个席位.因为有20个席位(de)代表会议在表决提案时有可能出现10:10(de)平局,会议决定下一届增加1席,于是他们按照上述惯例重新分配席位,计算(de)结果令人吃惊:总席位增加1席,丙系反而减少1席,见下表.看来,要解决这个矛盾,必须重新研究所谓惯例分配方法,提出更加“公平”(de)办法.下面就介绍这样一个席位分配模型.设A、B两方人数分别是p1 和p2,分别占有n1 和n2 个席位,则两方每个席位所代表(de)人数分别是p1 /n12和p2/n2.很明显,仅当这两个数值相等时,席位(de)分配才是公平(de).但是,通常它们不会相等,这时席位分配得不公平.不公平(de)程度可以用数值来表示,它衡量(de)是“绝对不公平”.从下表所举(de)例子来看,A、B之间(de)“绝对不公平”与C、D之间是一样(de).但是从常识(de)角度看,A、B之间显然比C、D之间存在着更加严重(de)不公平.所以“绝对不公平”不是一个好(de)衡量标准.p n p/n p1/n1-p2/n2 A120101212-10=2B1001010C102010102102-100=2D100010100为了改进绝对标准,我们自然想到用相对标准.因为p/n越大,每个席位代表(de)人数越多,或者说,总人数一定时分配(de)席位越少.所以,如果p1/n13>p2/n2,则A方是吃亏(de),或者说,对A是不公平(de),由此,我们这样定义“相对不公平”:若p1/n1>p2/n2,则称为对A(de)相对不公平值,记做若p1/n1<p2/n2,则称为对B(de)相对不公平值,记做假设A、B两方已分别占有n1和n2个席位,我们利用相对不公平(de)城念来讨论,当总席位再增加1席时,应该给且A方还是B方不失一般性,可设p1/n1>p2/n2,即此时对A方不公平, ,有定义.当再分配1个席位时,关于p/n(de)不等式有以下三种可能:1)p1/(n1十1)>p2/n2,这说明即使A方增加1席,仍然对A不公平,所以这1席当然应给A方;2)p1/(n1十1)<p2/n2,说明当A方增加1席位,将对B不公平,此时应参照式,计算对B(de)相对不公平值3)说明当B方增加1席时,将对A方不公平,此时计算得对A (de)相对不公平值是(注意:在p1/n1p2/n2(de)假设下,不可能出现p1/n1<p2/(n2+1)(de)情况因为公平(de)席位分配方法应该使得相对不公平(de)数值尽量地小,所以如果则这1席应给A方;反之应给B方.根据(3)、(4)两式,(5)式等价于并且不难证明1从上述第1)种情况(de)p1/(n1十1)>p2/p2也可推出. 于是我们(de)结论是:当(6)式成立时,增加(de)1席应分配A方;反之,应分配给B方.若记,则增加(de)1席位应分配给Q值较大(de)一方.将上述方法可以推广到有m方分配席位(de)情况.下面用这个方法,重新讨论本节开始时提出(de),三个系分配21个席位(de)问题.首先每系分配1席,然后计算:甲系n1=1,乙系, n2=1,丙系,n3=1,因为最大,所以第4席应分配给甲系,继续计算:甲系n1=2,将与上面(de)相比,最大,第5席应分给乙系,继续计算.如此继续,直到第21席分配给某个系为止(详见列表).n甲系乙系丙系1(4)(5)578(9)2(6)(8)(15)3(7)(12)(21)4(10)(14)5(11)(18)6(13)7(16)8(17)9(19)10(20)11可以看出,用Q值法,丙系保住了它险些丧失(de)1席.你觉得这个方法公平吗习题:学校共1000名学生,235入住在A宿合,333人住在B宿合,432人住在C宿合.学生们要组织一个10人(de)委员会,试用下列办法分配各宿舍(de)委员数.1)惯例(de)方法,印按比例分配完整数名额后,剩下名额给余数最大者. 2)Q值方法.如果委员会从10人增至15人,分配名额将发生什么变化 ,例3 状态转移问题——常染色体遗传模型随着人类(de)进化,人们为了揭示生命(de)奥秘,越来越注重遗传学(de)研究,特别是遗传特征(de)逐代传播,引起人们(de)注意.无论是人,还是动植物都会将本身(de)特征遗传给下一代,这主要是因为后代继承了双亲(de)基因,形成自己(de)基因对,基因对将确定后代所表现(de)特征.下面,我们来研究两种类型(de)遗传:常染色体遗传和x—链遗传.根据亲体基因遗传给后代(de)方式,建立模型,利用这些模型可以逐代研究一个总体基因型(de)分布.在常染色体遗传中,后代从每个亲体(de)基因对中各继承一个基因,形成自己(de)基因对,基因对也称基因型.如果我们所考虑(de)遗传特征是有两个基因A和控制(de),那么就有三种基因对,记为AA,A,.例如,金草鱼由两个遗传基因决定花(de)颜色,基因型是AA(de)金鱼草开红花,型(de)开粉红色花,而型(de)开白花.又如人类(de)眼睛(de)颜色也是提高通过常染色体遗传控制(de).基因型是(de)人,眼睛是棕色,基因型是(de)人,眼睛是兰色.这里因为都表示了同一外部特征,我们认为基因A 支配基因,也可以认为基因对于A 来说是隐性(de)农场(de)植物园中某种植物(de)基因型为AA,A 和.农场计划采用AA 型(de)植物与每种基因型植物相结合(de)方案培育植物后代.那么经过若干年后,这种植物(de)任一代(de)三种基因型分布如何 第一步:假设:令 ,2,1,0=n .(1) 设n n b a ,和n c 分别表示第n 代植物中,基因型为AA,Aa 和aa(de)植物占植物总数(de)百分率.令)(n x 为第n 代植物(de)基因型分布:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(当n=0时⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000)0(c b a x表示植物基因型(de)初始分布(即培育开始时(de)分布),显然有1000=++c b a(2) 第n 代(de)分布与第n-1代(de)分布之间(de)关系是通过上表确定(de).第二步:建模根据假设(2),先考虑第n 代中(de)AA 型.由于第n-1代(de)AA 型与AA 型结合,后代全部是AA 型;第n-1代(de)Aa 型与AA 型结合,后代是AA 型(de)可能性为1/2,第n-1代(de)aa 型与AA 型结合,后代不可能是AA 型.因此,当 ,2,1,0=n 时11102/1---•++•=n n n n c b a a即2/11--+=n n n b a a 类似可推出2/11--+=n n n b c a 0=n c将式相加,得111---++=++n n n n n n c b a c b a根据假设(1),有1000=++=++c b a c b a n n n对于式、式和式,我们采用矩阵形式简记为,2,1,)1()(==-n Mx x n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00012/1002/11M ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(式递推,得)0()2(2)1()(x M x M Mx x n n n n ====--式给出第代基因型(de)分布与初始分布(de)关系.为了计算出n M ,我们将M 对角化,即求出可逆矩阵P 和对角阵D,使1-=PDP M因而有,2,1,1==-n P PD M n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n nnn D 321321000000000λλλλλλ这里321,,λλλ是矩阵M(de)三个特征值.对于式中(de)M,易求得它(de)特征值和特征向量:0,2/1,1321===λλλ因此⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00002/10001D ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0112 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 所以[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==100210111321P通过计算1-=P P ,因此有)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=0001002101110000)21(0010100210111c b a n 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--00011)(000)2/1()2/1(0)2/1(1)2/1(11c b a c b a x n n n n n n n n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++=--0)2/1()2/1()2/1()2/1(010010000c b c b c b a n n n n所以有⎪⎩⎪⎨⎧=+=--=--0)2/1()2/1()2/1()2/1(1010010n n n n n n n c c b b c b a当∞→n 时0)2/1(→n,所以从式得到0,1→→n n b a 和n c =0即在极限(de)情况下,培育(de)植物都是AA 型. 第三步:模型讨论若在上述问题中,不选用基因AA 型(de)植物与每一植物结合,而是将具有相同基因型植物相结合,那么后代具有三代基因型(de)概率如下表:并且)0()(x M xn n =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=14/1002/1004/11M M(de)特征值为2/1,1,1321===λλλ通过计算,可以解出与21,λλ相对应(de)两个线性无关(de)特征向量1 和2 ,及与3λ相对应(de)特征向量3 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 因此[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==111200101321P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-02/1011102/111P)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=00002/1011102/11)2/1(0001001111200101c b a n n所以有⎪⎩⎪⎨⎧-+==++=++010000100)2/1()2/1()2/1()2/1()2/1(bb c c b b b b a a n nn n n n当∞→n 时0)2/1(→n,所以从式得到0,)2/1(00→+→n n b b a a 和00)2/1(b c c n +→因此,如果用基因型相同(de)植物培育后代,在极限情况下,后代仅具有基因AA 和aa. 例4 合作对策模型在经济或社会活动中,几个社会实体(个人、公司、党派、国家)相互合作或结成联盟,常能获得比他们单独行动更多(de)经济或社会效益.这样合理地分配这些效益是合作对策要研究(de)问题.请看下面(de)例子.问题一:经商问题甲、乙、丙三人经商,若单干,每人仅能获利1元;甲乙合作可获利7元;甲丙合作可获利5元;乙丙合作可获利4元;三人合作可获利10元,问三人合作时如何分配10元(de)收入.甲(de)收入应按照甲对各种形式(de)合作(de)贡献来确定.对于某一合作(de)贡献定义为:有甲参加时这个合作(de)收入与无甲参加时这个合作(de)收入之差.例如甲对甲乙二人合作(de)贡献是7—1=6 (因为甲乙合作获利7元,而乙单干仅获利1元).甲可以参加(de),合作有四个:甲自己(单干视为合作(de)特例)、甲乙、甲丙、甲乙丙.甲对这些合作(de)贡献分别是甲:1一0=1元;甲乙:7—1=6元;甲内:5—1=4元;甲乙丙:10—4=6元,甲应分得(de)收入是这四个贡献(de)加权平均值,加权因子将由下面(de)一般模型给出.这个问题叫做3人合作对策,是对策论(de)一部分,这里介绍它(de)一种解法.一般(de)n人合作对策模型可以叙述如下:记n人集合为I=,如果对于I中 (de)任一子集,都对应一个实值函数v(s),满足则称为定义在I上(de)特征函数.所谓合作对策是指定义了特征函数(de)I中n个人(de)合作结果,用向量值函数来表示.在实际问题中.常可把I中各种组合(de)合作获得(de)利益定义为特征函数,上式表示合作规模扩大时,获利不会减少.不难看出,如将三人经商问题中合作(de)获利定义为特征函数v,v是满足(1)、(2)(de).为了确定,Shapley在1953年首先制定了一组应该满足(de)公理,然后证明了满足这组公理(de)(de)唯一解是其中是I中包含{i}(de)所有子集,是集合s中(de)人数,是加权因子,由确定.(3)式中可看作成员{i}对合作s(de)贡献;表示对所有包含{i}(de)集合求和.称为由v定义(de)合作(de)Shapley值.我们用(3)、(4)计算三人经商问题中各个人应得到(de)收入.甲、乙、丙分别记作{1},{2},{3},包含{1}(de)集合有{1}、{1,2}、{1,3}、{1,2,3},计算结果列入下表.S{1}{1,2}{1,3}{1,2,3}V(s)17510V(s-{1})0114V(s)- V(s-{1})1 6 4 612 23 W()1/31/61/61/3W()[V(s)-V(s-{1})]1/31 2/3 2.同样可以算出乙、丙应得收入为=3.5元,=元.问题二:三城镇(de)污水处理方案沿河有三城镇1、2和3,地理位置如图4;6所示.污水需处理后才能排入河中.三城镇或者单独建立污水处理厂,或者联合建厂,用管道将污水集中处理(污水应于河流(de)上游城镇向下游城镇输送).以Q 表示污水量(吨/秒),工表示管道长度(公里).按照经验公式,建立处理厂(de)费用为712.0173Q P =,铺设管道(de)费用为LQ P 51.0266.0=.今已知三城镇(de)污水量分别为5,3,5321===Q Q Q .L(de)数值38,202312==L L .试从节约总投资(de)角度为三城镇制定污水处理方案;包括是单独还是联合建厂;如果联合,如何分担投资额等.三城镇或单干或不同形式(de)联合,共有五种方案.下面一一计算所需(de)投资.方案一 三城镇都单干.投资分别为总投资:方案二城1、2合作.这时城1、2将从节约投资(de)角度对联合还是分别建厂作出决策,所以城1、2(de)投资为:=3500C(3)=2300总投资:方案三城2、3合作.C(1)=2300总投资:方案四城1、3合作.C(2)=1600总投资:方案五三城镇合作=5560总投资:比较五个方案可知,应该选择三城合作,联合建厂(de)方案. 下面(de)问题是如何分担总额为5560(de)费用.城3(de)负责人提出,联合建厂(de)费用按三城(de)污水量之比5:3:5分担,铺设管道费应由城1、2担负.城2(de)负责人同意,并提出从城2到城3(de)管道费由城1、2按污水量之比5:3分担;从城1到城2(de)管道费理应由城1自己担负.城1(de)负责人觉得他们(de)提议似乎是合理(de),但因事关重大,他没有马上表示同意;而是先算了一笔账.联合建厂(de)费用是4530)535(73712.0=++,城2到城3(de)管道费是730,城1到城2(de)管道费是300,按上述办法分配时,城3负担(de)费用为1740,城2(de)费用为1320,域1(de)费用为2500.结果出乎意料之外,城3和城2(de)费用都比单独建厂时少,而城1(de)费用却比单独建厂时(de)C(1)还要多.城1(de)负责人当然不能同意这个方法,但是一时他又找不出公平合理(de)解决办法.为了促成联合(de)实现,你能为他们提供一个满意(de)分担费用(de)方案吗首先,应当指出,城3和城2负责人提出(de)办法是不合理(de):从前面(de)计算我们知道,三城联合,才能使总投资节约了640(de)效益应该分配给三城,使三城分配(de)费用都比他们单干时要少,这是为促成联合所必须制定(de)一条原则.至于如何分配,则是下面要进一步研究(de)问题. 把分担费用转化为分配效益,就不会出现城1联合建厂分担(de)费用反比单独建厂费用高(de)情况.将三城镇记为I={1,2,3},联合建厂比单独建厂节约(de)投资定义为特征函数.于是有v(φ)=0,v({1})=v({2})=v({3})=0,v({1,2})=c(1)+c(2)-c(1,2)=2300+1600-3500=400,v({2,3})=c(2)+c(3)-c(2,3)=1600+2300-3650=250,v({1,3})=0,v(I)=c(1)+c(2)+c(3)-c(1,2,3)=640.S {1} {1,2} {1,3} {1,2,3} V(s) 0 400 0 640 V(s-{1}) 0 0 0 250 V(s)- V(s-{1})0 400 0 39012 23 W()1/31/61/61/3W()[V(s)-V(s-{1})] 0 67 0 130即197)(1=v ϕ同理得321)(2=v ϕ,122)(3=v ϕ那么, 城1分担(de)费用为2300-197=2103, 城2分担(de)费用为1600-321=1279, 城3分担(de)费用为2300-122=2178,合计5560. 习题:某甲(农民)有一块土地.如果从事农业生产可年收入100元;如果将土地租给某企业家用于工业生产,可年收入200元;如果租给某旅店老板开发旅游业,可年收入300元;当旅店老板请企业家参与经营时,年收入可达400元.为实现最高收入,试问如何分配各人(de)所得才能达成协议例5动态规划模型有不少动态过程可抽象成状态转移问题,特别是多阶段决策过程(de)最优化如最短路径问题,最优分配,设备更新问题,排序、生产计划和存储等问题.动态规划是一种将复杂问题转化为一种比较简单问题(de)最优化方法,它(de)基本特征是包含多个阶段(de)决策.1951年,美国数学家贝尔曼(R.Bellman)等人,提出了解决多阶段决策问题(de)“最优化原理”,并研究了许多实际问题,从而创建了动态规划·动态规划方法(de)基本思想是:将一个复杂问题分解成若干个阶段,每一个阶段作为一个小问题进行处理,从而决定整个过程(de)决策,阶段往往可以用时间划分这就具有“动态”(de)含义,然而,一些与时间无关(de)静态规划中(de)最优化问题,也可人为地把问题分成若干阶段,作为一个多阶段决策问题来处理,计算过程单一化,便于应用计算机.求解过程分为两大步骤,①先按整体最优化思想递序地求出各个可能状态(de)最优化决策;②再顺序地求出整个题(de)最优策略和最优路线.下面,结合一个求最短路径(de)例子,来说明动态规划(de)一些基本概念.最短路径问题如图所示(de)交通网络,节点连接线路上(de)数字表示两地距离,计算从A 到E(de)最短路径及长度.1.阶段.把所要处理(de)问题,合理地划分成若干个相互联系(de)阶段,通常用k 表示阶段变量.如例中,可将问题分为4个阶段,k=1,2,3,4. 2.状态和状态变量.每一个阶段(de)起点,称为该阶段(de)状态,描述过程状态(de)变量,称为状态变量,它可以用一个数、一组数或一个向量来描述,常用k x 来表示第k 阶段(de)某一状态.如果状态为非数量表示,则可以给各个阶段(de)可能状态编号,i x i k =)(()(i k x 表示第k 个阶段(de)第i 状态).第k 阶段状态(de)集合为},,,,,{)()()2()1(T k i k k k k x x x x X =如例6中,第3阶段集合可记为}3,2,1{},,{},,{321)3(3)2(3)1(33===C C C x x x X3.决策和决策变量.决策就是在某一阶段给定初始状态(de)情况下,从该状态演变到下一阶段某状态(de)选择.即确定系统过程发展(de)方案.用一个变量来描述决策,称这个变量为决策变量.设)(k k x u 表示第k 个阶段初始状态为k x (de)决策变量.)(k k x D 表示初始状态为k x (de)允许决 策集合,有)(k k x u ∈)(k k x D ={k u }如例6中},,{)(3211B B B A D =,若先取2B ,则21)(B A u =. 4.策略和子策略.由每段(de)决策)(k k x u 组成(de)整个过程(de)决策变量序列称为策略,记为n P ,1,即n P ,1=)}(,),(),({2211n n x u x u x u从阶段k 到阶段n 依次进行(de)阶段决策构成(de)决策序列称为k 子策略,记为n k P ,即)(1,x P n k =)}(,),(),({11n n k k k k x u x u x u ++显然,k=1时(de)k 子策略就是策略.如例6,选取路径E D C B A →→→→221就是一个子策略.从允许策略集中选出(de)具有最佳效果(de)策略称为最优策略. 5.状态转移方程.系统在阶段k 处于状态k x ,执行决策)(k k x u (de)结果是系统状态(de)转移,即由阶段K(de)状态k x 转移到阶段K 十1(de)状态1+k x 适用于动态规划方法求解(de)是一类具有无后效性(de)多阶段决策过程.无后效性又称马尔科夫性,指系统从某个阶段往后(de)发展,完全由本阶段所处(de)状态以及其往后(de)决策决定,与系统以前(de)状态及决策无关,对于具有无后效性(de)多阶段过程,系统由阶段k 向阶段k+1(de)状态转移方程为))(,(1k k k k k x u x T x =+意即1+k x 只与k x ,)(k k x u 有关,而与前面状态无关.))(,(k k k k x u x T 称为变换函数或算子.分确定型和随机型,由此形成确定型动态规划和随机型动态规划. 6.指标函数和最优指标函数.在多阶段决策中,可用一个数量指标来衡量每一个阶段决策(de)效果,这个数量指标就是指标函数,为该阶段状态变量及其以后各阶段(de)决策变量(de)函数,设为n k V ,即n k x x u x V V n k k k n k n k ,,2,1),,,,(1,, ==+指标(de)含义在不同(de)问题中各不相同,可以是距离、成本、产品产 量、资源消耗等.例6中,指标(de)含义就是距离,指标函数为A 到E(de)距离,为各阶段路程(de)和.最常见(de)指标函数取各阶段效果之和(de)形式,即∑==nk j j j j n k u x V V ),(,指标函数nk V ,(de)最优值,称为相应(de)最优指标函数,记为)(k k x fnk k k optV x f ,)(=式中opt 是最优化之意,根据问题要求取max 或min . 7.动态规划最优化原理.贝尔曼指出“作为整个过程(de)最优策略具有这样(de)性质:即无论过去(de)状态和决策如何,对前面(de)决策所形成(de)状态而言,余下(de)诸决策必须构成最优策略”基于这个原理,可有如下定理:定理 若策略*,1n P 是最优策略,则对于任意(de)k(1<k<n),它(de)子策略*,n k P 对于以),(*1*11*---=k k k k u x T x 为起点(de)k 到n 子过程来说,必是最优策略. 实质上,动态规划(de)方法是从终点逐段向始点方向寻找最短路径(de)一种方法.8.动态规划(de)数学模型.利用最优化原理,可以得到动态规划(de)数学模型)}(),({)(11+++=k k k k k k k x f u x V opt x f ))(1,,1,(k k k x D u n n k ∈-=0)(11=++n n x f这是一个由后向前(de)递推方程.下面以例6(de)最短路径问题说明这种递序解法.指标函数为两点之间(de)距离,记为),(k k u x d ,例中共分4个阶段. (倒推) 第4阶段2)(),()(5114=+=E f E D d D f 3)(),()(5224=+=E f E D d D f 5)(),()(5334=+=E f E D d D f 0)(5=E f第3阶段6835)(),(624)(),(min )(2421141113=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{11*4,3E D C P =4431)(),(826)(),(min )(2422141223=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{22*4,3E D C P =6651)(),(1239)(),(min )(3433243333=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{33*4,3E D C P =第2阶段7734)(),(1367)(),(min )(2321131112=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{221*4,2E D C B P =7734)(),(826)(),(min )(2322131222=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{222*4,2E D C B P =91468)(),(945)(),(min )(3333232332=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{223*4,2E D C B P =第1阶段10111192)(),(74)(),(1073)(),(min )(323221211=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=+=+=+=+=+=B f B A d B f B A d B f B A d A f},,,,{221*4,1E D C B A P =故最短路径为E D C B A →→→→221,从A 到E(de)最短距离为10. 上述步骤可归纳为下述递推公式)}(),(m in{)(11+++=k k k k k k x f u x d x f 1,2,3,4(=k )0)(55=x f此递推关系叫做动态方程,即最短路径问题(de)动态规划模型,应用动态规划方法解决问题(de)关键是根据所给问题建立具体(de)动态规划模型,建立动态规划模型时(de)主要困难在于:如何将所遇到(de)最优化解释为合适(de)多段决策过程问题.从例6看出,划分I 阶段、定义状态、确定指标函数,是动态规划模型化时(de)主要工作,其合适性决定应用动态规划(de)成败.建模时,除将实际问题根据时间和空间恰当地划分若干阶段外,还须明确下列几点: (1)正确选择状态变量,使它既能描述过程(de)状态,又。
研究生数学建模优化问题
研究生数学建模优化问题可以涉及各种不同的学科和领域。
以下是一些常见的研究生数学建模优化问题的例子:
1. 生产优化问题:如何最大化生产效率,同时最小化生产成本和资源使用。
这包括生产线排程问题、物流和供应链管理等。
2. 资源分配问题:如何最优地分配有限的资源,以满足不同需求。
例如,如何在一所学校中分配教师、教室和学生资源,以实现最佳的学习效果。
3. 运输路径问题:如何找到最短路径或最优路径来满足特定的要求。
这包括最短路径问题、旅行商问题等。
4. 网络优化问题:如何设计最优的网络结构,以实现最大的性能和容量。
例如,如何在一个电信网络中设计最佳的数据传输路由。
5. 风险管理问题:如何评估和管理风险,以保护资产和最小化损失。
这包括投资组合优化、保险精算等问题。
6. 环境优化问题:如何最小化对环境的影响,同时最大化资源保护和可持续发展。
例如,如何设计最优的城市公共交通系统,以减少交通拥堵和空气污染。
以上只是一些研究生数学建模优化问题的例子,实际上,优化问题几乎可以应用于任何领域。
研究生在解决这些问题时,通常需要使用数学模型和优化算法,以寻找最优的解决方案。
公司的投资问题摘要本文解决的主要问题是:公司如何利用自己有限的金融资金20亿,分别在不考虑投资风险和考虑投资风险的情况下进行高效合理的投资,使投资利润最大化风险最小化。
针对问题一,我们建立起单目标线性规划模型,利用lingo软件进行最优化求解(附录二)考虑投资风险的情况下5年末最大利润为17.41405亿元,具体投资方案见5.2中表一。
针对问题二,我们用时间序列模型和灰色预测模型分别对表2、表3的未来五年利润率进行了预测和比较。
用最小二乘法在matlab中编程求解(见附录三、四、五)得到时间序列的结果(见6.2中表二、表三)和灰色预测的结果(见见6.2中表四、表五)。
再建立起方差分析模型对两组结果进行了分析比较,时间序列模型的方差小于灰色预测模型,因此选用时间序列模型得到的风险损失率作为最终结果(见6.42中表六、表七)。
针对问题三,建立的是单目标线性规划模型,在问题一的基础上考虑了项目1的捐赠和项目5的固定可重复投资以及各项目之间的投资对利润率也会产生影响。
利用lingo求解(附录六)得第五年末最大利润为32.5375亿元,具体投资方案见7.2中表八。
针对问题四,我们在问题三的基础上考虑了投资的风险。
将风险和利润的双目标线性规划转变为单目标线性规划模型,lingo求解(见附录七)得5年末的利润31.46908亿元,具体投资方案见8.2中表九。
针对问题五,由于在问题四的条件下考虑到了银行的存贷款,我们上网查到当年银行的利率,建立单目标最优化模型lingo求解(见附录八)得5年末的利润为3.190736亿元,具体投资方案见9.2表十。
关键词:单目标最优化灰色预测时间序列投资决策NPV1问题重述1.1问题背景某公司现有数额为20亿的一笔资金可作为未来5年内的投资资金,市场上有8个投资项目(如股票、债券、房地产、…)可供公司作投资选择。
其中项目1、项目2每年初投资,当年年末回收本利(本金和利润);项目3、项目4每年初投资,要到第二年末才可回收本利;项目5、项目6每年初投资,要到第三年末才可回收本利;项目7只能在第二年年初投资,到第五年末回收本利;项目8只能在第三年年初投资,到第五年末回收本利。
1.2需要解决的问题一、公司财务分析人员给出一组实验数据(见附录一的表1)。
试根据实验数据确定5年内如何安排投资?使得第五年末所得利润最大?二、公司财务分析人员收集了8个项目近20年的投资额与到期利润数据,发现:在具体对这些项目投资时,实际还会出现项目之间相互影响等情况。
8个项目独立投资的往年数据见表2。
同时对项目3和项目4投资的往年数据;同时对项目5和项目6投资的往年数据;同时对项目5、项目6和项目8投资的往年数据见附录1表3。
(注:同时投资项目是指某年年初投资时同时投资的项目)试根据往年数据,预测今后五年各项目独立投资及项目之间相互影响下的投资的到期利润率、风险损失率。
三、未来5年的投资计划中,还包含一些其他情况。
对投资项目1,公司管理层争取到一笔资金捐赠,若在项目1中投资超过20000万,则同时可获得该笔投资金额的1%的捐赠,用于当年对各项目的投资。
项目5的投资额固定,为500万,可重复投资。
各投资项目的投资上限见附录1表4。
在此情况下,根据问题二预测结果,确定5年内如何安排20亿的投资?使得第五年末所得利润最大?四、考虑到投资越分散,总的风险越小,公司确定,当用这笔资金投资若干种项目时,总体风险可用所投资的项目中最大的一个风险来度量。
如果考虑投资风险,问题三的投资问题又应该如何决策?五、为了降低投资风险,公司可拿一部分资金存银行,为了获得更高的收益,公司可在银行贷款进行投资,在此情况下,公司又应该如何对5年的投资进行决策?2模型的假设及符号说明2.1模型假设假设1:题目所给的数据都是真实可靠的假设2:未来5年市场的投资环境稳定,没有突发事件假设3:前一年的利润可以用于下一年的投资假设4:银行年率不变,贷款和存款是逐年进行假设5:每个项目的投资上限为当年的上限而不是在同一项目上累计投资的上限2.2符号说明3问题分析本文研究的是投资决策问题。
要求对资金合理安排投资,获得最大的收益。
针对问题一:这是一个单目标多约束的最优化问题,我们可以通过建立单目标线性规划模型解决该问题。
由于不考虑各项投资的风险,且总资金为20亿元,要使得第五年年末的利润最大,我们设定目标函数的思路为:用第四年末收回的本利作为投资资金,结合各项目的利率表示出第五年年末收回的本利,最后减去20亿元的总成本就得到了目标函数。
对于每年各项投资资金的安排,则要符合下述两个方面的约束条件。
约束条件一为每个项目每年的投资额不能超过规定上限。
约束条件二为每年年初的投资总额不能超过上一年年末收回的本利总和。
针对问题二:问题二根据公司财务人员收集的8个项目近20年的投资额与到期利润数据,预测未来五年各项目独立投资及项目之间相互影响下的投资的到期利润率和风险损失率。
对于预测问题,我们运用灰色预测与时间序列模型进行预测,再结合实际分析求解结果,选择更为优化合理的时间序列模型。
针对问题三,与问题一相同也是一个单目标多约束的最优化问题。
其目标函数仍旧为问题一的目标函数。
而各个项目的利润率和每年的投资上限都发生了变化。
项目5的单笔投资额已经固定为500万且同一年可重复投资。
同时,在考虑利润率时要注意问题二中两个项目之间相互影响的情况。
所以,问题三的约束条件只是在问题一的条件上做了上述增加和改变。
针对问题四:问题四实质是在问题三的基础引入风险,在考虑风险的基础上获取最大收益。
实质上考虑双目标规划的问题,即:风险最小,利润最大。
为了便于求解我们在第三问的基础上减去一个风险值,化为单目标规划。
针对问题五:问题五考虑可以贷款或存款。
贷款可以加大投资,存款可以减小风险,最总目标最求收益最大化。
在问题四基础上我们通过修正,得到问题五的单目标规划。
4数据处理及分析4.1投资时各项目的利润率我们Excel中的统计工具计算出独立投资和共同投资的到期利润率制成表格(见附录九)通过Excel中的绘图工具将最近20年的利润率绘制成图如下图一独立投资时的利润率分析图一,独立投资时项目7的利润波动最大,利润高,风险也最大,其次是项目8。
项目3和4利润率波动最小。
图二 联合投资时的利润率分析图二,联合投资时项目6和8的波动较大,项目3和4的波动较小 图一和图二对比分析,对比相同的项目,总体上联合投资利润率较高,波动也较大。
这与实际情况是相符的,分开投资风险较小,联合投资利润较高,风险也大。
5问题一的解答5.1单目标线性规划模型的建立5.1.1确定目标函数该模型是为了解决资金投资问题,要求我们合理安排手中的资金,以5年为一个周期,使得第5年末所得的利润最大化。
据此,我们建立目标函数如下: 目标函数:246543277388135max 20j j j j j j j j j R x p x p x p x p x p ====++++-∑∑∑5.1.2确定约束条件由于项目1、项目2每年初投资,当年年末回收本利(本金和利润);项目3、项目4每年初投资,要到第二年末才可回收本利;项目5、项目6每年初投资,要到第三年末才可回收本利;项目7只能在第二年年初投资,到第五年末回收本利;项目8只能在第三年年初投资,到第五年末回收本利,而且投资没有考虑风险,想要第五年末利润达到最大,只要在项目能在第五年年末前收回成本就可资。
如是有:(1)项目1和2的每年投资金额限制:(1,2,3,4,5.1,2)ij j S i j x ≤==(2)项目3和4的每年投资金额限制:由于项目3和4年初投资到第二年末才能收回本利,所以第5年不能再投资(1,2,3,4.3,4)ij j S i j x ≤==(3)项目5和6的每年投资金额的限制:由于项目3和4年初投资到第三年末才能收回本利,所以第4、5年不能再投资(1,2,3.5,6)ij j S i j x ≤==(4)项目7的每年投资金额限制:由于项目7要在第2年初才能投资,第5年才能收回本利,所以只能投资一次277S x ≤(5)项目8的每年投资金额限制:由于项目8要第3年初投资,第5年才能收回本利,所以项目8只能投资一次388S x ≤(6)每年年初的投资总额应不大于前一年年末收回的本利。
第一年:61120jj x=≤∑第二年:722111jj j j j xx p ==≤∑∑第三年:62438321113jj j j j j j j xx x p x p ===+≤+∑∑∑第四年:424643211135jj j j j j j j j j j xx p x p x p ====≤++∑∑∑∑第五年:224654322773881135jj j j j j j j j j j xx p x p x p x p x p ====≤++++∑∑∑∑5.1.3综上所述,得到问题一的单目标最优化模型 目标函数:246543277388135max 20j j j j j j j j j R x p x p x p x p x p ====++++-∑∑∑27738861172211162438321113424643211135251(1,2,3,4.3,4)20(1,2,3,4,5.1,2)(1,2,3.5,6)..ij j ijj j j j jj j j j j j jj j j j j j j j j j j j j j j j ij j jS i j x x x p x x x p x p x x p x p x p x x S i j S i j S S x x x x x st ===========≤==≤≤≤≤≤+≤+≤++≤≤====∑∑∑∑∑∑∑∑∑∑∑246432277388135j j j j j j j j j p x p x p x p x p===⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪++++⎪⎩∑∑∑ 5.2单目标线性规划模型的求解利用lingo 软件对建立起的模型编程求解(见附录二)得5年末的最大利润为17.41405亿元,5年内的投资决策方案如下表所示表一项目年数项目1 项目2 项目3 项目4 项目5 项目6 项目7 项目81 5 3 3 3 32 0 0 2 0 0 0 03 24 0 3 0 0 0 0.6168 3 2 0 3 4 0 0.35 4 3 0 0 0 0 55.52183由上表可知第一年:项目1投资5亿,项目2、3、4、5投资3亿,项目6投资2亿,项目7、8不投资。
第二年:项目1、2、3、4、8均不投资,项目5投资3亿,项目6投资2亿,项目7投资4亿。
第三年:项目1、2、3、7均不投资,项目4投资0.6168亿,项目5和8投资3亿,项目6投资2亿。