多面体欧拉公式的发现(一)
- 格式:doc
- 大小:35.00 KB
- 文档页数:4
2欧拉公式2.1 欧拉公式的发现欧拉公式的发现有三个重要的途径:1、归纳法:1639年,笛卡尔从五种正多面体顶点数V 、面数R 和棱数E 的关系的考察中,猜测出公式R+V-E=2,然而由于归纳的证据比较单一,对公式进一步有效的检验难以给出,因此他未予证明。
2、为多面体分类法:“从数学史的角度来看,欧拉公式的来源与对多面体进行几何意义下的分类有密切关系。
平面多边形可依据边数或顶点数来分类,类似的,多面体的分类自然会联想到它的边界元素(面、顶点和棱数)”。
欧拉在研究多面体的分类时发现,对于某些结构不同的凸多面体,在面数R 相等和顶点数V 相等的情况下,棱数E 也相等,这样把多面体的三种元素R 、V 、E 结合起来,也无法对多面体进行分类,然而由此启发他发现了R 、V 、E 三者的关系。
3、类比法:这个发现的途径属于公式发现之后的“再发现”,通过这种方法可以使人明白数学发现的另一种基本方法和理解数学变换中的拓扑思想。
多边形是平面内的直线形,多面体是空间中的“平面体”,因此可以把它们的某些性质加以类比。
比如,n 边形的内角和为π·(n-2),而且它经连续的拉伸或压缩变形后其内角和不变,因此它的内角和是n 的一个不变量,类似的,注意到“V 个顶点的多面体经连续拉伸或压缩变形后其面角和不变”,也是一个不变量,推导可得“有V 个顶点的多面体的面角和是2π·(V-2)”,再由这个结论发现并推导多面体欧拉公式.。
在欧拉公式中,()E R V p f -+=叫做欧拉示性数。
2.2 欧拉公式的推论推论1:设G 是带e 条边和v 个顶点的连通平面简单图,其中3≥υ,则63-≤υe 。
推论2:设G 是带e 条边和v 个顶点的连通平面简单图,其中3≥v 且没有长度为3的圈,则42-≤v e 。
推论3:设G 是带e 条边、v 个顶点和r 个面的平面图,则w r e +=+-1υ,其中w 为连通分支数。
推论4:设G 是任意平面图,3≥V ,则 δ(G )≤5。
欧拉公式:V+FE=2 (简单多面体的顶点数V、棱数E和面数F)(1)E=各面多边形边数和的一半,特别地,若每个面的边数为n的多边形,则面数F与棱数E的关系:;(2)若每个顶点引出的棱数为m,则顶点数V与棱数E的关系:。
欧拉公式又称为欧拉定理,也称为尤拉公式,是用在复分析领域的公式,欧拉公式将三角函数与复数指数函数相关联,之所以叫作欧拉公式,那是因为欧拉公式是由莱昂哈德·欧拉提出来的,所以用他的名字进行了命名。
尤拉公式提出,对任意实数 x,都存在其中 e是自然对数的底数, i是虚数单位,而 \cos和 \sin则是余弦、正弦对应的三角函数,参数 x则以弧度为单位。
这一复数指数函数有时还写作 {cis}(x)(英语:cosine plus i sine,余弦加i正弦)。
由于该公式在 x为复数时仍然成立,所以也有人将这一更通用的版本称为尤拉公式。
莱昂哈德·欧拉出生于1707年4月15日,死于公元1783年9月18日,莱昂哈德·欧拉是一位来自于瑞士的数学家和物理学家,是近代著名的数学家之一,此外,莱昂哈德·欧拉还有力学,光学和天文学上都作出了重大的贡献。
莱昂哈德·欧拉被认为是18世纪,世界上最杰出的数学家,也是史上最伟大的数学家之一,而且莱昂哈德·欧拉还有许多的著作,他的学术著作就多达6080册。
他对微分方程理论作出了重要贡献。
他还是欧拉近似法的创始人,这些计算法被用于计算力学中。
此中最有名的被称为欧拉方法。
在数论里他引入了欧拉函数。
自然数 n的欧拉函数被定义为小于n并且与 n互质的自然数的个数。
在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。
在分析领域,是欧拉综合了戈特弗里德·威廉·莱布尼茨的微分与艾萨克·牛顿的流数。
他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声:其中是黎曼函数。
§9.9 多面体欧拉公式的发现(一)
1.判断下列命题是否正确
(1)凸多面体是简单多面体. ()(2)简单多面体是凸多面体. ()(3)欧拉公式:V+F-E=2适用于所有多面体. ()2.选择题
(1)一个凸十二面体共有8个顶点,其中2个顶点处各有6条棱,其他的顶点处都有相同数目的棱,则其他顶点各有棱()
(A)1条(B)5条(C)6条(D)7条
(2)连接正十二面体各面中心,得到一个()(A)正六面体(B)正八面体(C)正十二面体(D)正二十面体(3)已知一个简单多面体的各个顶点都有三条棱,那么2F-V等于()(A)2 (B)4 (C)8 (D)12
3.求证:任一简单多面体中,所有面的内角和:S=(V-2)2π,其中V是多面体的顶点数. 4.正六面体各面中心是一个正八面体的顶点,求这个正六面体和正八面体的表面积之比. 5.已知一个简单多面体的各个顶点都有三条棱,求证:V=2F-4.。
多面体欧拉定理的发现(1)【教学目的】1.理解简单多面体的定义2.理解并熟记欧拉公式3.会运用欧拉公式及相关知识进行计算及推理【教学思路】正多面体5种→认识欧拉→拓扑变形→简单多面体概念→研究正多面体V、F、E的关系→欧拉定理→证明→欧拉定理的意义【教学过程】1.(1) 什么叫正多面体?特征?正多面体是一种特殊的凸多面体,它包括两个特征:①每个面都是有相同边数的正多边形;②每个顶点都有相同数目的棱数。
(2) 正多面体有哪几种?展示5种正多面体的模型。
为什么只有5种正多面体?著名数学家欧拉进行了研究,发现了多面体的顶点数、面数、棱数间的关系。
2. 介绍数学家欧拉欧拉(1707~1783)瑞士数学家,大部分时间在俄国和法国度过。
他16岁获硕士学位,早年在数学天才贝努里赏识下开始学习数学,并毕生研究数学,是数学史上最“高产”的数学家,在世发表700多篇论文。
他的研究论著几涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。
欧拉还是数学符号发明者,如用f (x)表示函数、∑表示连加、i表示虚数单位、π、e等。
在多面体研究中首先发现并证明了欧拉公式,今天我们沿着他的足迹探索这个公式。
3.发现关系:V+F-E=2。
是不是所有多面体都有这样的关系呢?如何去研究呢?需要观念和方法上的创新。
4.多面体拓扑变形与简单多面体的概念考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它会连续(不破裂)变形,最后可变成一个球面。
像这样,表面经过连续变形可变为球面的多面体,叫做简单多面体。
5. 欧拉定理定理 简单多面体的顶点数V 、棱数E 及面数F 间有关系V+F-E=2公式描述了简单多面体中顶点数、面数、棱数之间特有的规律6. 定理的证明分析:以四面体ABCD 为例。
将它的一个面BCD 去掉,再使它变为平面图 形,四面体的顶点数V 、棱数V 与剩下的面数F 1变形后都没有变(这里F 1=F-1)。
欧拉公式是怎么发现的?欧拉公式指的是近代数学的伟大先驱之一莱昂哈德·欧拉(1707-1783)所发明的一系列公式。
这些公式分布在数学这颗大树的众多分支领域中,比如复变函数中的欧拉幅角公式、初等数论中的欧拉函数公式、拓扑学中的欧拉多面体公式、分式公式等等。
我们在学习中,最先接触到的欧拉公式就是著名的欧拉多面体公式:V-E+F=2。
下面简单介绍下这个公式的发现过程。
早在1639年,法国著名数学家笛卡尔(解析几何学的创始人)就发现了一个规律:不管由多边形围成的凸多面体的外形如何变化,其顶点数(V),棱数(E)和面数(F)都满足一个简单的公式——V-E+F=2。
但在当时这个规律并未广泛流传。
过了一百多年后,欧拉在1750年又重新独立地发现了这个规律,于是这个广为流传的公式被命名为欧拉多面体公式。
欧拉的思路大致是这样的:任意三角形的内角和一定是180°,用弧度表示就是π,这个角度是和三角形的形状和大小无关的。
进而就能发现,任何一个凸n边形的内角和为(n-2)π,这说明凸多边形的内角和是由边数的多少决定的,也和形状、大小等因素无关。
把这个理论推广到空间中若干个多边形围成的凸多面体,又有怎样的性质呢?欧拉首先选择了几个形状简单的多面体进行推理,并将观察所得进行了归纳总结,他发现这些多面体的面角和是由多面体的顶点数决定的。
欧拉又把这个猜想进一步推广,就得到了V-E+F=2的最终结论。
事实上,欧拉多面体公式的证明方法有很多种,比如数学归纳法,球面几何法等。
欧拉是一位不折不扣的数学天才。
但是他的非凡成就也和他对数学的热爱有关。
在欧拉人生的最后7年,他双目完全失明,但是仍然留下了大量数学遗产。
这或许更能说明,为什么数学史上能留下那么多经典的欧拉公式吧。
多面体欧拉定理:定理简单多面体的顶点数V、棱数E及面数F间有关系对于简单多面体,有著名的欧拉公式:V-E+F=2简单多面体即表面经过连续变形可以变为球面的多面体。
欧拉定理:定理简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2;公式描述了简单多面体中顶点数、面数、棱数之间特有的规律。
定理的证明:分析:以四面体ABCD为例。
将它的一个面BCD去掉,再使它变为平面图形,四面体的顶点数V、棱数E与剩下的面数F1变形后都没有变(这里F1=F-1)。
因此,要研究V、E 和F的关系,只要去掉一个面,将它变形为平面图形即可。
只需平面图形证明:V+F1-E=1;(1)去掉一条棱,就减少一个面,V+F1-E的值不变。
例如去掉BC,就减少一个面ABC。
同理,去掉棱CD、BD,也就各减少一个面ACD、ABD,由于V、F1-E的值都不变,因此V+F1-E的值不变;(2)再从剩下的树枝形中,去掉一条棱,就减少一个顶点,V+F1-E的值不变。
例如去掉CA,就减少一个顶点C。
同理去AD就减少一个顶点D,最后剩下AB。
在以上变化过程中,V+F1-E的值不变,V+F1-E=2-0-1=1,所以 V+F-E= V+F1-E+1=2。
对任意的简单多面体,运用这样的方法,都是只剩下一条线段。
公式对任意简单多面体都是正确的。
欧拉定理又一证法:多面体,设顶点数V,面数F,棱数E。
剪掉一个面,将其余的面拉平,使它变为平面图形,我们在两个图中求所有面的内角总和Σα。
一方面,利用面求内角总和。
设有F个面,各面的边数分别为n1,n2,…,nF,各面的内角总和为:Σα = [(n1-2)•180+(n2-2)•180+…+(nF-2)•180] = (n1+n2+…+nF -2F)•180 =(2E-2F)•180= (E-F)•360(1)另一方面,在拉开图中,利用顶点来求内角总和。
设剪去的一个面为n 边形,其内角和为(n-2)•180,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。
研究性课题:多面体欧拉公式的发现(一)●教学目标(一)教学知识点1.简单多面体的V、E、F关系的发现.2.欧拉公式的猜想.3.欧拉公式的证明.(二)能力训练要求1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律.2.使学生能通过进一步观察验证所得的规律.3.使学生能从拓扑的角度认识简单多面体的本质.4.使学生能通过归纳得出关于欧拉公式的猜想.5.使学生了解欧拉公式的一种证明思路.(三)德育渗透目标1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求.2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力.●教学重点欧拉公式的发现.●教学难点使学生从中体会和学习数学大师研究数学的方法.●教学方法指导学生自学法首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识并从中寻找规律;问题2让学生作进一步观察、验证得出规律;问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现规律的证明.以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的思想和方法.●教具准备投影片三张:第一张:课本P56的问题1及表1(记作§9.9.1 A)第二张:课本P57的问题2及表2(记作§9.9.1 B)第三张:课本P57的问题3及P58的问题4(记作§9.9.1 C)●教学过程Ⅰ.课题导入瑞士著名的数学家欧拉,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别代表一简单多面体的顶点、棱和面的数目,今天我们就去体验当年的数学大师是如何运用数学思想和方法发现欧拉公式并给予理论上的推理证明等研究活动,希望大家在活动中要充分展开自己的想象,展开热烈的讨论互相进行数学交流.Ⅱ.讲授新课[师]我们先从一些常见的多面体出发,对它们的顶点数V、面数F、棱数E列出表,请大家观察后填写表1(打出投影片§9.9.1 A)(学生观察,数它们的顶点数V、面数F、棱数E,填入表1) [师]好,大家填的快速而准确,继续观察表1的各组数据,找出顶点数V、面数F及棱数E的关系如何?(学生寻找,可能一时不易得到,教师应给予适当点拨提问)[师]表1中多面体的面数F都随顶点数目V的增大而增大吗?[生]不一定.[师]请举例说明.[生]如八面体和立方体的顶点数由6增大到8,而面数由8减小到6.[师]此时棱的数目呢?[生]棱数都是一样的.[师]所以我们得到:棱的数目也并不随顶点数目的增大而增大.大家从表中还发现了其他的什么规律,请积极观察,勇于发言.[生]当多面体的棱数增加时,它的顶点与面数的变化也有一定规律.[师]举例说明.[生甲]如图中(1)和(2)的棱数由6增大到12,面数由4增大到6,此时的顶点数也在随棱数的增加而增加,即由4增大到8.[师]生甲叙述得严格吗?有不同意见吗?[生乙]顶点数和面数并不是严格按棱数的增大而增大的.[师]请试说说你归纳出来的规律.[生乙]我发现并认为:当顶点数随棱数的增加而减小时,它的面数一定是随棱数的增加而增加的;当面数随棱数的增加而减小时,它的顶点数却是随棱数的增加而增加.[师]生乙归纳得如何?大家对他的叙述同意吗?(可能会有其他想法,教师应给学生充分的时间,让他们畅所欲言,表达他们的新发现,并予以一一指导)[师]上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系.[生](积极验证,得出)V+F-E=2[师]以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证.[生](许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等.(教师应启发学生展开想象,举出更多的例子)[生]一个三棱锥截去含3条棱的一个顶得到的图形、一个立方体截去一个角所得的图形等.[师]好,同学们现在想象,例如:n棱锥在它的n边形面上增加一个“屋顶”或截去含n条棱的一个顶后,刚才的猜想是否成立?能证明吗?[生]所得的多面体的棱数E为3n条,顶点数V为2n个,面数F为2+n个,因2n+(2+n)-3n=2,故满足V+F-E=2这个关系式.[师]请继续来观察一些其他图形的情况.(打出投影片§9.9.1 B)请同学们观察后,将所得数据填入表2中.(学生观察,数它们的顶点数V、面数F、棱数E,并填入表2,可能有些同学出错,教师在巡视时要及时给予指导,帮助学生填完)[师]观察你们的数据,请验证这些图形是否符合前面找出的规律吗?其中哪些图形符合?[生](1)符合,(2)、(3)不符合.[师]一起来设想问题1和问题2中的图形.在某个橡皮膜上,当橡皮膜变形后,有的地方伸长、有的地方压缩,但不能破裂或折叠,橡皮膜上的图形的形状也跟着改变,这种图形的变化过程我们称之为连续变形.那么请大家试想这些图形中的哪些在连续变形中最后其表面可变为一个球面?(打出投影片§9.9.1 C)[生]问题1中的(1)~(5)和问题2中的(1)图形表面经过连续变形能变为一个球面.[师]请同学们继续设想问题2中(2)(3)在连续变形中,其表面最后将变成什么图形?[生]问题2中第(2)个图形,表面经过连续变形能变为环面;问题2中第(3)个图形,表面经过连续变形能变为两个对接球面.[师]像以上那些在连续变形中,表面能变为一个球面的多面体叫简单多面体.请大家判断我们前面所学的图哪些是简单多面体?[生]棱柱、棱锥、正多面体、凸多面体是简单多面体.[师]至此,在问题1、2、3的基础上,我们是否可以得到什么猜想?怎样用式子表达?(有了前面积极地认真解决了问题1、2、3后学生不难归纳出)[生]简单多面体的顶点数V、面数F的和与棱数E之间存在规律V+F-E=2.[师]我们将它叫做欧拉公式,以上3个问题的解决让我们体会到了数学家欧拉发现V+F-E=2的过程.那么如何证明欧拉公式呢?请大家打开课本P58的欧拉公式证明方法中的一种,认真体会它的证明思路和其间用到的数学思想.(学生自学、教师查看,发现问题,收集问题下节课处理)Ⅲ.课堂练习课本P61练习1、2.1.用三棱柱、四棱锥验证欧拉公式.解:在三棱柱中:V=6,F=5,E=9,∵6+5-9=2,∴V+F-E=2。
高中新课标选修3-5《多面体欧拉定理的发现》教学设计温州中学黄振【教学背景】数学不应看作真理的汇集,而主要的应看成人类活动的一种创造性的活动。
因而在教学中,如何积极引导学生主动地探索,深刻剖析知识的产生、形成和发展过程,提高学生发现问题和解决问题的能力,这是我经常思考的问题。
过去我认为教师讲得越细,学生学得就越容易,课堂教学效率更高,就像钻山洞一样,老师领着学生钻比学生自己摸索可能更快一些。
可是我没想到,这样做会使学生养成不动脑筋的习惯,只限于被动地听课,而不愿主动地学习。
本节课试图在这一方面做一个尝试。
【教学目标】1.知识目标了解多面体的概念;理解多面体欧拉公式;了解公式的发现过程和证明方法。
2.能力目标①初步了解数学概念和结论的产生过程,提高学生发现问题和解决问题的能力。
②培养学生空间想象能力、逻辑思维能力、人际交往能力和协作能力。
③发展学生的创新意识和创新能力。
3.情感目标①以欧拉公式的探索为载体,体验数学研究的过程和创造的激情。
②体验数学的简洁美(V+F-E=2),激发学生学习数学的兴趣。
【教学重点】欧拉定理的发现和证明。
【教学难点】欧拉定理的证明。
【教学设计】一.创设情境,提出问题播放世界杯主题曲,引出足球话题:四年一度的足球世界杯,被戏称为“绿茵场上的战争”,它令世人瞩目,吸引并造就了无数的球迷。
你也许是一个狂热的球迷,但是你知道足球的黑块和白块是什么图形吗?各有多少块?如果将它看成由这些多边形所围成的几何体,你能算出它的顶点数和棱数吗?(设计意图:让学生体验数学与“现实世界”息息相关,使数学学习发生在真实的世界和背景中,提高学生学习数学的兴趣和参与的程度。
)二.探究猜想,导入定理多面体是由它的面围成的立体图形,这些面的交线形成棱,棱与棱的相交形成顶点。
那么在多面体中,它的顶点数、面数和棱数之间有什么关系?请你来猜一猜。
首先让学生单独思考,然后同桌之间相互讨论。
学生一般会在已学过的多面体(棱柱、棱锥等)中进行探索,得到结果。
多面体欧拉定理的发现我们知道,平面多边形由它的边围成,它的顶点数与边数相等,按边数可以对多边形进行分类,同类的多边形具有某些相同的性质。
多面体是由它的面围成立体图形,这些面的交线形成棱,棱与棱相交形成顶点。
在研究多面体的分类等问题中,人们逐步发现它的顶点数,面数和棱数之间有特定的关系。
以下我们将体验这种关系的发现及证明过程。
探索研究问题1:下列共有五个正多面体,分别数出它们的顶点数V、面数F和棱数E,并填表1观察表中填出的数据,请找出顶点数V、面数F及棱数E之间的规律。
教师巡视指导,如正十二面体,先定面数E=12;再定棱数,每个面有5条棱,共有12×5=60条,由于每条棱都是两个面的公共边,所以上面的计算每条棱被算过两次,于是棱数E=60/2=30;最后算顶点数,每个顶点处连有三条棱,所以它共有3V条棱,又因为每条棱连着两个顶点,所以上面的计算每条棱被算过两次,因此实际上只有3V/2条棱,即E=3V/2,所以V=20。
表1中多面体的面数F都随顶点数目V的增大而增大吗?(不一定).请举例说明.(如八面体和立方体的顶点数由6增大到8,而面数由8减小到6).此时棱的数目呢?(棱数都是一样的).所以我们得到:棱的数目也并不随顶点数目的增大而增大.大家从表中还发现了其他的什么规律,请积极观察,勇于发言.(当多面体的棱数增加时,它的顶点与面数的变化也有一定规律).上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系.(积极验证,得出)V+F-E=2以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证.(许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等.(教师应启发学生展开想象,举出更多的例子)一个三棱锥截去含3条棱的一个顶得到的图形、一个立方体截去一个角所得的图形等.好,同学们现在想象,例如:n棱锥在它的n边形面上增加一个“屋顶”或截去含n条棱的一个顶后,刚才的猜想是否成立?能证明吗?所得的多面体的棱数E为3n条,顶点数V为2n个,面数V为2+n 个,因2n +(2+n )-3n =2,故满足V +F -E =2这个关系式.请继续来观察下面的图形,填表2,并验证得出的公式工V +F -E =2_A(学生观察,数它们的顶点数V、面数F、棱数E,并填入表2,可能有些同学出错,教师在巡视时要及时给予指导,帮助学生填完)观察你们的数据,请验证这些图形是否符合前面找出的规律吗?其中哪些图形符合?一起来设想问题1和问题2中的图形.在某个橡皮膜上,当橡皮膜变形后,有的地方伸长、有的地方压缩,但不能破裂或折叠,橡皮膜上的图形的形状也跟着改变,这种图形的变化过程我们称之为连续变形.那么请大家试想这些图形中的哪些在连续变形中最后其表面可变为一个球面?问题1中的(1)~(5)和问题2中的(1)个图形表面经过连续变形能变为一个球面.请同学们继续设想问题2中⑴~⑻在连续变形中,其表面最后将变成什么图形?问题2中第⑻个图形;表面经过连续变形能变为环面像以上那些在连续变形中,表面能变为一个球面的多面体叫简单多面体.请大家判断我们前面所学的图哪些是简单多面体?棱柱、棱锥、正多面体、凸多面体是简单多面体.简单多面体的顶点数V、面数F的和与棱数E之间存在规律V+F -E=2.我们将它叫做欧拉公式,以上3个问题的解决让我们体会到了数学家欧拉发现V+F-E=2的过程.那么如何证明欧拉公式呢?请大家打开课本P65的欧拉公式证明方法中的一种,认真体会它的证明思路和其间用到的数学思想.(学生自学、教师查看,发现问题,收集问题下节课处理)在欧拉公式中,令f(p)=V+F-E。
研究性课题 多面体欧拉公式的发现【教材分析】教材结合9.8节关于多面体的分类而编,目的在于以学生主动参与的发现式学习活动,培养他们通过观察发现规律并证明所得猜想的能力。
【学情分析】该公式的证明较抽象,前后知识的联系较少,学生理解上有较大难度。
但在前面立几教学中学生已有将空间问题转化为平面问题来研究的降维思想和转化策略的基础,所以本节课采用多媒体辅助教学,降低空间想象的难度,突破降维过程中的变与不变的难点,从而达到降低教学难度的目的。
【教学目标】1、知识目标:培养学生观察,归纳,大胆猜想的能力,了解欧拉公式的发现及其法。
2、能力目标 掌握公式证明体现的思想方法。
使学生领悟转化、化归思想,从空间到平面的降维策略,学会从一般到特殊和特殊到一般的分析问题和解决问题的方法,增强学生应用数学知识解决实际问题的的意识和能力。
3、情意目标 通过教学使学生了解和感知欧拉公式发现的历程,激发学生热爱科学勤奋学习热情,培养学生勇于探索的创新意识。
【教学重点】欧拉公式和它的证明,证明的思想方法是重点。
【教学难点】证明过程是难点。
【教学过程】问题1:下面6个多面体,分别数出它们的顶点数V 、面数F 和棱数E ,并填出表1。
(1) (2) (3)(4) (5) (6) D 1C 1B 1A 1AB CD B 1D 1C 1E 1A 1ABCDE观察表1中各组数据,猜想V 、F 、E 之间的规律:___________。
是否任意一个多面体都有上述规律吗?问题是数学的心脏。
创设问题情境,让学生在解决问题的过程中去观察、猜想、探索;让学生以类似或模拟科学研究的方式进行学习,使学生形成探究性学习的习惯,培养和锻炼学生的探究能力。
问题2:下面3个多面体,分别数出它们的顶点数V 、面数F 和棱数E ,并填出表2。
(7) (8) (9)简单直观的问题情景能一下子激发学生探索的兴趣。
学生进入问题情景,发现问题,在问题的驱动下,进入探究性活动。
●教学时间
第九课时
●课题
§9.9.1 研究性课题:多面体欧拉公式的发现(一)
●教学目标
(一)教学知识点
1.简单多面体的V、E、F关系的发现.
2.欧拉公式的猜想.
3.欧拉公式的证明.
(二)能力训练要求
1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律.
2.使学生能通过进一步观察验证所得的规律.
3.使学生能从拓扑的角度认识简单多面体的本质.
4.使学生能通过归纳得出关于欧拉公式的猜想.
5.使学生了解欧拉公式的一种证明思路.
(三)德育渗透目标
1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求.
2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力.
●教学重点
欧拉公式的发现.
●教学难点
使学生从中体会和学习数学大师研究数学的方法.
●教学方法
指导学生自学法
首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识从中寻找规律,问题2让学生作进一步观察、验证得出规律,问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现规律的证明.
以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的思想和方法.
●教具准备
投影片三张
第一张:课本P56的问题1及表1(记作§9.9.1 A)
第二张:课本P57的问题2及表2(记作§9.9.1 B)
第三张:课本P57的问题3及P58的问题4(记作§9.9.1 C)
●教学过程
Ⅰ.课题导入
瑞士著名的数学家,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方
程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别
代表一简单多面体的顶点、棱和面的数目,今天我们就去体验当年的数学大师是如何运用数学思想和方法发现欧拉公式并给予理论上的推理证明等研究活动,希望大家在活动中要充分展开自己的想象,展开热烈的讨论互相进行数学交流.
Ⅱ.讲授新课
[师]我们先从一些常见的多面体出发,对它们的顶点数V、面数F、棱数E列出表,请大家观察后填写表1
(打出投影片§9.9.1 A)
(学生观察,数它们的顶点数V、面数F、棱数E,填入表1)
[师]好,大家填的快速而准确,继续观察表1的各组数据,找出顶点数V、面数F及棱数E的关系如何?
(学生寻找,可能一时不易得到,教师应给予适当点拨提问)
[师]表1中多面体的面数F都随顶点数目V的增大而增大吗?
[生]不一定.
[师]请举例说明.
[生]如八面体和立方体的顶点数由6增大到8,而面数由8减小到6.
[师]此时棱的数目呢?
[生]棱数都是一样的.
[师]所以我们得到:棱的数目也并不随顶点数目的增大而增大.
大家从表中还发现了其他的什么规律,请积极观察,勇于发言.
[生]当多面体的棱数增加时,它的顶点与面数的变化也有一定规律.
[师]举例说明.
[生甲]如图中(1)和(2)的棱数由6增大到12,面数由4增大到6,此时的顶点数也在随棱数的增加而增加,即由4增大到8.
[师]生甲叙述得严格吗?有不同意见吗?
[生乙]顶点数和面数并不是严格按棱数的增大而增大的.
[师]请试说说你归纳出来的规律.
[生乙]我发现并认为:当顶点数随棱数的增加而减小时,它的面数一定是随棱数的增加而增加的;当面数随棱数的增加而减小时,它的顶点数却是随棱数的增加而增加.
[师]生乙归纳得如何?大家对他的叙述同意吗?
(可能会有其他想法,教师应给学生充分的时间,让他们畅所欲言,表达他们的新发现,并予以一一指导)
[师]上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系.
[生](积极验证,得出)
V+F-E=2
[师]以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证.
[生](许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等.
(教师应启发学生展开想象,举出更多的例子)
[生]一个三棱锥截去含3条棱的一个顶得到的图形、一个立方体截去一个角所得的图形等.
[师]好,同学们现在想象,例如:n棱锥在它的n边形面上增加一个“屋顶”或截去含n条棱的一个顶后,刚才的猜想是否成立?能证明吗?
[生]所得的多面体的棱数E为3n条,顶点数V为2n个,面数V为2+n个,因2n+
(2+n )-3n =2,故满足V +F -E =2这个关系式.
[师]请继续来观察一些其他图形的情况.
(打出投影片§9.9.1 B )
请同学们观察后,将所得数据填入表2中.
(学生观察,数它们的顶点数V 、面数F 、棱数E ,并填入表2,可能有些同学出错,教师在巡视时要及时给予指导,帮助学生填完)
[师]观察你们的数据,请验证这些图形是否符合前面找出的规律吗?其中哪些图形 符合?
[生](1)符合,(2)、(3)不符合.
[师]一起来设想问题1和问题2中的图形.在某个橡皮膜上,当橡皮膜变形后,有的地方伸长、有的地方压缩,但不能破裂或折叠,橡皮膜上的图形的形状也跟着改变,这种图形的变化过程我们称之为连续变形.那么请大家试想这些图形中的哪些在连续变形中最后其表面可变为一个球面?(打出投影片§9.9.1 C )
[生]问题1中的(1)~(5)和问题2中的(1)个图形表面经过连续变形能变为一个球面.
[师]请同学们继续设想问题2中(2)(3)在连续变形中,其表面最后将变成什么图形?
[生]问题2中第(2)个图形;表面经过连续变形能变为环面.问题2中第(3)个图形;表面经过连续变形能变为两个对接球面.
[师]像以上那些在连续变形中,表面能变为一个球面的多面体叫简单多面体.请大家判断我们前面所学的图哪些是简单多面体?
[生]棱柱、棱锥、正多面体、凸多面体是简单多面体.
[师]至此,在问题1、2、3的基础上,我们是否可以得到什么猜想?怎样用式子表达? (有了前面积极地认真解决了问题1、2、3后学生不难归纳出)
[生]简单多面体的顶点数V 、面数F 的和与棱数E 之间存在规律V +F -E =2.
[师]我们将它叫做欧拉公式,以上3个问题的解决让我们体会到了数学家欧拉发现V +F -E =2的过程.那么如何证明欧拉公式呢?请大家打开课本P 58的欧拉公式证明方法中的一种,认真体会它的证明思路和其间用到的数学思想.
(学生自学、教师查看,发现问题,收集问题下节课处理)
Ⅲ.课堂练习
课本P 61练习1、2.
1.用三棱柱、四棱锥验证欧拉公式.
解:在三棱柱中:V =6,F =5,E =9
∵6+5-9=2,∴V +F -E =2
在四棱锥中:V =5,F =5,E =8
∵5+5-8=2,∴V +F -E =2
2.一个简单多面体的各面都是三角形,证明它的顶点数V 和面数F 有F =2V -4的关系. 解:∵V +F -E =2
又∵E =23F ,∴V +F -2
3F =0,∴F =2V -4 Ⅳ.课时小结
本节课,我们一起体验了数学家欧拉运用数学思想与方法去发现公式V +F -E =2的过程;体会到数学家献身科学、勇于探索的科学研究精神;并通过大家自学了解证明欧拉公式成立的一种方法,希望同学们仔细阅读研究,从中提出一些新问题,待我们下节课一起讨论
解决.
Ⅴ.课后作业
(一)课本P61习题9.9 1、2
(二)1.预习内容
预习课本P59的问题5
2.预习提纲
(1)请尝试叙述欧拉公式的证明思路.
(2)如何用欧拉公式解决“有没有棱数是7的简单多面体?”
(3)为什么正多面体只有五种呢?。