恒压供水 电路图
- 格式:doc
- 大小:859.00 KB
- 文档页数:9
丹佛斯VLT 2800变频器在恒压供水上的应用济南创恒科技发展有限公司满建江用变频器实现供水系统的恒定压力控制是人们非常熟悉的事情了。
供水系统实现恒定压力的控制,不仅能够提高供水质量,满足人们日益增长的生活质量的要求,同时,还对整个供水系统的安全运行提供了重要的保障,可以有效的降低供水管路的跑,冒,滴,漏现象的发生。
从而明显降低管网的运行维护成本。
传统的供水系统主要是由高位水箱,水塔等供水设施向水用户提供压力相对稳定的水源。
高位水箱,水塔等则由提水泵按上下水位的规定向水箱,水塔供水(也可以是使用变频器的恒定水位系统)。
虽然水塔和水箱相对简单,但是都存在污染问题,因此近来人们已经逐渐使用变频器控制的恒压供水泵系统来代替传统的水塔和水箱以解决造价高昂和污染问题。
恒压供水系统的基本构成是,变频器+水泵+水管网压力检测部件+PID调节器(目前大多数变频器以将PID调节器集成到其内部)如下图所示:该图为简单的单泵控制系统。
该系统的电气接线图如下:图1 恒压供水系统示意图该图为简单的单泵控制系统。
该系统的电气接线图如图2所示。
图2 电气接线图图2中的补偿电阻rc用于补偿压力远传表电阻值与vlt变频器输出匹配,一般情况不使用。
vlt变频器的50端子是10v dc电源,专门用于过程控制系统的检测装置的供电电源。
53端子是模拟量信号(反馈输入和模拟量给定值)输入端。
55端子为公共端。
vlt2800集成有恒转矩输出特性和变转矩输出特性以及速度pid调节器和过程控制pid调节器,分别用于速度闭环运行控制和过程运行的闭环控制。
在恒压供水系统中使用变转矩运行特性和过程控制pid调节器。
VLT2800用于恒压供水时,以传感器量程为0-10bar,反馈信号为0-10V为例,假设系统要求恒定压力为5bar。
参数设置如下:参数号设置说明P100 【3】闭环过程调节闭环控制P102 根据电机铭牌设置电机额定功率P103 根据电机铭牌设置电机额定电压P105 根据电机铭牌设置电机额定电流P106 根据电机铭牌设置电机额定速度P207 15S(若出现报警增大该值)加速时间。
水泵交流接触器等二次回路控制系统变频器恒压供水专用仪表远程压力表恒压供水系统设计可以有多种方式实现。
一般来说,恒压供水系统有两个设备必不可少, 就是变频器和压力传感器。
如何将这两个设备组成一个有效的恒压供水系统就是设计的关键。
目前,恒压供水系统设计主要采用单片机、PLC ,通过编程等方法实现系统控制。
但这两种方式无论采用哪一种,其成本价格都比较高,而且日常维护比较困难。
一旦出现问题往往需要原设计人员来解决。
因为查一个程序的问题,往往不如重新编程更简单一些。
另外编程对相关工作人员的技术要求较高,所以大多恒压供水系统往往价格较高而且使用维护不方便。
可喜的是现在出现了一种新型的、成本低廉的控制设备,就是恒压供水专用仪表,可以方便的实现恒压供水系统的各种功能。
通过这种方式实现的恒压供水系统,价格较低。
更重要的是,便于维护。
因为一旦出现问题更换一块仪表就可以了,成本大大低于单片机或 PLC 。
通过专用仪表实现的恒压供水系统框图如下:具体功能需要根据客户的要求来设计,常用的一些设计方案如下,其中 A 为水泵功率。
水泵控制系统名称设计方案型号功能描述适用场合单台泵系统GKYX1A/HY 一台泵工作于变频方式,即根据压力调整水泵工作频率。
用水少时水泵转速低,用水量增加转速增加,以保证压力始终恒定在设定值。
控制一台水泵,其功率应该足够大,能够满足用水高峰的供水量。
双台泵一用一备系统GKYX2A/HY一台泵工作于变频方式,一台泵备用。
可以设定定时轮换工作,即过一段时间换为另一台泵使用。
控制两台泵,两台泵功率差不多,都能够满足用水高峰的供水量。
双台泵循环使用系统GKYX2A/HYX用水量小时一台泵工作于变频方式,另一台泵备用。
用水量大时第一台泵转换为工频工作方式(即保持全速运转),备用泵工作于变频方式。
当用水量再次减小时,第一台泵停止工作,备用泵工作于变频方式,如此循环工作。
控制两台泵,两台泵功率合起来,都能够满足用水高峰的供水量。
变频恒压供水一拖二
一、变频恒压供水系统主电路和控制线路图:
系统由变频器、PLC和两台水泵构成。
利用了变频器控制电路的PID等相关功能,和PLC配合实施变频一拖二自动恒压力供水。
具有自动/手动切换功能。
变频故障时,可切换到手动控制水泵运行。
控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达
到恒压供水的目的。
当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC控制停掉1#工频泵,由2#泵实施恒压供水。
至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。
如此循环不已。
(素材和资料部分来自网络,供参考。
可复制、编制,期待您的好评与关注)。
ACS510/550恒压供水一拖三接线及调试一、变频器接线图系统图参见ACS510手册P126、P127二、参数设置及说明此图的给定信号来自变频器内部9902=>7(PFC控制宏)或15(SPFC控制宏)9905=>电机额定电压9906=>电机额定电流(选取三电机中最大值)9907=>电机额定频率9908=>电机额定转速9907=>电机额定功率(选取三电机中最大值)1002=>6(DI6)1003=>1(FORW ARD)1102=>7(EXT2)1304=>如压力表是4~20mA,应设为41401、1402、1403=>31(PFC)1601=>2(DI2)4010=>194011=>定义内部给值8117=>2(辅机数量)8718=>自动切换间隔(>0才有效)8120=>38123=>2(循环软启)8127=>3(电机数量)8109(起动频率)、8112(停止频率)、8115(辅机起动延时时间)8115(辅机停止延时时间)=>说明:f最小 <8112<8109<f最大81组其余参数请结合ACS510手册及现场实际设置如需要睡眠功能:4022=>7(内部)4023=>说明:f最小<40234024、4026=>睡眠延时、唤醒延时4025=>唤醒偏差三、循环工作时序:1、ROI(继电器1)吸合,这样接触器K1也吸合,M1变频起动。
2、如果压力不够,准备将M2投入。
于是:●变频器暂时停机,RO1断开,K1断开;●RO2吸合,因此K2吸合,M2投入变频;●RO1吸合,因此K1.1吸合保持,M1投入工频。
3、如果压力还不够,准备将M3投入,于是:●变频器暂时停机,RO2断开,因此K2断开,K1.1保持,M1继续工频运行●RO3吸合,因此K3吸合,M3变频●RO2吸合,因此K2.1吸合并保持,M2投入工频4、如果此时M1、M2工频运行,M3变频,实际压力高于给定压力●RO1断开,这时K1.1掉电,M1停止工频运行5、如果实际压力仍高于给定压力●RO2断开,这时K2.1掉电,M2停止工频运行,只有M3变频运行6、如果此时压力又不够,这时:●RO3断开,K3断开停止变频器运行●RO1闭合,K1吸合,M1变频运行●RO闭合,K3.1吸合并保持,M3工频运行7、注意:在电机起动之前,可以随意将S1、S2和S3开关拨动零位和手动位,这样变频器就找不到该位的电机。
ACS510/550恒压供水一拖三接线及调试一、变频器接线图系统图参见ACS510手册P126、P127二、参数设置及说明此图的给定信号来自变频器内部9902=> 15(SPFC控制宏)9905=>电机额定电压9906=>电机额定电流(选取三电机中最大值)9907=>电机额定频率9908=>电机额定转速9907=>电机额定功率(选取三电机中最大值)1002=>6(DI6)1003=>1(FORW ARD)1102=>7(EXT2)1304=>如压力表是4~20mA,应设为41401、1402、1403=>31(PFC)1601=>2(DI2)4010=>194011=>定义内部给值8117=>2(辅机数量)8718=>自动切换间隔(>0才有效)8120=>38123=>2(循环软启)8127=>3(电机数量)8109(起动频率)、8112(停止频率)、8115(辅机起动延时时间)8115(辅机停止延时时间)=>说明:f最小 <8112<8109<f最大81组其余参数请结合ACS510手册及现场实际设置如需要睡眠功能:4022=>7(内部)4023=>说明:f最小<40234024、4026=>睡眠延时、唤醒延时4025=>唤醒偏差三、循环工作时序:1、ROI(继电器1)吸合,这样接触器K1也吸合,M1变频起动。
2、如果压力不够,准备将M2投入。
于是:●变频器暂时停机,RO1断开,K1断开;●RO2吸合,因此K2吸合,M2投入变频;●RO1吸合,因此K1.1吸合保持,M1投入工频。
3、如果压力还不够,准备将M3投入,于是:●变频器暂时停机,RO2断开,因此K2断开,K1.1保持,M1继续工频运行●RO3吸合,因此K3吸合,M3变频●RO2吸合,因此K2.1吸合并保持,M2投入工频4、如果此时M1、M2工频运行,M3变频,实际压力高于给定压力●RO1断开,这时K1.1掉电,M1停止工频运行5、如果实际压力仍高于给定压力●RO2断开,这时K2.1掉电,M2停止工频运行,只有M3变频运行6、如果此时压力又不够,这时:●RO3断开,K3断开停止变频器运行●RO1闭合,K1吸合,M1变频运行●RO闭合,K3.1吸合并保持,M3工频运行7、注意:在电机起动之前,可以随意将S1、S2和S3开关拨动零位和手动位,这样变频器就找不到该位的电机。
一.摘要变频调速是一种新兴的技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。
随着社会经济的发展,绿色、节能、环保已成为社会建设的主题。
对于一个城市的建设,供水系统的建设是其中重要的一部分,供水的可靠性、稳定性、经济性直接影响到居民的生活质量。
近年来,随着自动化技术、控制技术的发展,以及这些技术在供水系统的应用,高性能、高节能的变频恒压控制的供水系统已成为现在城市供水管理的必然趋势。
本次课程设计采用CPM1A PLC控制器结合富士变频器控制两台水泵的各种转换,实现变频恒压供水系统的功能,并且实现故障转换与报警等保护功能,使得系统控制可靠,操作方便。
二.设计要求一楼宇供水系统,正常供水量为30m3/小时,最大供水量40m3/小时,扬程24米。
采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。
当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。
要求设计实现:⑴设二台水泵。
一台工作,一台备用。
正常工作时,始终由一台水泵供水。
当工作泵出现故障时,备用泵自投。
⑵二台泵可以互换。
⑶给定压力可调。
压力控制点设在水泵出口处。
⑷具有自动、手动工作方式,各种保护、报警装置。
采用OMRON CPM1APLC、富士变频器完成设计。
三.方案的论证分析传统的小区供水方式有:⑴恒速泵加压供水方式该方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,目前较少采用。
⑵气压罐供水方式气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求较高、系统维护工作量大,而且为减少水泵起动次数,停泵压力往往比较高,致使水泵在低效段工作,也使浪费加大,从而限制了其发展。
丹佛斯变频器FC51是一款高性能变频器,可以控制功率高达22 kW 的风机和水泵,外形小巧功能超强可靠,具有内置SLC(智能逻辑)功能,可以满足各种应用需求。
在水泵应用中,我们经常会接触到恒压控制系统。
丹佛斯FC51变频器自带PI调节功能,能实现恒压供水控制.但是恒压供水系统中还有很多其他功能,例如:休眠功能,我们就可以使用FC51自带的SLC功能来实现。
现在我们来介绍如何运用FC51的SLC逻辑实现恒压供水+休眠功能。
一、休眠功能的要求:在恒压供水控制系统中,为了节省电能和防止水泵频繁启停,要求当泵的速度低至输出频率下限,延时一段时间后变频器自动停止输出,进入休眠状态;然后当压力反馈值低于设定压力下限值时,再自动唤醒变频器。
具体接线图如下:具体参数设置如下:参数号参数名称设定值[代码] 说明1—00 控制方式选择 [3],闭环过程控制1—60 低速负载补偿 0%1-61 高速负载补偿 0%1—62 滑差补偿 0%3—03 最大参考值 10 (bar)按客户要求3-10.0 预置参考值0 50 %(对应5 bar)压力设定值3—15 参考来源1 [0],无功能3—16 参考来源2 [0],无功能4-10 转向[0],仅正向4-12 电机速度下限 20。
0 Hz4—14 电机速度上限 50.0 Hz5-10 端子18号功能 [9],自锁启动5—11 端子19号功能[6],停止反逻辑6-22 端子60低电流 0.0mA6-23 端子60高电流 20.0 mA6-24 端子60反馈低 06—25 端子60反馈高 10 传感器的最大量程7-20 过程反馈源1 [2],模拟量输入端子607—32 过程PID启动速度 20.0Hz7—33 过程PID比例增益 0。
57-34 过程PID积分时间 8.0 s13-00 SL控制器模式[1],ON13-10.0 比较器0操作数[3],电动机速度13-10。
1 比较器1操作数 [2],反馈13—11.0 比较器0运算符[0],小于13—11。
基于plc的恒压供水系统的设计(恒压供水系统的原理及电气控制要求。
Plc在机电系统中的应用和工作原理.西门子变频器的工作原理MM440。
Plc编程原理及程序设计方法。
电器原理图,接线图。
)一.恒压供水系统的原理1.系统介绍生产生活中的用水量常随时间而变化,季节、昼夜相差很大.用水和供水的不平衡集中体砚在水压上,用水多而供水少则水压低,用水少而供水多则水压高。
以前大多采用传统的水塔、高位水箱或气压罐式增压设备容易造成二次污染,同时也增大了水泵的轴功率和能量损耗.随着电力电子技术的发展变频调速技术广泛应用于送水泵站、加压站、工业给水、小区和高楼供水等供水等领域。
相对于传统的技术而言,它具有节能效益明显、保护功能完善、控制灵活方便等优点。
恒压供水控制系统的基本控制策略是:采用电动机调速装置与可编程控制器(PLC)构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的.系统的控制目标是总管的出水压力及系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入CPU运算处理后,发出控制指令,控制泵电动机的投运台数和运行变量泵电动机的转速,从而达到给水总管压力稳定在设定的压力值上。
恒压供水系统由PLC控制器,变频器,触摸屏显示器,压力变送器,水位变送器,软启动器,水泵电机组,电机保护装置以及其他电控设备等构成,如图1所示。
图1 恒压供水系统示意图2.系统构成系统采用了S7—200型PLC (14个输人点,10个输出点)、MM440型变频器、压力传感器及其他控制设备.系统构成如图2所示。
图2 系统构成图压力传感器将用户管网水压信号变成电信号(4一20mA),送给变频器内部PID控制器,PID控制器根据压力设定值与实际检测值进行PID运算,并给出信号控制水泵电动机的电压和频率.当用水量较少时,1#泵在变频器控制下变频运行。
第一篇一、接线:按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。
关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。
压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。
压力表有红、黄、蓝三根引出线。
压力表电气技术参数:电阻满量程:400Ω(蓝、红);零压力起始电阻值:≤20Ω (黄、红);满量程压力上限电阻值:≤360Ω(黄、红);接线端外加电压:≤10V(蓝、红)二、开环调试:检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。
按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反馈电压上升,记录下将要设定的恒定压力(比如5Kg)对应的反馈电压值(比如3.1V)。
按停车键STOP,变频器减速停车。
三、闭环变频恒压运行:合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz 后,根据用水情况自动调节,保证出水口的压力恒定为5Kg。
增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。
第二篇一、前言目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值及测定压力之间的差值,通过PI调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。
这种控制系统电控部分较简单,国内外采用广泛。