2017年浙江省中考数学冲刺100题(每天一练):21-30题
- 格式:docx
- 大小:85.95 KB
- 文档页数:6
2017年中考冲刺数学试卷两套汇编六附答案解析中考数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.﹣2、0、1、﹣3四个数中,最小的数是()A.﹣2 B.0 C.1 D.﹣32.下列图形是中心对称图形的是()A.B. C.D.3.下列计算中,结果正确的是()A.a2•a3=a6 B.(2a)•(3a)=6a C.(a2)3=a6D.a6÷a2=a34.函数y=的自变量取值范围是()A.x≠3 B.x≠0 C.x≠3且x≠0 D.x<35.我校2016级2198名考生在2016年中考体育考试中取得了优异成绩,为了考察他们的中考体育成绩,从中抽取了550名考生的中考体育成绩进行统计,下列说法正确的是()A.本次调查属于普查B.每名考生的中考体育成绩是个体C.550名考生是总体的一个样本D.2198名考生是总体6.如图,直线AB∥CD,直线EF与直线AB相交于点M,MN平分∠AME,若∠1=50°,则∠2的度数为()A.50°B.80°C.85°D.100°7.已知x﹣2y=3,则7﹣2x+4y的值为()A.﹣1 B.0 C.1 D.28.如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=()A.40°B.50°C.55°D.60°9.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为()A.61 B.63 C.76 D.7810.数学活动课,老师和同学一起去测量校内某处的大树AB的高度,如图,老师测得大树前斜坡DE的坡度i=1:4,一学生站在离斜坡顶端E的水平距离DF 为8m处的D点,测得大树顶端A的仰角为α,已知sinα=,BE=1.6m,此学生身高CD=1.6m,则大树高度AB为()m.A.7.4 B.7.2 C.7 D.6.811.在矩形ABCD中,AB=,BC=2,以A为圆心,AD为半径画弧交线段BC于E,连接DE,则阴影部分的面积为()A.﹣ B.﹣C.π﹣D.π﹣12.能使分式方程+2=有非负实数解且使二次函数y=x2+2x﹣k﹣1的图象与x轴无交点的所有整数k的积为()A.﹣20 B.20 C.﹣60 D.60二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.2016年重庆高考报名人数近250000人,数据250000用科学记数法表示为.14.计算:()﹣2+(π﹣3)0﹣=.15.如图,在△ABC中,=,DE∥AC,则DE:AC=.16.“2016重庆国际马拉松”的赛事共有三项:A、“全程马拉松”、B、“半程马拉松”、C、“迷你马拉松”.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到以上三个项目组,则小明和小刚被分配到不同项目组的概率是.17.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.若丙也从甲出发的地方沿相同的方向骑自行车行驶,且与甲的速度相同,当甲追上乙后45秒时,丙也追上乙,则丙比甲晚出发秒.18.在正方形ABCD中,点E为BC边上一点且CE=2BE,点F为对角线BD上一点且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,连结CH、CF,若HG=2cm,则△CHF的面积是cm2.三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.已知如图,点F、A、E、B在一条直线上,∠C=∠F,BC∥DE,AB=DE求证:AC=DF.20.为了掌握某次数学模拟考试卷的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:请将频数分布直方图补充完整;若老师找到第五组中一个学生的语文、数学、英语三科成绩,如表.老师将语文、数学、英语成绩按照3:5:2的比例给出这位同学的综合分数.求此同学的综合分数.四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.21.计算:(1)x(x+2y)﹣(x﹣y)2+y2(2)(﹣x+3)÷.22.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=,tanAOC=,点B的坐标为(,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.23.2016年5月29日,中超十一轮,重庆力帆将主场迎战河北华夏幸福,重庆“铁血巴渝”球迷协会将继续组织铁杆球迷到现场为重庆力帆加油助威.“铁血巴渝”球迷协会计划购买甲、乙两种球票共500张,并且甲票的数量不少于乙票的3倍.(1)求“铁血巴渝”球迷协会至少购买多少张甲票;(2)“铁血巴渝”球迷协会从售票处得知,售票处将给予球迷协会一定的优惠,本场比赛球票以统一价格(m+20)元出售给该协会,因此协会决定购买的票数将在原计划的基础上增加(m+10)%,购票后总共用去56000元,求m的值.24.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.在△ABC中,以AB为斜边,作直角△ABD,使点D落在△ABC内,∠ADB=90°.(1)如图1,若AB=AC,∠BAD=30°,AD=6,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;(2)如图2,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP(3)如图3,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).26.已知如图1,抛物线y=﹣x2﹣x+3与x轴交于A和B两点(点A在点B 的左侧),与y轴相交于点C,点D的坐标是(0,﹣1),连接BC、AC(1)求出直线AD的解析式;(2)如图2,若在直线AC上方的抛物线上有一点F,当△ADF的面积最大时,有一线段MN=(点M在点N的左侧)在直线BD上移动,首尾顺次连接点A、M、N、F构成四边形AMNF,请求出四边形AMNF的周长最小时点N的横坐标;(3)如图3,将△DBC绕点D逆时针旋转α°(0<α°<180°),记旋转中的△DBC为△DB′C′,若直线B′C′与直线AC交于点P,直线B′C′与直线DC交于点Q,当△CPQ是等腰三角形时,求CP的值.参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.﹣2、0、1、﹣3四个数中,最小的数是()A.﹣2 B.0 C.1 D.﹣3【考点】有理数大小比较.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:﹣2、0、1、﹣3四个数中,最小的数是﹣3;故选D.2.下列图形是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念和各图的性质求解.【解答】解:A、是轴对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.3.下列计算中,结果正确的是()A.a2•a3=a6 B.(2a)•(3a)=6a C.(a2)3=a6D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式.【分析】分别根据同底数幂的乘法的性质,单项式乘单项式的法则,幂的乘方的性质,同底数幂的除法的法则,对各选项分析判断后利用排除法求解.【解答】解:A、应为a2•a3=a2+3=a5,故A错误B、应为(2a)•(3a)=6a2,故B错误C、(a2)3=a2×3=a6,故C正确;D、应为a6÷a2=a6﹣2=a4.故D错误故选:C.4.函数y=的自变量取值范围是()A.x≠3 B.x≠0 C.x≠3且x≠0 D.x<3【考点】函数自变量的取值范围.【分析】根据分母不等于0即可列不等式求解.【解答】解:根据题意得3﹣x≠0,解得:x≠3.故选A.5.我校2016级2198名考生在2016年中考体育考试中取得了优异成绩,为了考察他们的中考体育成绩,从中抽取了550名考生的中考体育成绩进行统计,下列说法正确的是()A.本次调查属于普查B.每名考生的中考体育成绩是个体C.550名考生是总体的一个样本D.2198名考生是总体【考点】总体、个体、样本、样本容量.【分析】根据样本、总体、个体、样本容量的定义进行解答即可.【解答】解:样本是:从中抽取的550名考生的中考体育成绩,个体:每名考生的中考体育成绩是个体,总体:我校2016级2198名考生的中考体育成绩的全体,故选B.6.如图,直线AB∥CD,直线EF与直线AB相交于点M,MN平分∠AME,若∠1=50°,则∠2的度数为()A.50°B.80°C.85°D.100°【考点】平行线的性质.【分析】由MN平分∠AME,得到∠AME=2∠1=100°,根据平行线的性质即可得到结论.【解答】解:∵MN平分∠AME,若∠1=50°,∴∠AME=2∠1=100°,∴∠BMF=∠AME=100°,∵直线AB∥CD,∴∠2=180°﹣∠BMF=80°,故选B.7.已知x﹣2y=3,则7﹣2x+4y的值为()A.﹣1 B.0 C.1 D.2【考点】代数式求值.【分析】先求得2x﹣4y的值,然后整体代入即可.【解答】解:∵x﹣2y=3,∴2x﹣4y=6.∴7﹣2x+4y=7﹣(2x﹣4y)=7﹣6=1.故选:C.8.如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=()A.40°B.50°C.55°D.60°【考点】切线的性质.【分析】连接OC,先根据圆周角定理得∠DOC=2∠A=50°,再根据切线的性质定理得∠OCD=90°,则此题易解.【解答】解:连接OC,∵OA=OC,∴∠A=∠OCA=25°,∴∠DOC=2∠A=50°,∵过点D作⊙O的切线,切点为C,∴∠OCD=90°,∴∠D=40°.故选:A.9.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为()A.61 B.63 C.76 D.78【考点】规律型:图形的变化类.【分析】由已知图形中空心小圆圈个数,知第n个图形中空心小圆圈个数为4n﹣(n+2)+n(n﹣1),据此可得答案.【解答】解:∵第①个图形中空心小圆圈个数为:4×1﹣3+1×0=1个;第②个图形中空心小圆圈个数为:4×2﹣4+2×1=6个;第③个图形中空心小圆圈个数为:4×3﹣5+3×2=13个;…∴第⑦个图形中空心圆圈的个数为:4×7﹣9+7×6=61个;故选:A.10.数学活动课,老师和同学一起去测量校内某处的大树AB的高度,如图,老师测得大树前斜坡DE的坡度i=1:4,一学生站在离斜坡顶端E的水平距离DF 为8m处的D点,测得大树顶端A的仰角为α,已知sinα=,BE=1.6m,此学生身高CD=1.6m,则大树高度AB为()m.A.7.4 B.7.2 C.7 D.6.8【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】根据题意结合坡度的定义得出C到AB的距离,进而利用锐角三角函数关系得出AB的长.【解答】解:如图所示:过点C作CG⊥AB延长线于点G,交EF于点N,由题意可得:==,解得:EF=2,∵DC=1.6m,∴FN=1.6m,∴BG=EN=0.4m,∵sinα==,∴设AG=3x,则AC=5x,故BC=4x,即8+1.6=4x,解得:x=2.4,故AG=2.4×3=7.2m,则AB=AG﹣BG=7.2﹣0.4=6.8(m),答:大树高度AB为6.8m.故选:D.11.在矩形ABCD中,AB=,BC=2,以A为圆心,AD为半径画弧交线段BC于E,连接DE,则阴影部分的面积为()A.﹣ B.﹣C.π﹣D.π﹣【考点】扇形面积的计算;矩形的性质.【分析】连接AE,根据勾股定理求出BE的长,进而可得出∠BAE的度数,由余角的定义求出∠DAE的度数,根据S阴影=S扇形DAE﹣S△DAE即可得出结论.【解答】解:连接AE,∵在矩形ABCD中,AB=,BC=2,∴AE=AD=BC=2.在Rt△ABE中,∵BE===,∴△ABE是等腰直角三角形,∴∠BAE=45°,∴∠DAE=45°,∴S阴影=S扇形DAE﹣S△DAE=﹣×2×=﹣.故选A.12.能使分式方程+2=有非负实数解且使二次函数y=x2+2x﹣k﹣1的图象与x轴无交点的所有整数k的积为()A.﹣20 B.20 C.﹣60 D.60【考点】抛物线与x轴的交点;分式方程的解.【分析】①解分式方程,使x≥0且x≠1,求出k的取值;②因为二次函数y=x2+2x﹣k﹣1的图象与x轴无交点,所以△<0,列不等式,求出k的取值;③综合①②求公共解并求其整数解,再相乘.【解答】解: +2=,去分母,方程两边同时乘以x﹣1,﹣k+2(x﹣1)=3,x=≥0,∴k≥﹣5①,∵x≠1,∴k≠﹣3②,由y=x2+2x﹣k﹣1的图象与x轴无交点,则4﹣4(﹣k﹣1)<0,k<﹣2③,由①②③得:﹣5≤k<﹣2且k≠﹣3,∴k的整数解为:﹣5、﹣4,乘积是20;故选B.二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.2016年重庆高考报名人数近250000人,数据250000用科学记数法表示为2.5×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:250000=2.5×105,故答案为:2.5×105.14.计算:()﹣2+(π﹣3)0﹣=2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=4+1﹣3=2,故答案为:215.如图,在△ABC中,=,DE∥AC,则DE:AC=5:8.【考点】相似三角形的判定与性质.【分析】由比例的性质得出=,由平行线得出△BDE∽△BAC,得出比例式,即可得出结果.【解答】解:∵=,∴=,∵DE∥AC,∴△BDE∽△BAC,∴=,故答案为:5:8.16.“2016重庆国际马拉松”的赛事共有三项:A、“全程马拉松”、B、“半程马拉松”、C、“迷你马拉松”.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到以上三个项目组,则小明和小刚被分配到不同项目组的概率是.【考点】列表法与树状图法.【分析】先画树状图展示所有9种等可能的结果数,再找出其中小明和小刚被分配到不同项目组的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有9种等可能的结果数,其中小明和小刚被分配到不同项目组的结果数为6,所以小明和小刚被分配到不同项目组的概率==.故答案为.17.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.若丙也从甲出发的地方沿相同的方向骑自行车行驶,且与甲的速度相同,当甲追上乙后45秒时,丙也追上乙,则丙比甲晚出发15秒.【考点】函数的图象.【分析】①先根据图形信息可知:300秒时,乙到达目的地,由出发去距离甲1300米的目的地,得甲到目的地是1300米,而乙在甲前面100米处,所以乙距离目的地1200米,由此计算出乙的速度;②设甲的速度为x米/秒,根据50秒时,甲追上乙列方程求出甲的速度;③丙出发95秒追上乙,且丙比乙不是同时出发,可设丙比甲晚出发a秒,列方程求出a的值.【解答】解:由图可知:①50秒时,甲追上乙,②300秒时,乙到达目的地,∴乙的速度为:=4,设甲的速度为x米/秒,则50x﹣50×4=100,x=6,设丙比甲晚出发a秒,则(50+45﹣a)×6=(50+45)×4+100,a=15,则丙比甲晚出发15秒;故答案为:15.18.在正方形ABCD中,点E为BC边上一点且CE=2BE,点F为对角线BD上一点且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,连结CH、CF,若HG=2cm,则△CHF的面积是cm2.【考点】相似三角形的判定与性质;正方形的性质.【分析】如图,过F作FI⊥BC于I,连接FE,FA,得到FI∥CD,设BE=EI=IC=a,CE=FI=2a,AB=3a,由勾股定理得到FE=FC=FA=a,推出HE=AE=,根据正方形的性得到BG平分∠ABC,由三角形角平分线定理得到=,求得HG=AE=a=2,于是得到结论.【解答】解:如图,过F作FI⊥BC于I,连接FE,FA,∴FI∥CD,∵CE=2BE,BF=2DF,∴设BE=EI=IC=a,CE=FI=2a,AB=3a,∴则FE=FC=FA=a,∴H为AE的中点,∴HE=AE=,∵四边形ABCD是正方形,∴BG平分∠ABC,∴=,∴HG=AE=a=2,∴a=,=S△HEF+S△CEF﹣S△CEH=(a)2+•2a•2a﹣•2a•a=a2=,∴S△CHF故答案为:.三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.已知如图,点F、A、E、B在一条直线上,∠C=∠F,BC∥DE,AB=DE求证:AC=DF.【考点】全等三角形的判定与性质;平行线的性质.【分析】根据平行线的性质可得∠B=∠DEF,再利用AAS判定△DEF≌△ABC,进而可得AC=DF.【解答】证明:∵BC∥DE,∴∠B=∠DEF,在△ABC和△DEF中,∴△DEF≌△ABC(AAS),∴AC=DF.20.为了掌握某次数学模拟考试卷的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:请将频数分布直方图补充完整;若老师找到第五组中一个学生的语文、数学、英语三科成绩,如表.老师将语文、数学、英语成绩按照3:5:2的比例给出这位同学的综合分数.求此同学的综合分数.【考点】频数(率)分布直方图;统计表;扇形统计图;加权平均数.【分析】(1)根据第三组的频数是20,对应的百分比是40%,据此即可求得调研的总分人数,然后利用总人数减去其他组的人数即可求得第五组的人数,从而补全直方图;(2)利用加权平均数公式即可求解.【解答】解:(1)调研的总人数是20÷40%=50(人),则第五组的人数少50﹣6﹣8﹣20﹣14=2.;(2)综合分数是=137(分).答:这位同学的综合得分是137分.四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.21.计算:(1)x(x+2y)﹣(x﹣y)2+y2(2)(﹣x+3)÷.【考点】分式的混合运算;单项式乘多项式;完全平方公式.【分析】(1)先去括号,再合并同类项即可解答本题;(2)先化简括号内的式子,再根据分式的除法即可解答本题.【解答】解:(1)x(x+2y)﹣(x﹣y)2+y2=x2+2xy﹣x2+2xy﹣y2+y2=4xy;(2)(﹣x+3)÷====.22.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=,tanAOC=,点B的坐标为(,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.【考点】反比例函数与一次函数的交点问题;解直角三角形.【分析】(1)过A作AE⊥x轴于点E,在Rt△AOE中,可根据OA的长求得A点坐标,代入反比例函数解析式可求反比例函数解析式,进一步可求得B点坐标,利用待定系数法可求得直线AB的解析式,则可求得D点坐标;(2)过M作MF⊥x轴于点F,可证得△MFC∽△AEC,可求得MF的长,代入直线AB解析式可求得M点坐标,进一步可求得△MOB的面积.【解答】解:(1)如图1,过A作AE⊥x轴于E,在Rt△AOE中,tan∠AOC==,设AE=a,则OE=3a,∴OA==a,∵OA=,∴a=1,∴AE=1,OE=3,∴A点坐标为(﹣3,1),∵反比例函数y2=(k≠0)的图象过A点,∴k=﹣3,∴反比例函数解析式为y2=﹣,∵反比例函数y2=﹣的图象过B(,m),∴m=﹣3,解得m=﹣2,∴B点坐标为(,﹣2),设直线AB解析式为y=nx+b,把A、B两点坐标代入可得,解得,∴直线AB的解析式为y=﹣x﹣1,令x=1,可得y=﹣1,∴D点坐标为(0,﹣1);(2)由(1)可得AE=1,∵MA=2AC,∴=,如图2,过M作MF⊥x轴于点F,则△CAE∽△CMF,∴==,∴MF=3,即M点的纵坐标为3,代入直线AB解析式可得3=﹣x﹣1,解得x=﹣6,∴M点坐标为(﹣6,3),=OD•(x B﹣x M)=×1×(+6)=,∴S△MOB即△MOB的面积为.23.2016年5月29日,中超十一轮,重庆力帆将主场迎战河北华夏幸福,重庆“铁血巴渝”球迷协会将继续组织铁杆球迷到现场为重庆力帆加油助威.“铁血巴渝”球迷协会计划购买甲、乙两种球票共500张,并且甲票的数量不少于乙票的3倍.(1)求“铁血巴渝”球迷协会至少购买多少张甲票;(2)“铁血巴渝”球迷协会从售票处得知,售票处将给予球迷协会一定的优惠,本场比赛球票以统一价格(m+20)元出售给该协会,因此协会决定购买的票数将在原计划的基础上增加(m+10)%,购票后总共用去56000元,求m的值.【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)购买甲票x张,则购买乙票张,根据题意列出不等式解答即可;(2)根据题意列出方程解答即可.【解答】解:(1)设:购买甲票x张,则购买乙票张.由条件得:x≥3∴x≥375,故:“铁血巴渝”球迷协会至少购买375张甲票.(2)由条件得:500[1+(m+10)%](m+20)=56000∴m2+130m﹣9000=0∴m1=50,m2=﹣180<0(舍)故:m的值为50.24.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.【考点】因式分解的应用.【分析】(1)根据“快乐数”的定义计算即可;(2)设三位“快乐数”为100a+10b+c,根据“快乐数”的定义计算.【解答】解:(1)∵12+02=1,∴最小的两位“快乐数”10,∵19→12+92=82→82+22=68→62+82=100→12+02+02=1,∴19是快乐数;证明:∵4→37→58=68→89→125→30→9→81→65→61→37,37出现两次,所以后面将重复出现,永远不会出现1,所以任意一个“快乐数”经过若干次运算后都不可能得到4.(2)设三位“快乐数”为100a+10b+c,由题意,经过两次运算后结果为1,所以第一次运算后结果一定是10或者100,则a2+b2+c2=10或100,∵a、b、c为整数,且a≠0,∴当a2+b2+c2=10时,12+32+02=10,①当a=1,b=3或0,c=0或3时,三位“快乐数”为130,103,②当a=2时,无解;③当a=3,b=1或0,c=0或1时,三位“快乐数”为310,301,同理当a2+b2+c2=100时,62+82+02=100,所以三位“快乐数”有680,608,806,860.综上一共有130,103,310,301,680,608,806,860八个,又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,所以只有310和860满足已知条件.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.在△ABC中,以AB为斜边,作直角△ABD,使点D落在△ABC内,∠ADB=90°.(1)如图1,若AB=AC,∠BAD=30°,AD=6,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;(2)如图2,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP(3)如图3,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).【考点】三角形综合题.【分析】(1)在直角三角形中,利用锐角三角函数求出AB,即可;(2)先利用互余判断出,∠BDP=∠PEC,得到△BDP和△CEQ,再用三角形的外角得到∠EPC=∠PQC,即可;(3)利用线段垂直平分线上的点到两端点的距离相等,判断出∠AFB=90°即可.【解答】(1)解:∵∠ADB=90°,∠BAD=30°,AD=6,∴cos∠BAD=,∴AB===12,∴AC=AB=12,∵点P、M分别为BC、AB边的中点,∴PM=AC=6,(2)如图2,在ED上截取EQ=PD,∵∠ADB=90°,∴∠BDP+∠ADE=90°,∵AD=AE,∴∠ADE=∠AED,∵把△ABD绕点A逆时针旋转一定角度,得到△ACE,∴∠AEC=∠ADB=90°∵∠AED+∠PEC=90°,∴∠BDP=∠PEC,在△BDP和△CEQ中,,∴△BDP≌△CEQ,∴BP=CQ,∠DBP=∠QCE,∵∠CPE=∠BDP+∠DBP,∠PQC=∠PEC+∠QCE,∴∠EPC=∠PQC,∴PC=CQ,∴BP=CP(3)BF2+FC2=2AD2,理由:如图3,连接AF,∵EF⊥AC,且AE=EC,∴FA=FC,∠FAC=∠FCA,∵EF⊥AC,且AE=EC,∴∠DAC=∠DCA,DA=DC,∵AD=BD,∴BD=DC,∴∠DBC=∠DCB,∵∠FAC=∠FCA,∠DAC=∠DCA,∴∠DAF=∠DCB,∴∠DAF=∠DBC,∴∠AFB=∠ADB=90°,在RT△ADB中,DA=DB,∴AB2=2AD2,在RT△ABB中,BF2+FA2=AB2=2AD2,∵FA=FC∴BF2+FC2=2AD2.26.已知如图1,抛物线y=﹣x2﹣x+3与x轴交于A和B两点(点A在点B 的左侧),与y轴相交于点C,点D的坐标是(0,﹣1),连接BC、AC(1)求出直线AD的解析式;(2)如图2,若在直线AC上方的抛物线上有一点F,当△ADF的面积最大时,有一线段MN=(点M在点N的左侧)在直线BD上移动,首尾顺次连接点A、M、N、F构成四边形AMNF,请求出四边形AMNF的周长最小时点N的横坐标;(3)如图3,将△DBC绕点D逆时针旋转α°(0<α°<180°),记旋转中的△DBC 为△DB′C′,若直线B′C′与直线AC交于点P,直线B′C′与直线DC交于点Q,当△CPQ是等腰三角形时,求CP的值.【考点】二次函数综合题.【分析】(1)先求出点A,B坐标,再用待定系数法求出直线AD解析式;=﹣(m+)2+,进而求出F点的坐标,再确定出点M的(2)先建立S△ADF位置,进而求出点A1,A2坐标,即可确定出A2F的解析式为y=﹣x﹣①,和直线BD解析式为y=﹣x﹣1②,联立方程组即可确定出结论;(3)分四种情况讨论计算,利用锐角三角函数和勾股定理表示出线段,用相似三角形的性质即可求出PC的值.【解答】解:(1)∵抛物线y=﹣x2﹣x+3与x轴交于A和B两点,∴0=﹣x2﹣x+3,∴x=2或x=﹣4,∴A(﹣4,0),B(2,0),∵D(0,﹣1),∴直线AD解析式为y=﹣x﹣1;(2)如图1,过点F作FH⊥x轴,交AD于H,设F(m,﹣m2﹣m+3),H(m,﹣m﹣1),∴FH=﹣m2﹣m+3﹣(﹣m﹣1)=﹣m2﹣m+4,=S△AFH+S△DFH=FH×|y D﹣y A|=2FH=2(﹣m2﹣m+4)=﹣m2﹣m+8=﹣∴S△ADF(m+)2+,当m=﹣时,S最大,△ADF∴F(﹣,)如图2,作点A关于直线BD的对称点A1,把A1沿平行直线BD方向平移到A2,且A1A2=,连接A2F,交直线BD于点N,把点N沿直线BD向左平移得点M,此时四边形AMNF的周长最小.∵OB=2,OD=1,∴tan∠OBD=,∵AB=6,∴AK=,∴AA1=2AK=,在Rt△ABK中,AH=,A1H=,∴OH=OA﹣AH=,∴A1(﹣,﹣),过A2作A2P⊥A2H,∴∠A1A2P=∠ABK,∵A1A2=,∴A2P=2,A1P=1,∴A2(﹣,﹣)∵F(﹣,)∴A2F的解析式为y=﹣x﹣①,∵B(2,0),D(0,﹣1),∴直线BD解析式为y=﹣x﹣1②,联立①②得,x=﹣,∴N点的横坐标为:﹣.(3)∵C(0,3),B(2,0),D(0,﹣1)∴CD=4,BC=,OB=2,BC边上的高为DH,根据等面积法得,BC×DH=CD×OB,∴DH==,∵A(﹣4,0),C(0,3),∴OA=4,OC=3,∴tan∠ACD=,①当PC=PQ时,简图如图1,过点P作PG⊥CD,过点D作DH⊥PQ,∵tan∠ACD=∴设CG=3a,则QG=3a,PG=4a,PQ=PC=5a,∴DQ=CD﹣CQ=4﹣6a∵△PGQ∽△DHQ,∴,∴,∴a=,∴PC=5a=;②当PC=CQ时,简图如图2,过点P作PG⊥CD,∵tan∠ACD=∴设CG=3a,则PG=4a,∴CQ=PC=5a,∴QG=CQ﹣CG=2a,∴PQ=2a,∴DQ=CD﹣CQ=4﹣5a∵△PGQ∽△DHQ,同①的方法得出,PC=4﹣,③当QC=PQ时,简图如图1过点Q作QG⊥PC,过点C作CN⊥PQ,设CG=3a,则QG=4a,PQ=CQ=5a,∴PG=3a,∴PC=6a∴DQ=CD﹣CQ=4﹣5a,利用等面积法得,CN×PQ=PC×QG,∴CN=a,∵△CQN∽△DQH同①的方法得出PC=④当PC=CQ时,简图如图4,过点P作PG⊥CD,过H作HD⊥PQ,设CG=3a,则PG=4a,CQ=PC=5a,∴QD=4+5a,PQ=4,∵△QPG∽△QDH,同①方法得出.CP=综上所述,PC的值为:;4﹣,,=.中考数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.截止到2015年底,我国已实现31个省市志愿服务组织区域全覆盖,志愿者总数已超110 000 000人.将110 000 000用科学记数法表示应为()A.110×106B.11×107 C.1.1×108D.0.11×1082.如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D3.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是()A.B.C.D.4.京剧是我国的国粹,是介绍、传播中国传统艺术文化的重要媒介.在下面的四个京剧脸谱中,不是轴对称图形的是()A.B.C.D.。
2017年浙江省中考数学冲刺100题(每天一练):41-50题一、单1.设m>n>0,m2+n2=4mn,则=A、B、C、2 D、3+2.(2015?随州)若代数式+有意义,则实数x的取值范围是()A、x≠1B、x≥0C、x≠0D、x≥0且x≠1+3.(2015?巴中)若单项式2x2y a+b与x a﹣b y4是同类项,则a,b的值分别为()A、a=3,b=1B、a=﹣3,b=1C、a=3,b=﹣1D、a=﹣3,b=﹣1+4.(2016?雅安)将如图绕AB边旋转一周,所得几何体的俯视图为()A、B、C、D、+5.(2016?义乌)如图是一个正方体,则它的表面展开图可以是(?)A、B、C、D、+二、填空题6.(2015?烟台)如图,数轴上点A、B所表示的两个数的和的绝对值是.?+7.(2015?遵义)按一定规律排列的一列数依次为:,,,,…,按此规律,这列数中的第10个数与第16个数的积是.+8.(2015?烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为.?+三、解答题9.如图是一个正方体的展开图,标注了字母a的面是正方体的正面,如果正方体相对两个面上的整式的值相等,求整式(x+y)a的值.+10.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天航行路程记录如下:14,﹣9,﹣1 8,﹣7,13,﹣6,10,﹣5(单位:千米).(1)B地在A地何位置?(2)若冲锋舟每千米耗油0.5升,出发前冲锋舟油箱有油29升,求途中需补充多少升油?+。
1.杭州市2017年中考数学试题及答案一.选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣22=()A.﹣2 B.﹣4 C.2 D.42.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×1073.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.|1+|+|1﹣|=()A.1 B.C.2 D.25.设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y6.若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<127.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.88.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0 C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<0 10.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题(本大题有6个小题,每小题4分,共24分)11.数据2,2,3,4,5的中位数是.12.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB= .13.一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.若|m|=,则m= .15.如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.根据三天的销售额为270元列出方程,求出x即可.三.解答题(本大题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤。
2017年浙江省中考数学冲刺100题(每天一练):61-70题一、选择题1.一个多边形的内角和是外角和的3倍,则这个多边形是()A、五边形B、六边形C、七边形D、八边形+2.(2016?深圳三模)如图是由八个相同小正方体组合而成的几何体,则其俯视图是()A、B、C、D、+3.(2016?温州)如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A、一直减小B、一直不变C、先减小后增大D、先增大后减小+4.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为(??)A、80°B、100°C、60°D、45°+5.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为(??)A、B、C、D、+二、填空题6.如果关于x、y的方程组无解,那么a= .+7.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= .+8.在七巧板制作过程中可知,每一块板的锐角都是度.+三、解答题9.(2016?温州)有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)1540 25403020千克数(1)、求该什锦糖的单价.(2)、为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?+10.(2016?梅州)如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)、求证:BO=DO;(2)、若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.+。
2017年浙江省中考数学冲刺100题(每天一练):31-40题一、单1.在下述命题中,真命题有()(1)对角线互相垂直的四边形是菱形(2)三个角的度数之比为1:3:4的三角形是直角三角形(3)对角互补的平行四边形是矩形(4)三边之比为1::2的三角形是直角三角形.A、1个B、2个C、3个D、4个+2.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A、B、C、D、3+在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=2,BD=4,那么由下列条件 能够判断DE ∥BC 的是(??)A 、B 、C 、D 、 +4.已知如图,AB 是半圆O 的直径,弦AD 、BC 相交于点P ,那么等于∠BPD 的(??)A 、正弦B 、余弦C 、正切D 、以上都不对 +5.如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与 坐标轴重合,P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后点P 的 对应点的坐标 是()A 、( ,1)B 、(1,﹣ )C 、(2 ,﹣2)D 、(2,﹣2 )+二、填空题6.直径为10cm 的⊙O 中,弦AB=5cm ,则弦AB 所对的圆周角是.+如图,若用若干个全等的等腰梯形拼成了一个平行四边形,则一个等腰梯形中,最大的内角是.+8.如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠A=80°,点P为⊙O上任意一点(不与E、F重合),则∠EPF= .+三、综合题9.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)、求证:△ABF≌△CBE;(2)、判断△CEF的形状,并说明理由.+10.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)、求k的值及点E的坐标;(2)、若点F是边上一点,且△BCF∽△EBD,求直线FB的解析式.+。
2017年浙江省中考数学冲刺100题(每天一练):51-60题201810051-60题题(每天一练):年中考数学冲刺510分)题;共一、单选题(共2+bx+cbAy=x2y=01≤x≤31.c62016?)(,(其中,是常数),)(过点绍兴)抛物线(且抛物线的对称轴与线段c )的值不可能是(有交点,则A. 4B. 6C. 8D. 102.要组织一次篮球邀请赛,参赛的每两个队之间都要比赛一场,据场地和时间等条件的限制,赛程计划安74x个队参赛,则根据题意所列方程正排天,每天安排场比赛,刚好完成所有比赛.设比赛组织者邀请)确的是(=28 B. xx1=28 C. xx+1=28 D. xx1=28A. xx+1))((﹣)﹣)((3.2014?△ABCCA=CB∠ACB=90°AB=2DABD为圆心作圆心,中,为丹东)如图,在,,点的中点,以点(90°DEFCEF )恰在弧角为的扇形上,则图中阴影部分的面积为(,点D. C.B. A.4.2016?123456,若任意抛掷,,,,(,湖州)有一枚均匀的正方体骰子,骰子各个面上的点数分别为x|x4|2 )﹣,则其结果恰为一次骰子,朝上的面的点数记为,计算的概率是(D.C. B. A.2+5x+b y=ax+b5.y=ax )的图象可能是(与二次函数在同一平面直角坐标系内,一次函数B. A.D. C.34分)题;共二、填空题(共8/ - 1 -2017年浙江省中考数学冲刺100题(每天一练):51-60题6.90°算一次,每滚动则滚动第有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,2014________ .次后,骰子朝下一面的点数是7.2014??ABCDABADAEBECMDM∠DAB∠ABC∠BCD∠CDA的中,,>分别为(,沈阳)如图,,,,,,AEDMFBECMNFM=3cmEF=4cmEM?ABCD42cm,若与,相交于点,,平分线,与连接相交于点的周长为,.EM= ________cmAB= ________cm .则,8.2016?ABCDGHCQDEEQBCF.处,点相交于落在与处,点(落在张家界)如图,将矩形若沿对折,AD=8cmAB=6cmAE=4cm△EBF________cm .的周长是,.则,210分)题;共三、解答题(共9.2014?Rt△ABC∠B=30°∠ACB=90°CAOAO=ACO为圆心,(,使本溪)如图,已知在,延长,中,,以到OA⊙OBADCD .交,连接延长线于点长为半径作1CD⊙O 的切线;是()求证:2AB=4 ,求图中阴影部分的面积.()若10.2030元时,月销售量某商店经营儿童益智玩具,已知成批购进时的单价是元.调查发现:销售单价是23011040元.设每件玩具元,月销售量就减少是件,但每件玩具售价不能高于件,而销售单价每上涨xxy 元.的销售单价上涨了元时(为正整数),月销售利润为1yxx 的取值范围.与()求的函数关系式并直接写出自变量22520 元?()每件玩具的售价定为多少元时,月销售利润恰为3 )每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?(8/ - 2 -2017年浙江省中考数学冲刺100题(每天一练):51-60题答案解析部分一、单选题1.A 【答案】二次函数的性质【考点】2+bx+cbcy=xA26∵),且抛物线的对称轴与线是常数)过点(其中抛物线,,【解析】【解答】解:(y=01≤x≤3 )有交点,段(∴6≤c≤14,解得A.故选21≤x≤3y=0A26y=x+bx+cbc)(【分析】根据抛物线且抛物线的对称轴与线段,(其中(,)是常数)过点,c的取值范围,从而可以解答本题.本题考查二次函数的性质、解不等式,解题关键是有交点,可以得到明确题意,列出相应的关系式. 2.B 【答案】一元二次方程的应用【考点】12x1场比赛,所以可列方程为:﹣【解答】每支球队都需要与其他球队赛(队之间只有)场,但【解析】B1=4×7xx.)﹣(.故选÷2=4×7×,把相关数值代入即可.【分析】关系式为:球队总数每支球队需赛的场数 D 3.【答案】扇形面积的计算【考点】⊥ACDM⊥BCDNCD.,作【解析】【解答】解:连接,DABCA=CB∠ACB=90°∵的中点,,,点为DMCN ∴DM=DC=AB=1.,四边形是正方形,=FDE .则扇形的面积是:∵CA=CB∠ACB=90°DAB 的中点,为,,点∴CD∠BCA ,平分∵DM⊥BCDN ⊥AC ,,又∴DM=DN ,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN ,△DMG△DNH 中,则在和,∴△DMG≌△DNHAAS ),(8/ - 3 -2017年浙江省中考数学冲刺100题(每天一练):51-60题S∴= =S.DMCNDGCH四边形四边形.则阴影部分的面积是:﹣CDDM⊥BCDN⊥AC△DMG≌△DNHS=S FDE求得扇形,,则【分析】连接,,作,证明DMCNDGCH四边形四4.C 【答案】绝对值,概率的意义,列表法与边形的面积,则阴影部分的面积即可求得.树状图法【考点】∵|x4|=2 ,﹣【解析】【解答】解:∴x=26 .或=2 = ∴.其结果恰为的概率C.故选4|=2|x的解,即可解决问题.本题考查概率的定义、绝对值方程等知识,解【分析】先求出绝对值方程﹣mnA种结出现题的关键是理解题意,如果一个事件有种可能,而且这些事件的可能性相同,其中事件APA= ,属于中考常考题型.果,那么事件(的概率) 5.C 【答案】二次函数的图象【考点】b0bAa00a0,故本选项错误;,【解析】【解答】解:,由直线可知,、由抛物线可知,>>,得<>0aB0b0a0b,故本选项错误;、由抛物线可知,<<,<>,,由直线可知,a0by00Ca0b 轴同一点,故本选项正确;>,且交>,,>>,由直线可知,、由抛物线可知,b0aaD0b00故本选项错误.<>,,由直线可知,、由抛物线可知,<>,C.故选2+5x+by=ax+by=ax的图象相比较【分析】本题可先由一次函数图象得到字母系数的正负,再与二次函数看是否一致.二、填空题 6.3 【答案】几何体的展开图,探索图形规律【考点】【解答】观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,【解析】2014÷4=503…2∵,∴2014次后与第二次相同,滚动第3∴.朝下的点数为解题的关键是发现规律.【分析】点数二和点数五相对且四次一循环,观察图象知道点数三和点数四相对,8/ - 4 -2017年浙江省中考数学冲刺100题(每天一练):51-60题7.513 ;【答案】勾股定理的应用,平行四边形的性质,矩形的判定与性质,相似三角形的应用【考点】∵AE∠DAB 的平分线,为【解析】【解答】解:EAB=∠DABDAE=∠∴∠,CBE=∠ABCABE=∠∠,同理:DCM=∠BCDBCM=∠∠,ADM=∠∠ADC ∠CDM=.∵ABCD 是平行四边形,四边形∴∠DAB=∠BCD∠ABC=∠ADCAD=BC .,,CBNADF=∠∠DAF=∠BCN∠∴.,CBNADF△△中,在和.ASA△CBN∴△ADF≌).(∴DF=BN.∵ABCD是平行四边形,四边形∥BC∴AD,∠ABC=180°∴∠DAB+.∠EBA=90°∴∠EAB+.AEB=90°∴∠.DMC=90°∠AFD=∠.同理可得:EFM=90°∴∠.EF=4∵FM=3,,cmME=∴=5).(∠FEN=90°∠∵EFM=∠FMN=.∴EFMN是矩形.四边形∴EN=FM=3.AEB∠AFD=∠∵∠DAF=∠EAB,,△AEB∽∴△AFD.∴=.=∴.∴4DF=3AF.DF=3kAF=4k.设,则8/ - 5 -2017年浙江省中考数学冲刺100题(每天一练):51-60题∵∠AFD=90°,∴AD=5k .∵∠AEB=90°AE=4k+1BE=3k+1 ),(,(),∴AB=5k+1 ).(∵2AB+AD=42 ,)(∴AB+AD=21 .∴5k+1+5k=21 .)(∴k=1.6 .∴AB=13cm ).(513 .故答案为:;∠AEB=∠AFD=∠DMC=90°EFMN∠EFM=90°,由.进而可证到四边形【分析】由条件易证是矩形及FM=3cmEF=4cmEM△ADF≌△CBNDF=BN△AFD∽△AEB,从而得到,,从而得到可求出;易证.易证4DF=3AFDF=3kAF=4kAE=4k+1BE=3k+1AD=5kAB=5k+1?ABCD的),从而有.设(,则(.,().由),42cmkAB 长.可求出周长为,从而求出8.8 【答案】勾股定理,矩形的性质,翻折变换(折叠问题),相似三角形的判定与性质【考点】AH=aDH=ADAH=8a ,【解析】,则【解答】解:设﹣﹣Rt△AEH∠EAH=90°AE=4AH=aEH=DH=8a ,,﹣中,在,,∴EH222222=4 +AH+a 8a =AE,即(﹣),a=3 .解得:∵∠BFE+∠BEF=90°∠BEF+∠AEH=90°,,∴∠BFE=∠AEH .∵∠EAH=∠FBE=90°,又∴△EBF∽△HAE ,===∴.∵C=AE+EH+AH=AE+AD=12 ,HAE△C∴=C=8 .HAEEBF△△8 .故答案为:AH=aDH=ADAH=8aa值,再根据同角的余角互补可得出﹣,通过勾股定理即可求出﹣【分析】设,则∠BFE=∠AEH△EBF∽△HAE,根据相似三角形的周长比等于对应比即可求出结论.本题考查了,从而得出△EBF∽△HAE.本题翻折变换、矩形的性质、勾股定理以及相似三角形的判定及性质,解题的关键是找出属于中档题,难度不大,解决该题型题目时,通过勾股定理求出三角形的边长,再根据相似三角形的性质找出周长间的比例是关键.8/ - 6 -2017年浙江省中考数学冲刺100题(每天一练):51-60题三、解答题9.1OD ,【答案】()证明:连接∵∠BCA=90°∠B=30°,,∴∠OAD=∠BAC=60°,∵OD=OA ,∴△OAD 是等边三角形,∴AD=OA=AC∠ODA=∠O=60°,,ACD=∠OAD=30°ADC=∠∴∠,∴∠ODC=60°+30°=90°,OD⊥DC ,即∵OD 为半径,∴CD⊙O 的切线;是2∵AB=4∠ACB=90°∠B=30°,)解:,(,OD=OA=AC=AB=2∴,=2 =CD=,由勾股定理得:S∴S﹣π×2×2=S =2=.﹣﹣ODC△AOD扇形阴影30 度角的直角三角形,勾股定理,切线的判定,扇形面积的计算【考点】等边三角形的判定与性质,含1OD∠OAD=60°OADAD=OA=AC∠ODA=∠O=60°,,得出等边三角形,求出,【【解析】分析】(,求出)连接ACD=∠OAD=30°∠ODC=90°∠ADC=∠,根据切线的判定得出即可;,求出求出2ODCDODCAOD 的面积,相减即可.,根据勾股定理求出)求出和扇形(长,分别求出三角形10.1 )根据题意得:【答案】解:(2+130x+230010x 2023010x=y=30+x,﹣﹣﹣)()(x0x≤10x 为正整数;自变量且的取值范围是:<2+130x+2300=252010x y=25202,)当时,得﹣(x=2x=11(不合题意,舍去)解得,21x=230+x=32 (元)当时,322520 元.答:每件玩具的售价定为元时,月销售利润恰为8/ - 7 -2017年浙江省中考数学冲刺100题(每天一练):51-60题3 )根据题意得:(2+130x+2300 10xy=﹣2+2722.56.5 x=10,)﹣﹣(∵a=100 ,﹣<∴x=6.5y2722.5 ,时,有最大值为当∵0x≤10x 为正整数,<且∴x=630+x=36y=2720 (元),时,当,x=730+x=37y=2720(元),时,当,36372720 元.答:每件玩具的售价定为元时,每个月可获得最大利润,最大的月利润是元或一元二次方程的应用,二次函数的应用【考点】130+x2023010x),然后﹣﹣【解析】【分析】()元,月销售量为()根据题意知一件玩具的利润为(=×月销售量即可求出函数关系式.根据月销售利润一件玩具的利润2+130x+2300x10x y=25202y=的值即可.时代入中,求出(﹣)把2+130x+2300x=6.5y0x≤1010x3y=x为正整数,化成顶点式,求得当时,且有最大值,再根据()把﹣<x=6x=7y 的值即可.分别计算出当和时8/ - 8 -。
2018年中考数学冲刺100题(每天一练):1-10题一、单选题(共4题;共8分)1.(2016•雅安)下列各式计算正确的是()A.(a+b)2=a2+b2B.x2•x3=x6C.x2+x3=x5D.(a3)3=a92.(2016•湖州)有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()A. B. C. D.3.(2016•包头)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE= DEB.CE= DEC.CE=3DED.CE=2DE4.(2016•陕西)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6二、填空题(共4题;共4分)5.(2016•贵阳)已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是________.6.(2016•苏州)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为________.7.(2016•孝感)如图示我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE的值为________8.(2016•广东)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O 的直径,AB=BC=CD.连接PA,PB,PC,若PA=a,则点A到PB和PC的距离之和AE+AF=________.三、综合题(共2题;共20分)9.(2016•雅安)已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y.(1)求y与x的函数关系式;(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.10.(2016•义乌)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D 移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.答案解析部分一、单选题1.【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方,完全平方公式【解析】【解答】解:A、(a+b)2=a2+2ab+b2,故本选项错误;B、x2•x3=x5,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、(x3)3=x9,故本选项正确;故选D.【分析】根据完全平方公式判断A;根据同底数幂的乘法法则判断B;根据合并同类项的法则判断C;根据幂的乘方法则判断D.本题考查完全平方公式、同底数幂的乘法、合并同类项、幂的乘方,熟练掌握运算性质和法则是解题的关键.2.【答案】C【考点】绝对值,概率的意义,列表法与树状图法【解析】【解答】解:∵|x﹣4|=2,∴x=2或6.∴其结果恰为2的概率= = .故选C.【分析】先求出绝对值方程|x﹣4|=2的解,即可解决问题.本题考查概率的定义、绝对值方程等知识,解题的关键是理解题意,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= ,属于中考常考题型.3.【答案】B【考点】勾股定理,矩形的判定与性质,相似三角形的判定与性质【解析】【解答】解:过点D 作DH ⊥BC ,∵AD=1,BC=2,∴CH=1,DH=AB= = =2 ,∵AD ∥BC ,∠ABC=90°,∴∠A=90°,∵DE ⊥CE ,∴∠AED+∠BEC=90°,∵∠AED+∠ADE=90°,∴∠ADE=∠BEC ,∴△ADE ∽△BEC ,∴,设BE=x ,则AE=2,即,解得x=,∴,∴CE=DE , 故选B .【分析】过点D 作DH ⊥BC ,利用勾股定理可得AB 的长,利用相似三角形的判定定理可得△ADE ∽△BEC ,设BE=x,由相似三角形的性质可解得x,易得CE,DE 的关系.本题主要考查了相似三角形的性质及判定,构建直角三角形,利用方程思想是解答此题的关键.4.【答案】B【考点】垂径定理,圆周角定理,解直角三角形【解析】【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB= (180°﹣∠BOC)=30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2 ,∴BC=4 .故选:B.【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用.二、填空题。
2018年中考数学冲刺100题(每天一练):11-20题一、单选题(共5题;共10分)1.(2016•漳州)下列方程中,没有实数根的是()A. 2x+3=0B. ﹣1=0C.D. +x+1=02.(2016•湖北)如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A. 线段DB绕点D顺时针旋转一定能与线段DC重合B. 线段DB绕点D顺时针旋转一定能与线段DI重合C. ∠CAD绕点A顺时针旋转一定能与∠DAB重合D. 线段ID绕点I顺时针旋转一定能与线段IB重合3.(2016•永州)对下列生活现象的解释其数学原理运用错误的是()A. 把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B. 木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C. 将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D. 将车轮设计为圆形是运用了“圆的旋转对称性”的原理4.(2016•湖州)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A. 4B.C. 3D. 25.(2016•雅安)若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A. B. C. D.二、填空题(共3题;共3分)6.(2016•娄底)从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是________.7.(2016•大庆)一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为________海里/小时.8.(2016•玉林)如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF的距离是-1;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是________.(写出所有正确结论的序号)三、综合题(共2题;共30分)9.(2016•赤峰)如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)10.(2016•天津)在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(1)如图①,若α=90°,求AA′的长;(2)如图②,若α=120°,求点O′的坐标;(3)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)答案解析部分一、单选题1.【答案】D【考点】解一元一次方程,根的判别式,解分式方程【解析】【解答】解:A、2x+3=0,解得:x=﹣,∴A中方程有一个实数根;B、在x2﹣1=0中,△=02﹣4×1×(﹣1)=4>0,∴B中方程有两个不相等的实数根;C、=1,即x+1=2,解得:x=1,经检验x=1是分式方程=1的解,∴C中方程有一个实数根;D、在x2+x+1=0中,△=12﹣4×1×1=﹣3<0,∴D中方程没有实数根.故选D.【分析】A、解一元一次方程可得出一个解,从而得知A中方程有一个实数根;B、根据根的判别式△=4>0,可得出B中方程有两个不等实数根;C、解分式方程得出x的值,通过验证得知该解成立,由此得出C中方程有一个实数根;D、根据根的判别式△=﹣3<0,可得出D中方程没有实数根.由此即可得出结论.本题考查了根的判别式、解一元一次方程以及解分式方程,解题的关键是逐项分析四个选项中方程解的个数.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的符号判断根的个数是关键.2.【答案】D【考点】三角形的外接圆与外心,三角形的内切圆与内心,旋转的性质【解析】【解答】解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,故C正确,不符合题意;∠ABI=∠CBI,∴= ,∴BD=CD,故A正确,不符合题意;∵∠DAC=∠DBC,∴∠BAD=∠DBC,∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠BDI=∠DIB,∴BD=DI,故B正确,不符合题意;故选D.【分析】根据I是△ABC的内心,得到AI平分∠BAC,BI平分∠ABC,由角平分线的定义得到∠BAD=∠CAD,∠ABI=∠CBI根据三角形外角的性质得到∠BDI=∠DIB,根据等腰三角形的性质得到BD=DI.本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.3.【答案】B【考点】线段的性质:两点之间线段最短,垂线段最短,三角形的稳定性,圆的认识【解析】【解答】解:A、把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,正确;B、木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,故错误;C、将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,正确;D、将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确,故选B.【分析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.本题考查了圆的认识、三角形的稳定性、确定直线的条件等知识,解题的关键是熟练掌握这些定理,难度不大.4.【答案】B【考点】等腰三角形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴,∴= ,∴CD= ,BD=BC﹣CD= ,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴= ,即= ,∴DM= ,MB=BD﹣DM= ,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴= ,∴BE= = = .故选B.【分析】只要证明△ABD∽△MBE,得= ,只要求出BM、BD即可解决问题.本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题,题目比较难,属于中考选择题中的压轴题.5.【答案】C【考点】零指数幂,二次根式有意义的条件,一次函数的图象【解析】【解答】解:∵式子+(k﹣1)0有意义,∴,解得k>1,∴1﹣k<0,k﹣1>0,∴一次函数y=(1﹣k)x+k﹣1的图象过一、二、四象限.故选C.【分析】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.先求出k 的取值范围,再判断出1﹣k及k﹣1的符号,进而可得出结论.二、填空题6.【答案】【考点】轴对称图形,中心对称及中心对称图形,概率公式【解析】【解答】解:∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,∴取到的图形既是中心对称图形又是轴对称图形的概率为,故答案为:.【分析】先找出既是轴对称图形又是中心对称图形的个数,再根据概率公式进行计算即可.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)= .7.【答案】【考点】含30度角的直角三角形,解直角三角形的应用-方向角问题,等腰直角三角形【解析】【解答】解:如图所示:设该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ= AB=40,BQ= AQ=40 ,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40 =3x,解得:x= .即该船行驶的速度为海里/时;故答案为:.【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40 =3x,解方程即可.本题考查了解直角三角形的应用中的方向角问题、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;通过解直角三角形得出方程是解决问题的关键.8.【答案】①②③【考点】角平分线的性质,正方形的性质,线段垂直平分线的判定【解析】【解答】解:∵四边形ABCD为正方形,∴AB=AD,∠BAD=∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF,∴∠1=∠2,∵∠EAF=45°,∴∠1=∠2=∠22.5°,所以①正确;连结EF、AC,它们相交于点H,如图,∵Rt△ABE≌Rt△ADF,∴BE=DF,而BC=DC,∴CE=CF,而AE=AF,∴AC垂直平分EF,AH平分∠EAF,∴EB=EH,FD=FH,∴BE+DF=EH+HF=EF,所以④错误;∴△ECF的周长=CE+CF+EF=CED+BE+CF+DF=CB+CD=1+1=2,所以③正确;设BE=x,则EF=2x,CE=1﹣x,∵△CEF为等腰直角三角形,∴EF= CE,即2x= (1﹣x),解得x= ﹣1,∴EF=2(﹣1),∴CH= EF= ﹣1,所以②正确.故答案为①②③.【分析】先证明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可对①进行判断;连结EF、AC,它们相交于点H,如图,利用Rt△ABE≌Rt△ADF得到BE=DF,则CE=CF,接着判断AC垂直平分EF,AH平分∠EAF,于是利用角平分线的性质定理得到EB=EH,FD=FH,则可对③④进行判断;设BE=x,则EF=2x,CE=1﹣x,利用等腰直角三角形的性质得到2x= (1﹣x),解得x= ﹣1,则可对④进行判断.本题考查了四边形的综合题:熟练掌握正方形的性质和角平分线的性质定理.解决本题的关键是证明AC垂直平分EF.三、综合题9.【答案】(1)证明:∵四边形ABCD为正方形;∴∠BAP+∠QAE=∠B=90°,∵QE⊥AP;∴∠QAE+∠EQA=∠AEQ=90°∴∠BAP=∠EQA,∠B=∠AEQ;∴△ABP∽△QEA(AA)(2)解:∵△ABP≌△QEA;∴AP=AQ(全等三角形的对应边相等);在RT△ABP与RT△QEA中根据勾股定理得AP2=32+t2,AQ2=(2t)2即32+t2=(2t)2解得t1= ,t2=﹣(不符合题意,舍去)答:当t取时△ABP与△QEA全等(3)解:由(1)知△ABP∽△QEA;∴=()2∴=()2整理得:y= .【考点】全等三角形的判定与性质,勾股定理,正方形的性质【解析】【分析】本题主要考查的是相似三角形的综合应用,解答本题主要应用了正方形的性质、全等三角形的性质和判定、勾股定理是解题的关键.(1)根据正方形的性质和相似三角形的判定和性质证明即可;(2)根据全等三角形的判定和性质,利用勾股定理解答即可;(3)根据相似三角形的性质得出函数解析式即可.10.【答案】(1)解:如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB= =5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′= BA=5(2)解:作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH= BO′= ,O′H= BH= ,∴OH=OB+BH=3+ = ,∴O′点的坐标为(,)(3)解:∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y= x﹣3,当y=0时,x﹣3=0,解得x= ,则P(,0),∴OP= ,∴O′P′=OP= ,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D= O′P′= ,P′D= O′D= ,∴DH=O′H﹣O′D= ﹣= ,∴P′点的坐标为(,)【考点】线段的性质:两点之间线段最短,含30度角的直角三角形,旋转的性质,坐标与图形变化-旋转【解析】【分析】本题考查了几何变换综合题:熟练掌握旋转的性质;理解坐标与图形性质;会利用两点之间线段最短解决最短路径问题;记住含30度的直角三角形三边的关系.(1)如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用2017年浙江省中考数学冲刺100题(每天一练):11-20题坐标的表示方法写出O′点的坐标;(3)由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP 的值最小,接着利用待定系数法求出直线O′C的解析式为y= x﹣3,从而得到P(,0),则O′P′=OP= ,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D和DO′的长,从而可得到P′点的坐标.- 11 - / 11。
2017年浙江省中考数学冲刺100题(每天一练):91-100题一、单1.下列说法正确的是(??)A、两条直线被第三条直线所截,内错角相等B、直线外一点到这条直线的垂线段,叫做点到直线的距离C、若a⊥b,b⊥c,则a⊥cD、不相等的角不是对顶角+2.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有(??)A、1个B、2个C、3个D、4个+3.在2016年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是(??)A、平均数为160B、中位数为158C、众数为158D、方差为20.3+4.已知二次函数y=﹣(x﹣a)2﹣b的图象如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是(??)A、B、C、D、+5.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是(??)A、12B、4C、12-3D、+二、填空题6.已知等腰三角形的底为3,腰长为x,则周长y关于腰长x的关系式为.+7.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为.+8.如图所示,若∠DBE=78°,则∠A+∠C+∠D+∠E= °.+三、综合题9.计算。
(1)、解不等式(组):3x+2≤x ﹣2;(2)、+ 并把不等式组的解集在数轴上表示出来.10.(2016?钦州)如图,在△ABC 中,AB=AC ,AD 是角平分线,BE 平分∠ABC 交A D 于点E ,点O 在AB 上,以OB 为半径的⊙O 经过点E ,交AB 于点F(1)、求证:AD 是⊙O 的切线;(2)、若AC=4,∠C=30°,求 的长.+。
2018年中考数学冲刺100题(每天一练):21-30题
一、单选题(共5题;共10分)
1.已知a,b,c为△ABC三边,且满足a2c2-b2c2=a4-b4,则它的形状为()
A. 等边三角形
B. 直角三角形
C. 等腰三角形
D. 等腰三角形或直角三角形
2.如果a=(-99)0,b=(-0.1)-1,c=(- )-2,那么a ,b ,c三数的大小为()
A. a>b>c
B. c>a>b
C. a>c>b
D. c>b>a
3.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()
A. B. C. D.
4.下列各式中,计算正确的是()
A. a3•a4=a12
B. =
C. (a+2)2=a2+4
D. (﹣xy)3•(﹣xy)﹣2=xy
5.若方程组的解是二元一次方程3x-5y-90=0的一个解,则a的值是( )
A. 3
B. 2
C. 6
D. 7
二、填空题(共3题;共4分)
6.计算:(﹣1)2017﹣|﹣7|+ ×(3.14﹣π)0+()﹣1=________.
7.如图所示,一条街道的两个拐角∠ABC和∠BCD,若∠ABC=150°,当街道AB和CD平行时,∠BCD=________
度,根据是________.
8.如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠A=80°,点P为⊙O上任意一点(不与E、F重合),
则∠EPF=________.
三、综合题(共2题;共25分)
9.综合题
(1)(2)解分式方程:
10.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
(1)求a的值;
(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;
(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).
答案解析部分
一、单选题
1.【答案】D
【考点】因式分解-运用公式法,等腰三角形的判定,勾股定理
【解析】【解答】∵a2c2-b2c2=a4-b4,
∴(a2c2-b2c2)-(a4-b4)=0,
∴c2(a+b)(a-b)-(a+b)(a-b)(a2+b2)=0,
∴(a+b)(a-b)(c2-a2-b2)=0,
∵a+b≠0,
∴a-b=0或c2-a2-b2=0,所以a=b或c2=a2+b2即它是等腰三角形或直角三角形.
故选D.
【分析】把式子a2c2-b2c2=a4-b4变形化简后判定则可.如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果没有这种关系,这个就不是直角三角形.
2.【答案】B
【考点】有理数大小比较,零指数幂,负整数指数幂
【解析】【解答】:∵a=(-99)0=1,b=(-0.1)-1=-10,c=(- )-2=且-10<1<
即b<a<c .
故选:B.
【分析】此题考查了零指数幂、负整数幂及数的比较大小,解题的关键是:分别将a、b、c化简求值.3.【答案】C
【考点】平行线的判定,平行线分线段成比例,相似三角形的判定与性质
【解析】【解答】解:
只有选项C正确,
理由是:∵AD=2,BD=4,,
∴,
∵∠DAE=∠BAC,
∴△ADE∽△ABC,
∴∠ADE=∠B,
∴DE∥BC,
根据选项A、B、D的条件都不能推出DE∥BC,
故选C.
【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可.
4.【答案】B
【考点】整式的混合运算,约分,负整数指数幂
【解析】【解答】解:A、a3•a4=a7,不符合题意;B、,符合题意;
C、(a+2)2=a2+4a+4,不符合题意;
D、(﹣xy)3•(﹣xy)﹣2=﹣xy,不符合题意;
故选B
【分析】根据幂的乘方、约分、积的乘方和完全平方公式判断即可.
5.【答案】C
【考点】二元一次方程的解,解二元一次方程,解二元一次方程组
【解析】【解答】解方程组得
将它们代入3x-5y-90得,
化简得30a-180,解得a=6.
故选C.
【分析】首先把a看成已知数,用a的代数式表示出x,y,然后将它们代入3x-5y-90=0,转化成关于a的一元一次方程,然后即可求解.
二、填空题
6.【答案】1
【考点】实数的运算,零指数幂,负整数指数幂
【解析】【解答】解:(﹣1)2017﹣|﹣7|+ ×(3.14﹣π)0+()﹣1=﹣1﹣7+4×1+5
=1.
故答案为:1.
【分析】直接利用零指数幂的性质和绝对值的性质、负整数指数幂的性质分别化简求出答案.
7.【答案】150°;两直线平行,内错角相等
【考点】平行线的性质
【解析】【解答】解:∵AB∥CD,∠ABC=150°∴∠BCD=∠ABC=150(两直线平行,内错角相等).
故答案为150°,两直线平行,内错角相等.
【分析】由AB和CD平行,根据两直线平行,内错角相等,可得∠BCD的度数.
8.【答案】50°或130°
【考点】垂线,多边形内角与外角,圆周角定理,三角形的内切圆与内心,正多边形和圆
【解析】【解答】解:有两种情况:①当P在弧EDF上时,∠EPF=∠ENF,
连接OE、OF,
∵圆O是△ABC的内切圆,
∴OE⊥AB,OF⊥AC,
∴∠AEO=∠AFO=90°,
∵∠A=80°,
∴∠EOF=360°﹣∠AEO﹣∠AFO﹣∠A=100°,
∴∠ENF=∠EPF= ∠EOF=50°,
②当P在弧EMF上时,∠EPF=∠EMF,
∠FPE=∠FME=180°﹣50°=130°,
故答案为:50°或130°.
【分析】有两种情况:①当P在弧EDF上时,连接OE、OF,求出∠EOF,根据圆周角定理求出即可;②当P在弧EMF上时,∠EPF=∠EMF,根据圆内接四边形的性质得到∠EMF+∠ENF=180°,代入求出即可.三、综合题
9.【答案】(1)解:
原式=
=
(2)解:解分式方程:
去分母,得x-2(x-3)=4
去括号,得x-2x+6=4
移项,得x-2x=4-6
合并同类项,得-x=-2
解方程得x=2
经检验:x=2是原分式方程的根
解方程得x=2
经检验:x=2是原分式方程的根
【考点】实数的运算,解分式方程,特殊角的三角函数值
【解析】【分析】(1)所有非零数的0次幂都等于1,sin45°=;去绝对值符号时,要注意负数的绝对值是它的相反数;
(2)解分式方程:去分母,去括号,移项,合并同类项,未知数系数化为1,检验方程的解.
10.【答案】(1)解:由题意可得,a=20﹣2﹣7﹣2=9,
即a的值是9
(2)解:由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360°× =162°
(3)解:由题意可得,所有的可能性如下图所示,
故第一组至少有1名选手被选中的概率是:= ,
即第一组至少有1名选手被选中的概率是
【考点】频数(率)分布表,扇形统计图,列表法与树状图法
【解析】【分析】(1)根据被调查人数为20和表格中的数据可以求得a的值;(2)根据表格中的数据可以得到分数在8≤m<9内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性,从而可以得到第一组至少有1名选手被选中的概率.。